
WORST-CASE EXECUTION TIME ANALYSIS
FOR DIGITAL SIGNAL PROCESSORS

Niklas Holsti, Thomas Långbacka and Sami Saarinen

Space Systems Finland Ltd.
Kappelitie 6, FIN-02200 ESPOO, FINLAND
Tel: +358 9 61328600; Fax: +358 9 61328699

e-mail: {Niklas.Holsti,Thomas.Langbacka,Sami.Saarinen}@ssf.fi

Niklas Holsti, Thomas Långbacka and Sami Saarinen. WORST-CASE EXECUTION TIME ANALY-
SIS FOR DIGITAL SIGNAL PROCESSORS.Preprint of article that will appear in the proceedings
of EUSIPCO’2000.

ABSTRACT

We present ongoing work to develop a software tool for es-
timating worst-case execution times for real-time, embed-
ded programs. The tool applies static analysis to executable
machine-code programs. Currently we mainly aim at sup-
porting the TSC-21020E Digital Signal Processor, but the
tool is designed to be easy to adapt to other target proces-
sors as well.
Contrary to most other WCET tools we attempt (whenever
possible) automatic estimation of loop bounds. We also pro-
vide a rich assertion language, which can be used to set
bounds on loops that the tool itself cannot bound.

1 INTRODUCTION

Space Systems Finland (SSF) is developing a software tool
called BOUND-T for estimating worst-case execution times
(WCET) for real-time, embedded programs. The tool applies
static analysis to executable machine-code programs.

Real-time systems set hard deadlines for the software,
specifying how quickly a response to some external stimu-
lus has to be provided. Failing to meet such deadlines may
have catastrophic consequences. The real-time performance
of a system depends on several factors, e.g. the scheduling
of concurrent tasks with different priorities. One major fac-
tor is the WCET of individual tasks. The WCET of a task
may be estimated through testing, but this option is often not
available at early stages of development, since testing often
requires complex testing equipment and system simulators.
This is why WCET tools based on static program analysis,
such as ours, are attractive.

Currently the work is mainly directed towards the TSC-
21020E Digital Signal Processor under contract to the Eu-
ropean Space Agency (ESA). The TSC-21020E is a space-
oriented implementation of the Analog Devices ADSP-
21020 architecture. However, the tool has been designed
in a modular fashion, separating processor-dependent and -
independent parts. Our aim is to offer a commercial tool
supporting several different target architectures and host plat-
forms.

Contrary to most other WCET tools presented in the lit-
erature we attempt automatic estimation of loop bounds (i.e.
upper bounds for the number of times the body of a loop is

Compiler LinkerSource code

Executable
codeDebug info

Call tree WCET bounds

Separate
assertion
information

Bound-T
Tool

Figure 1: Context of the BOUND-T tool

executed). In general, this is an unsolvable problem (a spe-
cial case of the halting problem) but for typical loops a bound
can often be found by data-flow and data-range analysis.

2 OVERVIEW OF THE TOOL

This section presents the main design decisions that define
the BOUND-T tool, highlighting the characteristics of DSP
architectures and applications.

2.1 Object Code or Source Code

The task of computing the WCET for a program (or subpro-
gram) in general means analysing the execution time of all
the machine instructions on the worst-case path through the
program. Thus, a simple (and general) solution is to perform
the WCET calculation based directly on the object code read
from an executable program file (e.g. a COFF file). This is
the approach chosen in BOUND-T (see figure 1 which de-
scribes the context in which BOUND-T is used). Other re-
searchers (see e.g. [4]) have chosen to perform parts of the
analysis on the source code level (e.g. worst-case path anal-
ysis) and parts on the object level. There are also approaches



#define VECTOR_LENGTH 100

float sum_vector (float vector[])
{ int i;

float sum;
sum = 0.0;
for (i = 0; i < VECTOR_LENGTH; i++)

sum += vector[i];
return sum;

}

Figure 2: Simple C-function

where the analysis is performed completely on the source
code level (see e.g. [3]). As BOUND-T uses object code, it
is independent of the programming language. DSP applica-
tions are often written partly in assembly language but can
still be analysed by BOUND-T.

Consider the C-function in Figure 2. Assuming that
the function is part of an executable program called
summer.exe , we can obtain the WCET of the function by
executing BOUND-T with the command

boundt summer.exe sum_vector

The following sections explain how BOUND-T analyses the
program.

2.2 Control-Flow and Call-Graph Analysis
The first analysis step is to construct the subprogram’s
control-flow graph by starting from the entry point and lo-
cating all branch instructions and return instructions. For a
DSP this step is not so simple as it sounds, because DSPs
often have advanced, complex control-flow instructions such
as zero-overhead loops and architecturally-visible instruction
pipelines.

In the 21020, for example, the instruction “DO address
UNTIL condition” sets the processor in a state where fetch-
ing the instruction at the given address makes the processor
decide whether to repeat or terminate the loop at this address.
In other words, from this address control may either con-
tinue onwards, or loop back, without an explicit branch in-
struction, depending on the value of the given condition flag
two instruction cycles earlier. Such loops can be nested and
can interact in interesting ways with the delayed branch in-
structions. To construct the control-flow graph the tool must
model the state of the processor’s program sequencer, not just
keep track of the current program counter. For the 21020 we
model the three-stage fetch-decode-execute pipeline and the
loop stack.

During control-flow analysis, call instructions are detected
and the call-graph (see figure 1) is built. WCET analysis
is done in a bottom-up order in the call-graph (recursion is
forbidden).

2.3 Loop Bounding
Bounding the number of times the body of a loop can (at
most) be executed is the major source of complication in

automated WCET analysis. Typically, the user of a WCET
tool is required to provide the upper bounds to the tool. In
BOUND-T the aim is to minimise the effort of the user, and
instead find upper bounds automatically through data-flow
analysis.

The loop bodies are analysed to identify loop counters and
termination conditions. The effect of an instruction is mod-
elled as a function over the program state (much in the same
way as in state-based formalisms for program verification).
The state is a tuple containing all the cells (e.g. registers, pro-
cessor status flags) that are affected by the instructions in the
loop body. The combined effect of a sequence of instructions
is computed by function composition. Control-flow branch-
ing is modelled with function domain restriction and control-
flow joins with set union.

In BOUND-T a system called Omega1 is used to express
these functions. Omega implements Presburger Arithmetic,
a decidable subset of integer arithmetic.

Once the loop body’s combined effect has been expressed
by means of a number of function compositions, it is possi-
ble to construct functions that check, for example, whether a
certain variable is incremented by a constant value each time
the loop body is executed, and what that constant increment
is. These methods are incomplete, of course, but they work
for many looping constructs that are common in DSP appli-
cations.

The automatic loop bounding is restricted to what we call
counter-basedloops. A counter-based loop is a loop that al-
ways increments (or decrements) a counter value on each it-
eration (and where the increment or decrement is a constant
value), and terminates when the counter becomes greater
than (or less than) a constant limit (assuming that the limit
and original value of the counter can be found). The for-
loop in the program in figure 2 of course fits this description.
However, syntactically a counter-based loop does not have to
be a for-loop, the important thing is the form of the loop’s
exit-condition and that the loop counter is updated with a
constant value.

Sometimes the (actual) parameter values provided to a
subprogram determine the bound of some loops in the sub-
program, and a general WCET for the subprogram cannot
be derived. For such subprograms, BOUND-T analyses each
call of the subprogram, tries to bound the actual parame-
ter values in the call, and estimates the WCET for this par-
ticular call, by reanalysing the subprogram in this context.
This is the only form of inter-procedural data-flow analysis
in BOUND-T.

2.4 User-Provided Loop Bounds

Most WCET tools presented in the literature depend on the
user to provide upper bounds for loop execution. This is typ-
ically done in two different ways:

1Pugh, William et al. The Omega Project: Frameworks and Algorithms
for the Analysis and Transformation of Scientific Programs. University
of Maryland. Available from the URL:http://www.cs.umd.edu/
projects/omega



#define VECTOR_LENGTH 100

int bin_search (int *vector, int val)
{ int low, high, mid;

low = 0;
high = VECTOR_LENGTH - 1;
while (low <= high)
{

mid = (low + high) / 2;
if (vector[mid] == val)

return mid;
else if (vector[mid] < val)

low = mid + 1;
else

high = mid - 1;
}
return -1;

}

Figure 3: Complex C-function

� Through assertions in the source code of the program.
In [4] a very expressive "meta-language" for providing
bounds via the source code is presented.

� By providing the information interactively in response
to the tool as it finds loops that need to be bounded. This
introduces the problem of identifying the loops to the
user. Especially if the analysis is done directly on object
code, there might be no immediate way of mapping e.g.
compiler-optimised code to source statements.

When BOUND-T cannot bound a loop automatically, it
emits a message that explains the context of the loop: in
which subprogram the loop is found, whether it is nested
within some other loop, and how many loops were found be-
fore it in the same subprogram. Of course, the source-code
line-numbers are also shown, if the compiler has provided
this information in the executable file (the debug information
shown in figure 1).

The user must provideassertions(see figure 1) that ad-
vise BOUND-T about the bounds for these loops. The asser-
tions are written in a precise notation in a text file. Embed-
ding assertions in the program source-code is not currently
supported, for two reasons. Firstly, the ADI compiler for
the 21020 does not generate line-number maps for optimised
code, so there is no easy way to map source-embedded as-
sertions to object-code loops. Secondly, it is often useful to
compute the WCET for different scenarios, for example dif-
ferent interrupt loads, and these scenarios can now be defined
and modified in assertion files without spurious changes to
the source-code files.

The assertion notation was made as generic as possible
to support programs written in any source-language, includ-
ing assembler. The notation identifies loops using the log-
ical structure of the program. This makes it meaningful to
the programmer and insensitive to small changes in the code.
The notation is also designed to be robust with respect to op-

timisation, by using loop characteristics that are likely to be
left untouched in the optimisation process.

As an example consider the function in figure 3. It contains
a loop that is clearly not a counter-based loop (as defined
in section 2.3) since there is no counter that is incremented
or decremented by a constant value, nor is there a constant
limit to test against in the exit condition. Assuming that the
binary search function is defined in a file calledbinary.c
the following assertion states that for any call of the function
bin_search the loop executes at most 7 times.

file "binary.c"
subprogram "bin_search"
loop repeats <=7 times; end_loop

Since the loop inbin_search is the only loop of the sub-
program, the single keywordloop (as opposed to the key-
word loop_that followed by further characteristics of the
loop) is enough to identify this loop.

Assuming that the assertions above are placed in a
file called prog.a and that the binary search func-
tion is compiled and linked into a binary file called
prog.exe the following command gives us the WCET of
thebinary_search function.

boundt -assert prog.a prog.exe bin_search

More generally, one can specify the following kinds of as-
sertions:

� Variable value range (minimum, maximum or both) or
invariance of the variable.

� Worst-case execution counts for a statement (in practice
this applies to loop bodies) or calls to a particular sub-
program.

� Worst case execution time (of a subprogram or a partic-
ular call of a subprogram).

The assertions are stated for a specificscopewhich is ei-
ther a subprogram, a loop or a call (or possibly the whole
program in the case of variable range assertions). A particu-
lar subprogram is easy to characterise via its name. For loops
and calls it is more difficult. To characterise loops the asser-
tion syntax allows one to express such characteristics as:

� that the loop is contained (nested) in another loop

� that the loop contains another loop

� that the loop calls a particular subprogram

Characteristics can also be negated, if one wants to single
out a loop that e.g. doesnot call a particular subprogram.
Particular calls of a given subprogram can be characterised
by stating e.g. that the call is within a loop that is again
characterised as above.

Without giving any more detail about the syntax the exam-
ple in figure 4 identifies a loop that has the following proper-
ties: it is in a loop that calls"Foo" , it contains a loop that
itself does not call"Bar" but does call"Fee" , and it does
not contain a loop that calls"Fee2" . It then gives an upper
bound on the number of times the loop can repeat once it’s
been entered.



loop_that
is_in (loop_that calls "Foo")
and contains (loop_that not calls "Bar"

and calls "Fee")
and not contains (loop_that calls "Fee2")

repeats 10 times end_loop

Figure 4: An example of a fairly complex loop characterisation as
a part of a loop bound assertion

2.5 Worst-Case Timing Analysis

When control-flow and loop bounds have been analysed, it
remains to find the worst-case execution path and its exe-
cution time. This is much simpler if the execution time of
a given instruction is independent of the preceding execu-
tion path, but that is untrue for many modern processors with
large caches, branch prediction or other dynamic, history-
dependent optimisations. Fortunately, DSPs and embedded
processors in general tend to be simple in this respect, es-
pecially in the space domain, and thus BOUND-T currently
assumes constant instruction execution times. For a dynamic
architecture, the tool’s results are overestimates but still up-
per bounds on the WCET.

Most tools presented in the literature (see e.g. [1, 2, 4, 5])
calculate the WCET times using Integer Linear Program-
ming (ILP). It is fairly straightforward to encode the control-
flow graph and loop bounds into an ILP problem as shown
in e.g. [1]. The tool lp_solve2 is a popular choice as ILP
solver, and BOUND-T uses it to solve the ILP problem auto-
matically.

3 CONCLUSIONS AND FUTURE WORK

We have described BOUND-T, a tool for estimating WCET
bounds of programs for the TSC-21020E DSP. The tool has
been implemented but is not yet complete. To verify that the
tool design is adaptable to other architectures, we also imple-
mented a version for the Intel-8051 processor family, an 8-bit
architecture common in small embedded systems. BOUND-
T is implemented in the Ada language and currently runs on
Sun Solaris platforms, but will be ported to PC platforms.

3.1 Implementation Status

The current version of the tool implements the functionality
described above except for automatic loop bounding. Al-
though automatic loop bounding is the most complex func-
tion planned for the tool, we are confident that it is feasible.

We have designed the loop-bounding algorithms and the
necessary data-flow analysis for counter-based loops (see
section 2.3). Manual tests of the algorithms and experiments
with the Omega tool show that the information needed to
bound counter-based loops can readily be extracted. The im-
plementation is estimated to be ready by October 2000.

2By Michel Berkelaar. Available from the ftp server of the Information
and Communication Systems Group, Electrical Engineering Department,
Eindhoven University of Technology, from the URL:ftp://ftp.ics.
ele.tue.nl/pub/lp_solve

The computation time of the analysis itself may be a con-
cern, since the time complexity of the algorithms for Pres-
burger arithmetic is known to be high. The expected analysis
time on the order of a few minutes of workstation time seems
acceptable, since WCET analysis will probably not be used
in a rapid edit-compile-analyse cycle.

3.2 Cache Modelling
Much of the recent work on WCET tools presented in the lit-
erature focuses on modelling cache-memories and accurately
predicting the execution times of individual instructions in
case of cache misses etc. (see e.g. [2, 5]). This important
aspect has not yet been given much attention in BOUND-T.
Specifically for the TSC-21020E, we have not considered ac-
curate cache modelling to be important (due to the limited
cache size), but in order to give very precise (i.e. not too
pessimistic) WCET bounds – and especially to support pro-
cessor architectures with more dynamic features – this aspect
has to be given attention.

3.3 Commercialisation
We are working to make BOUND-T into a commercial prod-
uct. This includes ports to other target processors and host
platforms. Currently we are in the stage of starting a market
analysis, to look for – among other things – suitable target
processors for which to port BOUND-T.

References

[1] Yay-Tsun Steven Li, Sharad Malik, and Andrew Wolfe.
Efficient microarchitecture modeling and path analysis
for real-time software. InProceedings of the 16th IEEE
Real-Time Systems Symposium (RTSS’95), pages 298–
307. IEEE Computer Society Press, 1995.

[2] Yay-Tsun Steven Li, Sharad Malik, and Andrew Wolfe.
Cache modelling for real-time software: Beyond direct
mapped instruction caches. InProceedings of the 17th
IEEE Real-Time Systems Symposium (RTSS’96), pages
254–263. IEEE Computer Society Press, 1996.

[3] Patrik Persson and Görel Hedin. Interactive execution
time predictions using reference attributed grammars. In
Proceedings of the Second Workshop on Attribute Gram-
mars and their Applications (WAGA’99), pages 173–183,
1999.

[4] Peter Puschner. Worst-case execution time analysis at
low cost. Research Report 10/97, Institut für Technische
Informatik, TU Wien, 1997.

[5] Henrik Theiling and Christian Ferdinand. Combining
abstract interpretation and ilp for microarchitecture mod-
elling and program path analysis. InProceedings of the
19th IEEE Real-Time Systems Symposium (RTSS’96),
pages 144–153. IEEE Computer Society Press, 1998.


