
Preemptive Scheduling of Multi-Criticality Systems

with Varying Degrees of Execution Time Assurance

Steve Vestal
steve.vestal@honeywell.com

Honeywell Labs
Minneapolis, MN 55418

Abstract
This paper is based on a conjecture that the more

confidence one needs in a task execution time bound
(the less tolerant one is of missed deadlines), the larger
and more conservative that bound tends to become in
practice. We assume different tasks perform functions
having different criticalities and requiring different lev-
els of assurance. We assume a task may have a set of
alternative worst-case execution times, each assured
to a different level of confidence. This paper presents
ways to use this information to obtain more precise
schedulability analysis and more efficient preemptive
fixed priority scheduling. These methods are evaluated
using workloads abstracted from production avionics
systems.

1 Introduction
Schedulability analysis only guarantees that dead-

lines are met to the degree that the assumptions of
the model are guaranteed to hold in the real system.
A particularly problematic assumption is that no task
execution time exceeds the specified worst case execu-
tion time (WCET) for that task. In practice, deter-
mining an exact WCET value for a task is very difficult
and remains an active area of research[8]. The WCET
parameter used for analysis is usually a conservative
upper bound that exceeds the true WCET.

In many applications, the consequences of miss-
ing a deadline vary in severity from task to task. In
RTCA DO 178B, for example, system safety analysis
assigns to each task a criticality level (ranging from
A to D), where erroneous behavior by a level A task
might cause loss of aircraft but erroneous behavior by
a level D task might at worst cause inconvenient or
suboptimal behavior.

This paper is based on a conjecture that the higher
the degree of assurance required that actual task exe-
cution times will never exceed the WCET parameters
used for analysis, the larger and more conservative
the latter values become in practice. For example, at

low criticalities the worst time observed during tests of
normal operational scenarios might be used. At higher
criticalities the worst time observed during more ex-
haustive tests specifically constructed for this purpose
might be used. At the highest criticality, some code
flow analysis and worst-case instruction cycle counting
might be done.

This paper presents modified preemptive fixed pri-
ority (PFP) schedulability analysis algorithms that as-
sume the timing guarantees for a task must be based
on WCET values that have the same level of assurance
as required for that task. We also present algorithms
that take this into account when assigning schedul-
ing priorities. We include a comparative evaluation
of these algorithms, based on data obtained from pro-
duction avionics systems.

How can we have a highly assured worst-case ex-
ecution time for a piece of low assurance software?
Defects that may impact timing (e.g. infinite loops)
are not assured to be absent to the degree required.
In current practice, worst-case exection times having
higher assurance than the software itself are obtained
by time partitioning (run-time enforcement). In time
partitioned PFP systems, when a task completes ear-
lier than its enforced budget, the remaining time be-
comes available for other tasks[2]. In many applica-
tions, this behavior is relied upon when determining
whether lower criticality tasks will meet their dead-
lines. This paper presents a structured way to use
and analyze this in time partitioned PFP systems.

2 Multi-Criticality Analysis
Using traditional notation, τi for i = 1..n denotes

a set of periodic tasks. Ti and Di specify the period
and deadline respectively for task τi.

Let L = {A, B, C, D} be an ordered set of design
assurance levels, where A is the highest design assur-
ance level. Let Li specify a design assurance level for
τi (normally determined during system safety analy-
sis). Let Cil for l ∈ L specify a set of compute times

28th IEEE International Real-Time Systems Symposium

1052-8725/07 $25.00 © 2007 IEEE
DOI 10.1109/RTSS.2007.47

239

28th IEEE International Real-Time Systems Symposium

1052-8725/07 $25.00 © 2007 IEEE
DOI 10.1109/RTSS.2007.47

239

for task τi, where l is the degree of assurance that true
execution times for τi will not exceed Cil. We assume
that Di ≤ Ti and CiA ≥ CiB ≥ CiC ≥ CiD for all i.

For each task τi we want to assure to level Li that τi

never misses a deadline. We assume this level of assur-
ance is achieved when the analysis is carried out using
compute times having the same level of assurance.

Preemptive fixed priority (PFP) scheduling is a
widely-used uni-processor discipline. For each task τi,
a distinct scheduling priority is specified by ρi ∈ 1..n.
Among all tasks that have been dispatched but not
completed, the processor is executing the task having
the numerically smallest priority (which, by conven-
tion, is called the highest scheduling priority although
it is numerically smallest).

Here we modify the Joseph-Pandya worst-case re-
sponse time algorithm to perform multi-criticality
analysis[6] (the same approach could be applied to
other PFP analysis algorithms[9]). Let Ri denote the
worst-case response time of task τi, which can be itera-
tively computed as the least fixed point of the equation

Ri =
∑

j:ρj≤ρi

⌈
Ri

Tj

⌉
CjLi (1)

We attempt to give brief insight into this formula
as follows. It has been shown that the worst-case re-
sponse time occurs when a task is dispatched simulta-
neously with all tasks having higher priority[5]. This
equation sums all the work dispatched for a task and
all higher priority tasks starting at this so-called criti-
cal instant, up until the earliest point in time at which
all such work has been completed. This earliest point
is the least fixed point for Ri. This is computed by
first assigning a variable Ri := CiLi , then repeatedly
evaluating the right-hand-side to update Ri until ei-
ther the value of Ri no longer changes or Ri > Di. In
the latter case, the task set is said to be unschedulable
or infeasible using the given priority assignment.

3 Multi-Criticality Scheduling
A deadline monotonic priority assignment (one in

which scheduling priorities are assigned in order of
deadline, higher scheduling priority to lower dead-
line) is known to be optimal given fixed periods and
compute times. However, it is not optimal for the
multi-criticality scheduling problem. An example is
T1 = D1 = 2, L1 = B, C1B = 1, C1A = 2; and T2 = D2 =
4, L2 =A, C2B =1, C2A =1. If task 1 is assigned high-
est priority, then task 2 sees a processor that already
has 100% of its available level A time set aside for
task 1. However, the system is feasible (as determined
by the previous multi-criticality analysis algorithm) if
task 2 is assigned highest priority.

Period transformation is a technique originally
developed to provide graceful degredation under
overload conditions by modifying a workload so
that higher criticality tasks have higher scheduling
priorities[7]. If a high-criticality task has a longer pe-
riod than a low-criticality task, run-time time slicing is
used to schedule the higher-criticality task as if it had
a smaller period and execution time. For each task τj

where Dj = Tj and there is some other remaining task
having lower criticality but smaller period, transform
the period and WCET to T ′

j = Tj/n, C′ = Cj/n for
an integer n that is just sufficient to reduce the period
to a value at or below the period of every other task
having lower criticality. (The algorithm as stated here
assumes deadlines are equal to periods, but it can be
extended to handle preperiod deadlines[3].)

Period transformation can improve multi-criticality
schedulability. We compute the transformed WCET
from CiLi , the WCET assured to the same level as the
task. The value CiLi/n is used as a run-time time slice.
When a transformed task is executed, some number
of the initial transformed dispatches always consume
this maximum allowed time-slice. We assume the task
will nominally complete before accumulating a total
of CiLi execution time by the end of its original un-
transformed period. This means at some point one
of the transformed dispatches will complete early, af-
ter which the remaining transformed dispatches will
have zero execution time until the end of the original
untransformed period.

We modify the multi-criticality analysis equation 1
as follows to take this behavior into account. At each
iteration of the fixed-point computation, if a task τj

has been transformed, then
⌈

Ri

(Tj/n)

⌉
(2)

is the number of transformed dispatches up to Ri.
Each block of n such dispatches corresponds to a com-
plete execution of the original untransformed task,
which we assume actually requires only CjLi rather
than CjLj . When summing the total work of τj that
might preempt τi, use CjLi/n for the first

n

⌊
Ri

Tj

⌋
(3)

transformed dispatches (blocks of transformed dis-
patches that complete the original untransformed
task), and CjLj for the remaining (transformed dis-
patches that may execute until the current time-slice
has been exhausted).

If τi has itself been transformed, then the modi-
fied equation 1 actually gives the worst-case response

240240

time of the first transformed dispatch of τi, not the re-
sponse time for the original untransformed task. The
equation would need to be further modified to add
idle intervals resulting from enforced time-slicing of
τi. However, a test of schedulability is sufficient for
our immediate purposes, and we omit these extensions
here.

A second multi-criticality scheduling technique,
which can be used either as an alternative to or in
combination with period transformation, is to apply
Audsley’s priority assignment algorithm to the multi-
criticality scheduling problem[1]. This algorithm is
based on the following two observations, which we
state without proof.
lemma 1: The worst-case response time for a task
τi can be determined (e.g. by equation 1) by knowing
which subset of tasks has higher priority than τi but
without otherwise knowing what their specific priority
assignments are.
lemma 2: If task τi is schedulable given a particu-
lar priority assignment, then it remains schedulable if
it is assigned a higher priority (other task priorities
remaining fixed).

The algorithm begins with no task having an as-
signed priority. Priorities are assigned from lowest to
highest scheduling priority, so that the first task as-
signed a priority will be the lowest priority task. At
each step, a task is selected from among those still
lacking a priority assignment and is assigned the next
higher priority. The task selected at each step is any
one of those that will be schedulable if assigned the
next higher priority. By lemma 1, this can be deter-
mined without knowing the exact priorities that will
be assigned to the remaining tasks, only that the re-
maining tasks will eventually receive a higher priority.
The algorithm terminates unsuccessfully at any step
in which none of the remaining tasks are schedulable,
or successfully when all tasks have been assigned a pri-
ority. Lemma 2 assures us that the algorithm will find
a feasible priority assignment if any such exists; the
schedulable tasks that are not picked at any step can-
not be made unschedulable by waiting and assigning
them higher priorities at later steps.

If Audsley’s algorithm is modified to use multi-
criticality schedulability analysis at each step, the re-
sult is a priority assignment algorithm for the multi-
criticality scheduling problem. At each step, among all
feasible choices, we selected the one having the great-
est critical scaling factor (critical scaling factors are
explained in the next section).

If any of the priority assignment algorithms we con-
sidered could not otherwise distinguish between two
tasks, then the tie was broken by assigning the higher
priority to the task having higher criticality.

task Ti Li measured allocated margin
P1 40hz 25 B 1.06 1.4 32.1%
P1 20hz 50 B 3.09 3.9 26.2%
P2 20hz 50 B 2.7 2.8 3.7%
P3 20hz 50 B 1.09 1.4 28.4%
P4 40hz 25 A 0.94 1.1 17%
P4 20hz 50 A 1.57 1.8 14.6%
P4 10hz 100 A 1.68 2.0 19%
P4 5hz 200 A 4.5 5.3 17.8%
P5 20hz 50 B 2.94 3.7 25.9%
P5 10hz 100 B 1.41 1.8 27.7%
P5 5hz 200 B 6.75 8.5 25.9%
P6 20hz 50 D 5.4 5.4 0%
P6 5hz 200 D 2.4 2.4 0%
P7 20hz 50 D 0.94 1.3 38.3%
P7 5hz 200 D 1.06 1.5 41.5%
P8 40hz 25 D 2.28 2.3 0.9%
P8 10hz 100 D 4.75 4.8 1.1%
P8 5hz 200 D 12.87 13 1%
P9 10hz 100 D 0.47 0.6 27.7%
PA 20hz 50 C 1.24 1.9 53.2%
PB 20hz 50 D 1.62 2.4 48.1%
utilization 80.4% 93% 21.4%

Table 1: Example Multi-Criticalty Workload

4 Evaluation

Discussions with individuals from various Honey-
well sites indicated that execution time measurements
obtained from instrumented platforms were the pri-
mary but not only data used to determine worst-case
execution time parameters. Testing was influenced by
the design assurance level of a task, e.g. at higher lev-
els, more effort was spent analyzing program flows and
developing additional tests specifically to assure worst-
case execution paths were exercised. Special steps
were sometimes taken to deal with caches, e.g. invali-
dating a cache at context swaps. In some cases experi-
ence or special factors associated with a particular ap-
plication domain were taken into account, sometimes
including added safety margins. Detailed flow analy-
ses and instruction cycle counting were used in a few
critical localized areas, e.g. context swap code in the
operating system.

We obtained processor workload data from three
time-partitioned avionics systems, developed by three
different applications groups, and hosted on two dif-
ferent platform configurations (different processor,
RTOS, and cross-development environment). Table 1
shows an abstract workload of 17 tasks extracted from
one of these data sets. Measured is the largest ob-
served execution time across a series of tests. Allo-
cated is the execution time limit enforced in the time-
partitioned implementation and used in schedulability
analysis for certification purposes. Margin is the dif-
ference between allocated and measured, expressed as
a percentage of the measured. The bottom row shows
that utilization computed using measured versus al-

241241

Workload 1 Workload 2 Workload 3
method ∆∗ increase ∆∗ increase ∆∗ increase

deadline monotonic priority
traditional analysis

1.08 – 1.24 – 1.07 –

deadline monotonic
multi-criticality analysis

1.20 11% 1.26 2% 1.09 2%

multi-criticality Audsley’s
multi-criticality analysis

1.20 11% 1.26 2% 1.09 2%

transformed & deadline monotonic
multi-criticality analysis

1.20 11% 1.76 42% 1.70 59%

transformed & multi-criticality Audsley’s
multi-criticality analysis

1.20 11% 1.76 42% 1.70 59%

Table 2: Comparative Evaluation Results

located values is 80.4% versus 93% respectively. On
average, allocated budgets were about 21.4% higher
than the largest measured execution time. About 54%
of the allocated utilization was at level C, the rest was
spread roughly evenly across levels A through D.

The remaining two workloads of 78 and 65 threads
had allocated versus measured utilizations of 80.4% vs.
56.8% and 93.1% vs. 58.9%, respectively. On average,
the allocated budgets were 71.5% and 33.9% higher
than measured WCETs respectively (ignoring a few
outliers where the difference exceeded 400%). The 78
thread workload had about 50% of the allocated uti-
lization at level A and the rest roughly evenly spread
across the other levels. The third workload had about
45% of the allocated utilization at level A, 29% at level
C, and the remainder roughly evenly divided between
the other levels.

This data was not collected and categorized to use
the methods of this paper, so we had to speculatively
construct a multi-criticality workload. In our evalu-
ations, we used the measured value for a task at all
criticalities below that of the task itself, and used the
allocated value at the task and higher criticalities, ex-
cept the measured values were always used for the
lowest criticality tasks. This is based on the follow-
ing rationalization. The allocated values are enforced
in a time partitioned system, and should be used for
the task itself. The measured value is taken to be the
nominal WCET and is used when analyzing lower-
criticality tasks. The difference reflects the amount of
time that in practice will be available to other lower
priority, lower criticality tasks during operation.

The metric we use to compare approaches is the
critical scaling factor, ∆∗, which is the largest value by
which all execution times can be simultaneously multi-
plied while preserving feasibility[4]. This is a measure
of how much additional work could be proportionally
added to all tasks while still guaranteeing schedulabil-
ity, for given schedulability analysis and priority as-

signment algorithms.
Table 2 shows the comparative results. The in-

crease column gives the percentage increase over the
first method shown, which is a traditional deadline
monotonic priority assignment used with an analy-
sis based on guaranteed (level A, enforced) worst-case
execution times. The second method is a deadline
monotonic priority assignment used with our multi-
criticality analysis. The third method uses our mod-
ified Audsley’s algorithm. The next two methods use
period transformation and multi-criticality analysis
with a deadline monotonic and a modified Audsley’s
priority assignment, respectively.

All of the benefit for workload 1 was achieved by
modified analysis alone, without any change to the
way the system would be scheduled. For the remain-
ing two workloads, period transformation combined
with the modified analysis provided the greatest ben-
efit, regardless of whether priorities were subsequently
assigned using a deadline monotonic or Audsley’s algo-
rithm. Note that the benefit is not necessarily related
to the average difference between measured and allo-
cated; workload 2 had an average margin of 71.5% and
received a 42% benefit, while workload 3 had a smaller
average margin of 33.9% and received a larger 59%
benefit. Both of these did benefit more than workload
1 with its 21.4% average margin.

5 Remarks
A primary motivator for using these methods would

be to provide more software functionality using less
hardware. For most embedded computer systems,
costs associated with the amount of hardware (e.g.
parts cost, size, weight, power) typically dominate en-
gineering development costs over the product life cy-
cle.

A second evaluation metric that could be used is
the reduction in development effort that might be
achieved. We conjecture that the tighter the WCET

242242

bound, or the more assured the WCET bound, then
the more effort required to obtain the bound. One
would not in practice obtain WCET bounds at ev-
ery level of assurance for every task, one would obtain
WCET bounds only at the precision and level of as-
surance required. The use of these methods might
therefore enable a reduction in the effort expended to
obtain adequately precise and assured WCET param-
eters.

The evaluations we performed using three ab-
stracted workloads is suggestive of the utility of these
methods, but they are not conclusive. We abstracted
data for this study from a development process that
was not intended to collect data for and use these
methods. A better assessment would include a careful
consideration of the processes that might be used to
determine multi-criticality WCET parameters.

It would be necessary to assure that current certi-
fication processes could be acceptably modified to use
these methods.

Tractable exact WCET analysis would reduce but
not entirely eliminate the utility of these methods.
For example, the longest execution paths might be
sufficiently infrequent in practice (e.g. error han-
dling paths) that they should be ignored for low-to-
moderate criticality tasks. Occasional deadline misses
may be tolerable, especially by tasks at lower critical-
ity levels.

We assumed at the beginning that high assurance
execution time limits for low assurance software were
obtained by time partitioning. However, it might be
feasible to do this by design assurance, at least at the
lower criticality levels. For example, it might be possi-
ble using methods such as enforced coding guidelines,
focused code reviews, and testing to assure the worst-
case execution time for a task to level C, even though
overall task functionality is only deemed assured to
level D.

An interesting theoretical question we encountered
was: What is a good multi-criticality utilization met-
ric? We considered computing a vector of utilizations
(one per design assurance level), computing a utiliza-
tion using for each task the compute time associated
with its own criticality, and computing a utilization us-
ing the compute time associated with the highest crit-
icality of any task of equal or lower priority. A vaguely
troublesome property of all these metrics is that some
workloads may be feasibly scheduled at higher than
100% utilization.

Acknowledgements
The author would like to express his appreciation

for the information, insights and comments provided
by Curt Bisterfeldt, Ted Bonk, Dennis Cornhill, Matt

Diethelm, Wayne King, and Jeff Novacek, all of Hon-
eywell.

References
[1] N. C. Audsley, “Optimal Priority Assignment and

Feasibility of Static Priority Tasks with Arbitrary
Start Times,” Technical Report YCS 164, Depart-
ment of Computer Science, University of York,
November 1991.

[2] Pam Binns, “A Robust High-Performance Time
Partitioning Algorithm: The Digital Engine Oper-
ating System (DEOS) Approach,” Digital Avionics
Systems Conference, Orlando, FL, October 2001.

[3] Pam Binns and Steve Vestal, “Message Passing
in MetaH Using Precedence-Constrained Multi-
Criticality Preemptive Fixed Priority Scheduling,”
Life Cycle Software Engineering Conference, Red-
stone Arsenal, AL, August 2000.

[4] J. Lehoczky, L. Sha and Y. Ding, “The Rate Mono-
tonic Scheduling Algorithm: Exact Characteri-
zation and Average Case Behavior,” IEEE Real-
Time Systems Symposium, 1989, pp 166-171.

[5] C. L. Liu and J. W. Layland, “Scheduling Algo-
rithms for Multiprogramming in a Hard Real-Time
Environment,” Journal of the ACM, v20, n1, Jan-
uary 1973.

[6] M. Joseph and P. Pandya, “Finding Response
Times in a Real-Time System,” The Computer
Journal, 29(5), 1986.

[7] Lui Sha, John P. Lehoczky and Ragunathan Ra-
jkumar, “Solutions for Some Practical Problems
in Prioritized Preemptive Scheduling,” IEEE Real-
Time Systems Symposium, 1986.

[8] Peter Puschner and Alan Burns (guest editors),
Real-Time Systems Special Issue: Worst-Case
Execution-Time Analysis, v18, n2/3, May 2000.

[9] Steve Vestal, “Fixed Priority Sensitivity Analysis
for Linear Compute Time Models,” IEEE Trans-
actions on Software Engineering, April 1994.

243243

