
Architectural Principles for Safety-Critical
Real-Time Applications

~~ _ _ _ ~ ~

JAYNARAYAN H. LALA, FELLOW, IEEE, AND RICHARD E. HARPER, MEMBER, IEEE

Invited Paper

This paper addresses the general area of computer architectures
for safety-critical real-time applications. The maximum acceptable
probability of failure for these applications ranges from about
I O 4 to 1Oi0 per hour depending on whether it is a military
or civil application. Typical examples include commercial and
military aircraf fly-by-wire, full authority engine control, satellite
and launch vehicle control, ground transport vehicles, etc. Real-
time response requirements for these applications are also very
demanding, with correct control inputs required every 10 to 100
ms, depending on the application. These dual goals of ultrahigh
reliability and real-time response necessitate computer systems
that are quite different from other dependable systems in their
architecture, design and development methodology, validation and
verification, and operational philosophy. This paper highlights
these differences by describing each of these aspects of safety-
critical systems. Architectural principles and techniques to address
these unique requirements are described.

I. INTRODUCTION
Safety-critical real-time computing became an impor-

tant issue when designers began to incorporate computers
into guidance, navigation, and control systems of space-
craft at the dawn of the space age. Early spacecraft sys-
tems achieved reliability through rigorous quality control
and component engineering. The fault-avoidance approach
proved quite satisfactory for the Apollo expeditions to the
moon. There was a cost penalty, however, for engineering
high reliability into devices through a reduced component
failure rate. With the advent of the microprocessor, the
weight, volume, and power associated with redundant hard-
ware decreased. These physical resources, of course, are
always at a premium in aerospace vehicles. The micro-
processor made it possible to trade off fault-tolerance and
fault-avoidance techniques to minimize the overall cost.
Even more important, it made computers affordable for
many more applications. Safety-critical real-time applica-
tions of computers in the last 30 years have expanded to

Manuscript received July 13, 1993. This work was sponsored under
NASA Contrast NAS1-18565 and Draper’s Intemal Research and Devel-
opment program and is based partially on [21], [22].

The authors are with the Advanced Computer Architectures Group, The
Charles Stark Draper Laboratory, MS 73, Cambridge, MA 02139.

IEEE Log Number 9214152.

include aircraft, rotorcraft, ground transportation vehicles,
ships, and submersibles as well as nontransport applications
such as nuclear power plants and medical equipment.
Section I1 of this paper provides the historical background
and evolution of safety-critical computer architectures and
their applications. Section 111 provides an overview of
the requirements that are a common denominator among
these diverse applications and that distinguish this class of
applications of fault-tolerant computers from others where
computer failures are not as catastrophic.

Dependable architectures designed in the early 1970’s for
safety-critical applications included dual-dual and triplex
systems. The emphasis was on tolerating random hard-
ware faults, also known as operational faults, that are
presumed to occur independently in redundant copies of
hardware. Experience with these early systems showed that
redundancy can provide a cost-effective altemative to fault
avoidance for this class of faults. However, redundancy also
substantially complicated the task of validation. In fact,
it was all too easy to end up with a redundant system
that was more failure-prone than a simplex system. A
contributing factor to this situation was the ad hoc approach
to redundancy management that was employed often under
the simplistic assumption that redundancy equated with
fault tolerance. Fault propagation, error propagation, syn-
chronization of and consensus between redundant elements,
and other redundancy management issues were often over-
looked. However, twenty years ago, there was no theory to
guide the designers of fault-tolerant systems.

In the last 10 years or so, theoretically rigorous solu-
tions to tolerate independent hardware faults have been
designed, optimized, implemented, evaluated analytically
and empirically, and validated. Section IV discusses the
theoretical approach for hardware fault tolerance. This
approach has been successful to such an extent that the
dominant cause of failure of a correctly designed Byzantine
resilient (BR) computer today is common-mode failures
(CMF). A common-mode failure occurs when multiple
copies of a redundant system suffer faults nearly simul-

0018-9219/94$04.00 0 1994 IEEE

PROCEEDINGS OF THE IEEE, VOL X?. N O I . JANUARY 1994 25

taneously, generally due to a single cause. Increasingly,
emphasis in the design of safety-critical computers has
been on dealing with CMF’s. Unlike independent hardware
faults, the sources of common-mode failures are so diverse
that numerous disparate techniques are required to predict,
avoid, remove, and tolerate them. There is no silver bullet
like the solution to the Byzantine Generals Problem to solve
the CMF problem. Solutions have ranged from application
of formal methods to use of design diversity. Section V
discusses an approach for common-mode failure tolerance.

Real-time information processing is intrinsic to the op-
eration of all these systems. Typically, the control stability
aspects of these applications require that data operations
(such as input, processing, and output) be performed within
some bounded real-time constraints. Any missed time dead-
lines can be viewed as system failures, with results as
consequential as hardware failures. Thus contemporary
designs must consider both the hardwarehoftware fault tol-
erance as well as the deterministic scheduling of real-time
tasks. Unlike other applications of computers, safety-critical
applications require that the computer system be certified
by some authority such as NASA for space missions,
FAA or JAA for commercial transport aircraft, and the
NRC for nuclear power plants. The issue of validation
and verification plays a crucial role in the design and
certification of safety-critical real-time computer systems.
A full discussion of hard-real-time schedulers and the V&V
issues is beyond the scope of this paper. Suffice it to say
that the architectural principles discussed in the remainder
of this paper have been chosen because of, among other
things, their positive impact on both of these issues.

11. HISTORICAL PERSPECTIVE
Use of digital computers in safety-critical applications

was pioneered by NASA on the Apollo missions to the
moon. The Saturn V launch vehicle was controlled by
an early triply redundant IBM computer. By contrast, the
command module and the lunar module each had a sim-
plex Apollo Guidance, Navigation, and Control (AGN&C)
computer, due to severe weight limitations, on which the
astronauts were critically dependent for their journey to the
moon and back. The AGN&C computer relied on simplicity
and quality control to achieve very high reliability. The
AGN&C was one of the very first computers to use
integrated circuits. Because of reliability considerations,
only one type of circuit, a three-input NOR gate, which was
simple enough to be controllable, testable, and producible,
was used to synthesize all the digital logic in the computer
[SI. During over 100000 h of cumulative operations, no
permanent failure of the computer was ever recorded.

The design and validation of these early systems in-
fluenced the fly-by-wire flight control systems developed
in the 1970’s for military aircraft. A surplus AGN&C
computer was, in fact, flown on a NASA/Navy F-8 fighter
aircraft converted to a flying research testbed. The basic
F-8 mechanical control system, i.e., the mechanical links
between the pilot and the control surface actuators, were

completely removed. Between 1971 and 1973, 42 flights
were accomplished with a total accumulated flight time of
58 h [31]. Historically, this was the first recorded flight of
an aircraft using as its primary means of flight control a
Digital Fly-by-Wire (DFBW) system, with no mechanical
backup.

In 1976, the simplex Apollo computer was replaced by
a frame-synchronous triply redundant system utilizing an
IBM APlOl computer in each channel. The F-8 DFBW ar-
chitecture relied on bit-wise exact consensus of the outputs
of redundant computers for fault detection and isolation.
Although the architecture did not meet the requirements
for Byzantine resilience (the BR theory had yet to be
developed), elaborate measures were taken to make sure
that redundant computers obtained consistent sensor values.
This was accomplished by a triply redundant interface unit
(IFU) which was responsible for interfacing the sensors
and actuators to the computers and for interchannel data
transfers between computers. This second phase of the
F-8 DFBW program was also a pathfinder, in terms of
verification of synchronization, redundancy management,
and other fundamental concepts for the Space Shuttle’s
data processing system (DPS) which uses the same APlOl
computers in a quad-redundant fashion.

The Space Shuttle DPS was designed to meet the fail op-
erational, fail safe (FOES) requirement. This requirement
meant that the avionics system must remain fully capable of
performing the operational mission after any single failure
and fully capable of returning safely to a runway landing
after any two failures [lo]. Although the Shuttle DPS, like
the F-8 DFBW system, was not explicitly designed to meet
the BR requirements, it comes very close. It meets the
requirements for the number of fault containment regions
(4) and the connectivity requirement (fully cross-strapped),
at least in the full-up configuration. Additionally, the two-
round exchange protocol is used to agree on some input
values, deemed to be critical. (The BR theory requires that
this protocol be used for all values).

A very interesting aspect of the DPS architecture is the
very early use of software design diversity in a safety-
critical computer system. Considerations of software errors
which could affect all four computers and concern about
the overall complexity of the primary system forced a
backup system. The main constraint on the backup system
was that in no way it should degrade the reliability of
the primary system or require additional crew training.
The result was a concept which used the fifth computer,
identical in hardware to the primary computers, but loaded
with unique, independently developed and coded software
capable of safe vehicle recovery and continuation of ascent
or safe return from any mission phase. A redundant, manual
switching concept was devised by which control of all
required data buses, sensors, actuators, and displays was
transferred to the single backup computer.

In parallel with NASA’s early efforts, the commercial
air transport industry was also pioneering the use of fault-
tolerant computers for real-time flight control applications.
In early 1970’s, all wide-bodied “jumbo jets,” Boeing 747,

26 PROCEEDINGS OF THE IEEE, VOL. 82, NO I , JANUARY 1994

Lockheed L- 101 1, and Douglas DC-10, were equipped
with computers to execute fully automatic landings in all
visibility conditions including Category 111 (zero horizontal
visibility and zero ceiling). Unlike the space missions, the
autoland function had to operate for just a few minutes out
of which only about 15 s were truly critical. At the alert
height, 100 ft for Cat 111, if the autoland system is no longer
fail-op, the pilot executes a go-around, i.e., chooses not
to land automatically. Conversely, if the system is fail-op
at the alert height, the automatic landing proceeds. During
the remaining seconds before touchdown, the probability of
failure of the autoland system must be lo-’ or less. This
is two to three orders of magnitude less than what was
acceptable for space missions and military flight control
systems since public safety as opposed to lives of astronauts
or pilots was at stake. However, as already pointed out,
the autoland system had to demonstrate such an ultrahigh
reliability only for a few seconds. The DC-IO autoland used
two identical channels, each consisting of dual redundant
fail-disconnect analog computers for each axis, i.e., roll,
pitch, and yaw [29]. The Boeing 747 autoland was a triply
redundant analog computer. The Lockheed L-1011 used
a dual-dual architecture implemented by Collins Avionics
using digital computers. (As an interesting aside, the FTMP
was implemented using the same Collins CAPS-6 micropro-
cessor and programmed in the same higher order language
AED as the Lockheed autoland system.) The Lockheed
flight control system did not use design diversity in software
or hardware.

The flight control computers for commercial airliners
have made tremendous progress in the last 20 years. The
AIRBUS A-320 has a full time DFBW flight control
system with no mechanical backup. It uses software design
diversity to protect against common-mode failures. The
Boeing 777 flight control computer, now being designed
by GEC Avionics, UK, takes design diversity well beyond
what has ever been tried in practice or even in a re-
search laboratory. The initial concept rested on three quad-
redundant computers with each of the quads implemented in
dissimilar hardware and programmed in dissimilar software,
i.e., 12 processors arranged in a 3 by 4 matrix [14]. The
three processors with their associated languages were to
be Inmos Transputer T4 14/0ccam, Motorola 68020/Ada,
and Intel 80386/C. The software design diversity has since
been simplified to use only Ada, although three different
compilers are still under consideration to generate code
for the three types of microprocessors, which have also
been changed to Motorola 68040, Intel 80486, and AMD
29050 to take advantage of the latest technology and
higher throughput [2]. The hardware design has also been
simplified to a 3 by 3 matrix of 9 processors.

The NASA/Navy F-8 DFBW program was a precursor to
a number of military fly-by-wire flight control experiments
and eventually operational systems. The Air Force’s F-
16 fighter sports a full-time DFBW control system that
uses four loosely synchronized redundant computational
channels. The approximate consensus at the outputs of
these channels caused considerable headaches during the

development program in setting appropriate comparison
thresholds in order to avoid nuisance false alarms and yet
not miss any real faults [24]. Recent examples of military
aircraft using full-time DFBW flight control systems in-
clude the Air Force’s C-17 transport and the B-2 bomber
both of which use quad-redundant flight control computers.
DFBW systems are also finding their way into rotorcraft
such as the Army’s Advanced AH-64 Apache helicopter

Although there are numerous other applications of safety-
critical real-time computers, too many to cover in this paper,
two others are worth mentioning. The aircraft engines, both
civilian and military, are now routinely controlled by Full
Authority Digital Electronic Control (FADEC). In terms
of the sheer number of deployed real-time fault tolerant
computers, the engine controllers probably account for
more than all the other applications combined. Require-
ments for engine controllers are somewhat more relaxed
than for flight control due to redundancy at a higher level,
i.e., multiple engines per airplane. The requirement for
FADEC is typically fail-safe rather than fail-op. The fail-
safe requirement for commercial airlines is that the in-flight
shut-down rate not exceed about one in one million flight
hours per engine. This, along with the weight and volume
constraints of engine-mounted controller, has tended to
drive the FADEC to a dual redundant architecture. In the
event of a failure of one of the two computers the engine
is shut down in flight. No hardware or software design
diversity has been used in these systems.

A second application that is quite new is the control of
underwater vehicles. The ARPAINavy have sponsored rapid
prototyping of Unmanned Underwater Vehicles (UUV’s)
using state-of-the-art technologies to demonstrate the utility
of UUV’s in performing mine search, remote surveillance,
and other classified missions of interest to the Navy.
Several UUV’s have been built and gone through sea trials
since 1988 [27]. Each UUV is controlled by a triplex
BR fault-tolerant computer that uses identical hardware
and software in the three channels. The Navy’s latest
attack submarine, SSN-21 Seawolf, is also being designed
to be controlled by a quad-redundant BR fault-tolerant
computer that also uses identical hardware and software
in each channel [21]. This is a radical departure for U.S.
submarines, which until recently have not even had the
luxury of an analog autopilot. Since the computer will
perform functions very similar to an aircraft fly-by-wire
system, we call the submarine’s system the swim-by-wire
computer.

[W.

111. REQUIREMENTS
Fault-tolerant computers are now used in a diverse set

of applications, and the techniques for achieving fault
tolerance vary as much as the application requirements. We
focus here on achieving fault tolerance for ultra-reliable
hard real-time systems.

One way to define reliability requirements for these
systems and to distinguish them from other fault-tolerant

LALA AND HARPER: ARCHITECTURES FOR SAFETY-CRITICAL REAL-TIME APPLICATIONS 21

applications is to measure them in terms of a maximum
acceptable probability of failure. Because of the total de-
pendence of the application on the correct operation of the
system, the acceptable probability of failure of the computer
is very small, typically in the range of
depending on the consequences of the failure. Safety-
critical applications are the most demanding. Commercial
transport fly-by-wire, such as the Airbus A-320, require a

probability of failure per flight hour. (In this type
of flight control, a computer processes all pilot commands.
There is no direct mechanical link between the pilot control
wheel and the control-surface actuators.)

Similar applications in military aircraft are several orders
of magnitude less demanding, typically around per
hour (presumably because the crew can bail out). Vehicle-
critical applications in which the cost of failure is a huge
economic penalty rather than loss of life (such as un-
manned launch vehicles, autonomous underwater vehicles,
and full-authority engine controls) require lop6 to
probabilities of failure per hour.

Mission-critical applications in which a computer
failure would cause an incomplete or aborted mission
occupy the low end of the ultra-reliable spectrum. Typical
reliability requirements are to lop6 probabilities
of mission failure.

By contrast, on-line transaction processors (OLTP’s) used
in airline reservation systems, banks, stock exchanges and
other financial institutions demand high availability, i.e.,
uptime, rather than high reliability, i.e., correct operations.
Incorrect operations in these applications can usually be
found through audits and rolled back after the fact. This is
also true of another popular use of fault-tolerant computers,
namely, electronic switching systems for telecommuni-
cations. For example, the stated goal for AT&T’s most
advanced ESS computers is a down time of no more than
an average of 3 min per year or 2 h over 40 years. However,
requirements for completing a call correctly are not quite
so stringent since the customer can be provided credit for
incomplete or wrong calls.

The real-time response requirements for the applications
under consideration are also very demanding. For example,
statically unstable fighter aircraft can develop divergent
flight modes if correct control inputs are not applied every
40 to 100 ms. Similarly, advanced variable-cycle jet engines
can blow up if correct control inputs are not applied every
20 to 50 ms. Mission-critical functions do not have such
stringent response-time requirements but typically need
higher throughput.

By contrast, OLTP applications can withstand a delay of
seconds to process transactions. In any event, the penalty
for slow response is not nearly as catastrophic.

A third requirement, although no one ever states it ex-
plicitly, is system capability for validation. Commercial fly-
by-wire systems cannot be placed into service in the U.S.
until the Federal Aviation Administration is satisfied with
their safety. Similarly, the Nuclear Regulatory Commission
must certify nuclear power-plant trip monitors and controls,
the National Aeronautics and Space Administration must

to

certify the avionics used on board spacecraft, and so
on.

Once again, the validation of OLTP, electronic switching
systems, and other noncritical applications of fault-tolerant
computers is not quite so formal. Although relatively more
expensive to fix hardware and software design errors in the
field than during production, the consequences of design
errors getting through into operational systems are typically
not catastrophic.

Because of the extremely low failure rate required of
these systems, lifetime testing for the purposes of certi-
fication is out of the question. Although empirical data
collected on test articles in the laboratory and/or flight
systems can be used as part of the validation process,
the primary means is a hierarchy of analytical models,
simulations, and proofs that would satisfy any determined
inquisitor that a system can perform its intended function
correctly under all expected conditions.

Iv. THEORETICAL APPROACH FOR
HARDWARE FAULT TOLERANCE

The ad hoc approaches of the 1970’s gave way to more
formal means of achieving fault tolerance for ultrahigh-
reliability applications. The Byzantine Generals’ Problem
(BGP) advanced by Lamport et al. and then expounded
by others formed the theoretical foundation for tolerating
arbitrary random hardware component failures. FTMP [181
and SIFT [32] were the early examples of research systems
that complied with the BGP requirements. This section
will discuss these requirements. The issue of exact versus
approximate consensus to detect faults and the implication
of the two approaches on achieving the BGP requirements
will also be discussed. Although a majority of safety-
critical computer systems have been designed to provide
exact consensus at the output of redundant computational
channels, some notable exceptions include the F- 16 fly-by-
wire flight control and the Boeing 737 yaw damper.

We have evolved a philosophy to address the unique
requirements of ultra-reliable real-time systems based on a
number of major precepts. First, we deal with the problem
of random hardware faults using efficient solutions to the
“Byzantine Generals Problem.” We then utilize a three-
pronged approach to reduce the system’s probability of
failure due to common-mode failures, for which redundancy
offers little if any assistance.

A . Byzantine Resilience

For a computer to be considered adequately reliable for
safety- or mission-critical applications, it must be capable of
surviving a specified number of random component faults
with a probability approaching unity [3]. A conservative
failure model is to consider faults as consisting of arbitrary
behavior on the part of failed components. This type of
fault, known as a Byzantine fault , may include stopping
and then restarting execution at a future time, sending con-
flicting information to different destinations, and, in short,
anything within a failed component’s power to attempt to
corrupt the system.

28 PROCEEDINGS OF THE IEEE, VOL. 8 2 , NO. I , JANUARY 1994

Since the concept of Byzantine resilience is central to the
theory and operation of Draper computers, it is important
to discuss the motivation for this seemingly extreme degree
of fault tolerance. Cost-effective validatability and achieve-
ment of high reliability are important motivating factors.
Validation-based motivation for Byzantine resilience is per-
haps best viewed in the context of an example. We suppose
that a digital computer system having a maximum allowable
probability of failure of per hour is required, and
that this system must be constructed of replicated channels
each of which has an aggregate failure probability of
lop4 per hour. In a traditional system Failure Modes and
Effects Analysis (FMEA)-based approach to achieving the
requisite failure rate: likely failure modes of the system are
analyzed, their likely extent and effects are predicted, and
suitable fault-tolerance techniques are developed for each
failure mode which is considered to possess a reasonable
chance of occurring. For the system to meet the reliability
requirement, the probability that any given fault is not
covered must be less than FZ 10-9/10-4 = that is,
it is necessary that the likelihood of a failure occurring
which was not predicted and planned for must be less than
FZ Viewed another way, it is (or should be) incumbent
upon the designer to prove to an aggressive and competent
inquisitor such as a certification authority that fewer than
one in 100000 faults which could occur in the field (as op-
posed to those induced or injected in the laboratory) could
conceivably defeat the proposed fault-tolerance techniques.
If this assertion cannot be demonstrated within a reasonable
amount of time and money, then it is not feasible to validate
the FMEA assumptions and hence the claimed lo-’ per
hour failure rate.

The FMEA process is tedious, time-consuming, and
extremely expensive. This is attested to by the seemingly
contradictory trend of increasing costs of digital avionics
systems even as the cost of hardware continues to decline.
This is at least partially due to the fact that the cost of
validating critical systems completely overwhelms the cost
of their design and construction. Software validation is
a major component of this cost, and inappropriate fault-
tolerance-related architectural features only aggravate the
difficulty.

In contrast, consider another fault-tolerance technique
which guarantees that the system can tolerate faults, without
relying upon any a priori assumptions about component
misbehavior. In effect, a faulty component may misbehave
in any manner whatsoever, even to the extreme of dis-
playing seemingly intelligent malicious behavior. A system
tolerant of such faults would obviate the expensive and
physically intractable problem of convincing a knowledge-
able inquisitor of the validity of restrictive hypotheses
regarding faulty behavior, in effect permitting faulty behav-
ior to subsume all conceivable FMEA’s. Such a system is
denoted “Byzantine-resilient,’’ that is, capable of tolerating
“Byzantine” faults.

One expects a system capable of tolerating such a pow-
erful failure mode to be intrinsically complex and possess
numerous inscrutable and exotic characteristics. To the

contrary, the requirements levied upon an architecture tol-
erant of Byzantine faults are relatively straightforward and
unambiguous, simply comprising a lower bound on the
number of fault-containment regions, their connectivity,
their synchrony, and the utilization of certain simple in-
formation exchange protocols. We assert that a satisfactory
demonstration that an architecture possesses these simple
attributes is far less expensive and time-consuming than
proving that certain uncovered failure modes can occur with
a probability of at most Existing critical computing
systems are typically designed to be triply or quadruply
redundant anyhow; meeting the requirements for Byzantine
resilience requires a simple rearrangement of the channels
and addition of a few interchannel communication proto-
cols. We think this minor rearrangement of the architecture
recovers many times over the cost of an FMEA-based
validation. Moreover, it is our experience that the run-
time overhead required to achieve Byzantine resilience
can be substantially less than that required to achieve
significantly lower levels of fault .coverage using fault-
tolerant techniques based on restrictive hypothetical models
of failure behavior.

In our opinion, a Byzantine-resilient system possesses
some powerful programming attributes which result in
a significant reduction in software validation effort and
cost. First, the hardware redundancy is largely transparent
to the programmer. The applications programs and the
operating system are developed, debugged, and validated in
a simplex (nonredundant) environment without any regard
for the redundant copies of the software executing on
redundant hardware. Second, the management of hardware
redundancy is transparent to the programmer. The appli-
cations programs and the operating system are rigorously
separated from the hardware and software that manages
redundancy. Redundancy management includes functions
for detection and isolation of faults, masking of errors
resulting from faults, and reconfiguration and reallocation
of resources. This rigorous separation allows independent
validation of various software entities such as the applica-
tions programs, the operating system, and the redundancy-
management software. By breaking the destructive syner-
gism that comes from intertwining these entities, significant
reduction in software validation effort has resulted for the
FTPP and its predecessors, including the Fault-Tolerant
MultiProcessor (FTMP) [181, the Fault-Tolerant Processor
(FTP) ([19]), and the Advanced Information Processing
System (AIPS) ([16], [17]). Third, a guarantee is made to
the applications programmer and the operating system on
interprocessor message ordering and validity which holds in
the presence of arbitrary faults, and relieves the programmer
from consideration of faulty behavior when designing a
distributed application. These guarantees are embodied in
the Byzantine Resilient Virtual Circuit (BRVC) abstraction
of the FTPP [1 11-[131. Once again, the practical impact of
this abstraction is the reduction of effort required to validate
distributed applications software.

It is occasionally suggested that Byzantine-resilient sys-
tems are overdesigned because such strange failure modes

LALA AND HARPER: ARCHITECTURES FOR SAFETY-CRITICAL REAL-TIME APPLICATIONS 29

cannot occur in real life. To the contrary, we contend that
odd unanticipated failure modes occur often enough in prac-
tice that their probability of occurrence cannot be dismissed,
and that ultra-reliable computing systems must be able to
tolerate them. Fortunately, the problem of tolerating such
random hardware faults has been solved and optimized.
Although incremental refinements continue to be made in
areas such as encoded rather than replicated memory, fast
realignment of a channel for transient fault recovery, etc.,
the dominant contributor to failure of correctly designed BR
computer is now common-mode failures. This is discussed
in a subsequent section.

B. Redundancy Management

Due to the stringent real-time requirements discussed
earlier, application functions cannot be suspended for more
than a few milliseconds when a component fails. Fault
effects must be masked until recovery measures can be
taken. A majority voting architecture with a triplex or
higher level of redundancy masks errors and provides spares
to restore error masking after a failure. Use of redundancy,
of course, is quite common in critical systems. However,
managing that redundancy is supremely important.

Redundancy alone does not guarantee fault tolerance.
The only thing it does guarantee is a higher fault amval
rate compared to a nonredundant system of the same
functionality. For a redundant system to continue correct
operation in the presence of a fault, the redundancy must
be managed properly. Redundancy management issues are
deeply interrelated and determine not only the ultimate
system reliability but also the performance penalty paid
for fault tolerance. A fault-tolerant computer can end up
spending as much as 50% of its throughput managing
redundancy [26].

As a first step in addressing this issue, we partition
the redundant elements into individual fault-containment
regions (FCR’s). An FCR is a collection of components
that operates correctly regardless of any arbitrary logical or
electrical fault outside the region. Conversely, a fault in an
FCR cannot cause hardware outside the region to fail.

To form a fault-containment boundary around a collection
of hardware components, one must provide that hardware
with independent power and clocking sources. Additionally,
interfaces between FCR’s must be electrically isolated. The
isolation should be robust enough to tolerate a short to
the maximum voltage available in the FCR. Depending
on the application, this may be 5 or 28 V dc, 115 V
a c - o r even higher in a HERFFMI (high-energy radio
frequency/electromagnetic interference) environment.

Some applications also require tolerance to such physical
damage as a weapons hit or flooding. In those cases, FCR’s
must also be physically separated; it is typically done
by locating redundant elements in different avionics bays
on aircraft or in compartments separated by bulkheads in
underwater vehicles.

Due to all these requirements, it is impractical to make
each semiconductor chip, or even a board, an FCR. A
realistic FCR size is that of a whole computer, also called a

channel in the avionics parlance. A typical channel contains
a processor, memory, I/O interfaces, and data and control
interfaces to other channels. If the FCR requirements are
enforced rigorously, one can argue that random hardware
component failures in FCR’s constitute independent and
uncorrelated events. This is an important underpinning of
the analytical models used to predict the probability of
failure of these systems.

Although an FCR can keep a fault from propagating to
other FCR’s, fault effects manifested as erroneous data can
propagate across FCR boundaries. Therefore, the system
must provide error containment as well. The basic principle
is fairly straightforward: “voting planes” mask errors at
different stages in a fault-tolerant system. For example, a
typical embedded control application involves three steps:
read redundant sensors, perform control law computation,
and output actuator commands.

In an embedded application, an input voting plane masks
failed sensor values to keep them from propagating to the
control law. Intemal computer voting masks erroneous data
from a failed channel to prevent propagation to other chan-
nels. Output voting and an interlock mechanism prevent
outputs of failed channels from propagating outside the
computational core.

The interlock is a hardware device in each channel that
can enable or disable the outputs of that channel. Only a
majority of the channels can change the interlock state.
Therefore, in triplex or higher redundancy level computers,
the majority of channels can disable the outputs of a failed
channel.

Finally, a voting plane at the actuator masks errors in
the transmission medium that connects the computer to
the actuators. The typical actuator is driven by multiple
electrical or hydraulic inputs so that a majority of inputs
can drive it to the correct position even when one of the
inputs fails to its maximum value, or a “hardover failure.”

Masking faults and errors obviates the need for im-
mediate diagnostics, isolation, and reconfiguration. The
application functions need not be suspended. The majority
of channels can continue to execute these functions cor-
rectly and provide correct outputs. This approach meets the
stringent real-time response requirements.

C . Exact Versus Approximate Consensus

To mask errors, outputs of redundant channels must be
compared and voted. Two distinct voter approaches have
evolved to provide these functions. These methods affect
everything from efficiency of fault tolerance to coverage of
faults to validation of hardware and software.

The two approaches seem to affect only the voter at
first glance, but they actually go to the heart of the ar-
chitecture. Draper utilizes an architectural approach that
requires the outputs of all channels to agree bit-for-bit
under no-fault conditions. This exact bit-wise consensus
is used in most fault-tolerant computers (such as the F-8
DFBW, the Space Shuttle DPS, the UUV triplex FTP’s, and
the Seawolf swim-by-wire FTP). In contrast, a few others
(such as AFTIF-16 Flight Control System and Sperry B-

30 PROCEEDINGS OF THE IEEE. VOL. 82, NO. I , JANUARY 1994

737 Yaw Damper) use an approximate consensus approach
in which the outputs of redundant channels agree within
some threshold (also called a window of agreement) under
no-fault conditions.

The use of the exact consensus approach can best be
motivated and discussed by addressing the limitations of
approximate consensus. Fault-detection coverage in the
latter approach is a function of how precisely one defines
the thresholds.

For most dynamic systems, thresholds are a function of
the process and its inputs and outputs. Thresholds may also
change with the operating mode. For example, the outputs
of a redundant flight-control computer can be expected to be
very close in a level, cruising flight with control-law inputs
relatively constant. However, in a high-speed maneuver in
which aircraft altitude, velocity, and other inputs change
very rapidly, the outputs of redundant channels can be much
farther apart.

Since there is no mathematically precise way to define
these thresholds, most designers use empirically derived
heuristics guided by two opposing requirements: making
the threshold or window of agreement too small generates
nuisance false alarms; making the window too wide to avoid
false alarms will miss some real faults and lower fault- de-
tection coverage. Due to this dilemma, fault-detection cov-
erage in approximate consensus systems cannot approach
100%. In fact, there is no general formal methodology for
accurately calculating the coverage achieved for a given
threshold s ize-one must rely on empirical testing and mea-
surement. This makes analytical modeling and validation
extremely tedious, if not impossible. Furthermore, the use
of application-process-derived thresholds for fault detection
and isolation puts a serious and uncalled-for burden on the
applications programmer to assure fault tolerance in the
host machine.

As a case in point, in an empirical evaluation of five
voting algorithms (midvalue select, residual voter, first-
order extrapolation, second-order extrapolation, and third-
order extrapolation) for an asynchronous Ultrareliable Fault
Tolerant Control System (UFTCS), [4] concludes that “To
design an effective voter requires extensive knowledge of
the types of errors that may occur in the system and the
nature of the signals being tested.” Extensive testing of the
candidate voters was performed for six fault modes (stuck at
zero, random faults, constant drift, constant offset, transient
impulse, and stuck at last value), and it was concluded
that “...none of the voters were completely adequate for the
UFTCS. ... To validate that these separate concepts can be
brought together to form an effective voter for the UFTCS
will require further testing.” We think that this conclusion
highlights the general difficulty of validating the inexact
consensus approach within the domain of ultra-reliable
computing.

Another limitation of the approximate consensus ap-
proach is that a distributed network of redundant computers
based on approximate consensus could only exchange and
vote interprocessor messages that consist of physical quan-
tities, since approximate equality of physical quantities is

the basis for fault masking and detection. Unfortunately,
most of the communication traffic in a distributed system
typically has no physical semantics, and the notion of
approximate equality between redundant copies of such
abstract messages is meaningless. The concepts of ap-
proximately near or far apart, in fact, are meaningless
for most variables in a computer, resulting in systems
using approximate consensus eventually having to address
exact consensus issues, in addition to those of approximate
consensus.

The exact consensus approach, in contrast, rests on a
foundation of clearly defined requirements and is amenable
to formal methods and analytical validation. It begins
with the realization that digital computers are finite-state
machines. Under the following well-defined conditions,
redundant digital computers produce bit-for-bit identical
results.

Identical initial states. The redundant copies of the
hardware must be initialized to the same state. For a
typical channel, this implies that at some initial time
t o all volatile memory, processor cache and registers,
control registers, and clock and counter values (includ-
ing the states of intermediate stages, discretes, etc.) are
identical in all copies.
Identical inputs. Each hardware copy must then be
provided with an identical sequence of inputs. In real-
time systems, typical inputs include data (such as sensor
values) and events (such as interrupts generated within
a channel or asserted by an extemal device). The inter-
facing of sensors (simplex and redundant) to redundant
channels and correct distribution of sensor values to all
channels is a very important aspect of ultra-reliable real-
time architectures. Interrupts must be asserted in each
channel at identical points in the instruction stream.
Identical operations. Each channel must execute the
same sequence of operations on the same inputs.
Bounded time skew. An upper bound on the time skew
Atskew must be defined so that the time of completion
for a given sequence of instructions for the slowest
channel t, is no larger than the time for the fastest
channel t f by more than Atskew. The time skew is
bounded by synchronizing the operations of redundant
channels.

If all these requirements are satisfied, then all nonfaulty
channels will produce bit-for-bit identical outputs by a
well-defined point in time.

D. Synchronization, Input Agreement, and Input
Validity Conditions

Two or more identically initiated processes that receive
identical inputs and operate on them the same way are
called congruent processes. Congruence, unlike threshold-
based approaches, allows a mathematically precise and
concise means for detecting and isolating faults:

Fault detection. Two congruent processes that do not
agree bit-wise produce an error condition, which indi-
cates the presence of a fault.

LALA AND HARPER: ARCHITECTURES FOR SAFETY-CRITICAL REAL-TIME APPLICATIONS 31

Fault isolation. A congruent process that does not
agree bit-wise with the majority of congruent processes
is faulty. Note that the majority vote for congruent
systems is a simple truth table.

1) Synchronization: Synchronizing redundant channels
places an upper bound on the time skew between
corresponding operations in nonfaulty channels. Since the
workload typically consists of iterative execution of various
application programs at different frequencies, a commonly
used technique synchronizes the start of the next frame by
having the redundant processes exchange semaphores at
the end of an iteration.

Two major problems with this approach are the high
software overhead for synchronization and the additional
burden on the applications programmer to perform the
synchronization task. Because of multiple frame rates and
passing of 1/0 data between various frames, the high
cognitive overhead of maintaining synchronism falls to
the applications programmer. This worsens in the presence
of faults, complicating the task of validating applications
software.

An altemative approach developed for the Draper FTP
[191 uses a hardware-implemented synchronization scheme
transparent to applications software. This approach relies
on identical redundant hardware clocked by a fault-tolerant
clock. The copies of hardware execute a given instruction
in an identical number of CPU clock cycles. The fault-
tolerant clock source provides exactly the same number of
CPU clock ticks in a given time period to each redundant
copy of the hardware.

The fault-tolerant clock, as the name implies, is not
a single clocking source but is independently derived in
each channel by a majority vote of a redundant set of
clocks. We used this hardware synchronization scheme
in the Advanced Information Processing System (AIPS)
fault-tolerant processor by making all hardware clock-
deterministic. The clock-determinism attribute can be im-
parted to digital hardware through appropriate design rules
and makes the execution time of each instruction, as
measured in the number of CPU clock cycles, a fixed and
deterministic number.

2) Input Agreement: Correct distribution of inputs (in
general) and sensors (in particular) is a very important
aspect of ultra-reliable real-time architectures. Incorrect
distribution has caused at least one in-flight failure of a
redundant computer.

There are two conditions attached to inputs: congruency
(or agreement) and validity. Input congruency occurs when
each channel has an identical copy of that input, that is,
all channels agree on the input value. Input validity occurs
when all channels have a valid or correct value of that input.

Note that congruency does not imply validity. All chan-
nels may have the same wrong value, for example, and
still be in agreement. Input congruency is the only nec-
essary condition for bit-wise output consensus. Validity is
necessary for correct channel outputs.

The theory referred to as the Byzantine Generals’ Prob-
lem (BGP) identifies the necessary conditions for input

congruency in the presence of an arbitrary fault. According
to this theory, to achieve input source congruency in the
presence of f arbitrary, or Byzantine, faults,

1) the system must consist of 3f + 1 FCR’s [2 8] ,
2) the FCR’s must be interconnected through 2f + 1

3) the inputs must be exchanged f + 1 times between

4) the FCR’s must be synchronized to provide a bounded

disjoint paths [6],

the participants [9], and

skew [7].

The 3f + 1 rule was actually discovered at Draper in
1973-but only in the limited context of designing fault-
tolerant clocks. We had observed malicious clock failures
and concluded that 3f + 1-rather than the simple majority
voting scheme that uses 2 f + l clocks-is required to design
a fault-tolerant clock. We did not, however, realize that data
communication can also display Byzantine behavior.

A redundant system that can achieve exact consensus
in the presence of one arbitrary fault must have at least
four fully cross-strapped FCR’s that execute a two-round
exchange algorithm to distribute inputs. Note that triple-
redundant majority-voting architectures do not meet these
requirements.

A number of single-point failures can be postulated that
would cause the inputs to be noncongruent in the three
channels, leading to a total system failure. Can such failures
occur? A commonly observed Byzantine failure occurs
when a marginal bus transmitter causes two receivers to
perceive different values for a transmission. The question
is not whether such failures can occur but how probable
they are.

To design ultra-reliable systems that can be validated,
one must either demonstrate that these probabilities are
very low (lop4 to depending on the application)
or meet the aforementioned requirements of Byzantine
tolerance. We believe that systems that meet these very
precise requirements are considerably easier to validate
analytically. Based on our own experience with digital
systems, as well as that of others, we also believe that such
failures are not rare.

Even though four FCR’s are required to tolerate one
arbitrary fault, it is not necessary to use four processors
in a system. We built triply redundant versions of the AIPS
Fault-Tolerant Processor (FTP) [16] to comply with all
requirements by providing extra FCR’s. The FCR’s took
the form of independent data-replicating devices, also called
interstages. We also built a quadruply redundant version
with four interstages (for a total of eight FCR’s) that can
tolerate any two sequential arbitrary FCR failures. Because
it performs only a two-round exchange, this system can
tolerate some (but not all) double simultaneous faults (see
Fig. 1). We also built a fault-tolerant parallel processor
[11]-[13] in which only three processors can mask an
arbitrary failure. We achieved this by placing the minimum
four FCR’s into special-purpose Network Elements (NE’s)
that interconnect the processors and execute the source
congruency algorithm.

32 PROCEEDINGS OF THE IEEE, VOL. 82, NO. I . JANUARY 1994

FCR 1

Channel A

...............................

Channel B
.................

Channel C
..................

Channel D

Fig. 1.
fault-tolerant processor.

Fault Containment Regions (FCR’s) and interconnections in the AIPS quad-redundant

3) Input Vulidity: A redundant input source satisfies the
condition of validity for external inputs. Typically, critical
sensors are replicated and interface with different channels
of the redundant computer. Figure 1 shows the quad-
redundant FTP with a triplicated sensor. The three redun-
dant sensors (Sl, 5’2, and S3) physically interface with
channels A , B, and C, respectively. The design provides a
valid and congruent sensor value to all four channels.

Channel A reads sensor S1, and all four channels execute
the two-round exchange algorithm that culminates in their
receiving a congruent value of S1, say, VI. The process
repeats for sensors S2 and S3. Now all four channels have
the same three sensor values, say, V1, V2, and V3.

To obtain a valid sensor value V, the system must
compare and vote the three sensor values. However, a bit-
for-bit voting of redundant sensors is usually not possible
since sensors measure such real-world parameters as pres-
sure, temperature, angle, and acceleration, which are all
analog quantities. Even under no-fault conditions, digital
representations of redundant sensor values differ. However,
since the sensor values do represent real-world physical
quantities, one can use a number of reasonableness checks
(such as rate of change and minimum-maximum range of
values) to filter out a grossly misbehaving sensor. Mid-
value select, average, or mean value of the remaining
sensors can then be used to arrive at a valid sensor value
in all channels. Note that the value will also be congruent
since all channels execute an identical sensor-redundancy
management algorithm with congruent sensor inputs.

v. OVERALL APPROACH FOR COMMON-MODE
FAILURE TOLERANCE

In our opinion, the random hardware fault-tolerance
problem has been adequately solved. Attention now must

tum to the problem of common-mode-failures (CMF’s).
These result from faults that affect more than one fault
containment region at the same time, generally due to a
common cause. They may be design faults or operational
faults; they may be externally caused such as EM1 or
internal; they may be hardware faults or software errors;
etc. Unlike the BGP, there is no single theory on which
to base a solution to CMF’s, and redundancy is of little
if any utility in tolerating CMF’s. Design diversity and
formal methods have been proposed as two ways to deal
with this problem. A broader perspective shows that there
is a three-pronged approach to CMF’s: fault avoidance by
using formal methods, for example; fault removal through
test and evaluation or via fault insertion; and fault tol-
erance in real time via exception handlers and program
checkpointing and restart. All the safety-critical systems
have had to use one or more of these techniques. This
section will explore the issue of CMF’s, and outline our
three-pronged approach to reducing their probability of
occurrence.

A . Fault Classification

Common-mode failures and their sources are extremely
diverse. They can be classified in the same way that
all faults are classified in “Dependability: Basic Concepts
and Terminology” [23], that is, according to three main
viewpoints which are not mutually exclusive: their nature,
their origin, and their persistence.

I) Classification by Nature: Common-mode failures may
be viewed according to their nature:

1) Accidental Faults
They may be accidental in nature, i.e., they appear

or are created fortuitously.

LALA AND HARPER: ARCHITECTURES FOR SAFETY-CRITICAL REAL-TIME APPLICATIONS 33

Phenomenological System Phase of Persistence
Cause Boundary Creation

Physical Human Intemal Extemal Design Operational Permanent Temporary
Made

X X X X

X X X X

X X X X

X X X X

X X X X

2) Intentional Faults
They may be intentional in nature, i.e., they are

created deliberately.
Intentional faults, e.g. Trojan horses, time bombs, viruses,
are not usually considered since they are related primarily
to secure systems; security is often not a requirement for
typical ultra-reliable hard real-time applications.

2) Classification by Origin: Classification by origin may
be divided into three viewpoints which, again, are not
necessarily mutually exclusive.

1) Phenomenological Causes
physical faults which are due to adverse physical

phenomena;
human-made faults which result from human im-

perfections.

internal faults, which are those parts of the sys-
tem’s state which, when invoked by the computation
activity, will produce an error;

external faults, which result from system interfer-
ence caused by its physical environment, or from
system interaction with its human environment.

design faults resulting from imperfections that arise
during the development of the system (from require-
ments specification to implementation), subsequent
modifications, or the establishment of procedures for
operating or maintaining the system;

operational faults, which appear during the system’s
exploitation.

3) Classification by Persistence: Common-mode failures

1) Permanent Faults

2) System Boundaries

3) Phase of Creation

may be classified according to their persistence.

their presence is not related to internal conditions
such as computation activity or external conditions
such as the environment.

Common-
Mode Fault

Label

Transient
(Extemal)

CMF

Permanent
(Extemal)

CMF

Intermittent
(Design)

CMF

(Permanent)
Design CMF

Interaction
CMF

2) Temporary Faults
their presence is related to temporary internal or

external conditions and as such they are present for
a limited amount of time.

4) Relevant Sources of Common-Mode Failure: Since in-
tentional faults are excluded from the current scope of
work, there are only 16 possible sources of faults that must
be considered. These are all the possible combinations
of the remaining four viewpoints. Of these the physical,
internal, operational faults can be tolerated by using
hardware redundancy. This is treated in greater detail in
the section devoted to random hardware fault tolerance. All
other faults can affect multiple fault-containment regions
simultaneously. These are the sources of common-mode
failures. However, only some of these fault classes are
meaningful. These are shown in Table 1. Of these, the
interaction faults which arise from the interaction of
the computer system with its human environment, e.g.,
an operator, will not be considered here due to space
considerations.

Using this taxonomy, then, only four sources of common-
mode failures need to be considered in the current context.

1) Transient (External) Faults which are the result of
temporary interference to the system from its physical
environment such as lightning, High Energy Radio
Frequencies (HERF), heat, etc.

2) Permanent (External) Faults which are the result of
permanent system interference caused by its opera-
tional environment such as heat, sand, salt water, dust,
damage, etc.

3) Intermittent (Design) Faults which are introduced due
to imperfections in the requirements specifications,
detailed design, implementation of design, and other
phases leading up to the operation of the system.
These faults manifest themselves only part of the
time.

34 PROCEEDINGS OF THE IEEE, VOL. 82, NO. 1 , JANUARY 1994

4) (Permanent) Design Faults are introduced during the
same phases as intermittent faults, but manifest them-
selves permanently.

If the relative likelihoods of the classes of common-mode
failures were known, one could apportion the efforts in
dealing with them appropriately. However, the models to
predict the occurrence of common-mode failures either do
not exist, or are not mature enough to be of any practical
value. Similarly, the rates of occurrence of transient faults
and permanent external faults are very much dependent
upon the operational environment. Thus while the relative
arrival rates of the four classes of common-mode failures
cannot be predicted with any accuracy, experience and
prudence suggest that all of these are sufficiently likely
to be of concern.

As of now, no unifying theory has been developed that
can treat CMF’s the same way that BR treats random
hardware faults or physical operational faults. There is no
silver bullet to slay the CMF monster. Instead we must
rely on three brass bullets:

1) Fault-avoidance techniques applied primarily during
the specification, design and implementation phases.

2) Fault-removal techniques applied primarily during the
test and validation phases.

3) Fault-tolerance techniques applied during the opera-
tional phases.

Subsequent sections discuss each of these techniques
in detail. One should keep in mind the fact that we
do not expect to obtain 100% coverage from any of
these techniques individually or even from one group
collectively; only that when we have gone through the
whole process the likelihood of common-mode failure is
reduced significantly.

The coverage of the various CMF resilience techniques
is difficult to quantify. However, if one concedes that a
modest and quantifiable coverage of, say 99%, is achievable
at each of the three-layered defenses against CMF’s (i.e.,
avoidance, removal, and tolerance), then this could result
in a lack of coverage on the order of for all CMF’s
provided no additional sources of CMF’s are introduced in
the test and validation and the operational phases. Given a
fairly pessimistic CMF arrival rate of, say, per hour,
one can estimate that the overall probability of a system
failure due to CMF would be commensurate with that due
to exhaustion of spares or coincident random faults. While
this is clearly not a rigorous analysis, the order of magnitude
of the parameters involved indicates that the layered CMF
defenses constitute a feasible approach, as well as provides
certain coverage objectives for each of the three layers of
CMF defenses described below.

B . Common-Mode Fault Avoidance

The most cost effective phase of the total design and de-
velopment process for reducing the likelihood of common-
mode failures is the earliest part of the program. Avoid-
ance techniques and tools can be used from the require-
ments specifications phase to the design and implementation

phase, and result in fewer permanent and intermittent design
CMF’s being introduced into the computer system.

I) Use of Mature and Formally Verified Components:
By using commercial off-the-shelf (COTS) or Nondevelop-
mental Item (NDI) hardware, software, and formally ver-
ified microprocessors and real-time kernels as these come
on-line, one can leverage the industry’s large investment
in the testing and verification of components, essentially
having others perform fault removal for free. Unfortunately,
the tradition for building critical systems in many industries
such as the aerospace industry is just the reverse: the
processors, memories, input/output controllers, operating
system, and other system software are almost invariably
point-designed from scratch for each specific program,
complete with brand new specification and design flaws.

2) Conformance to Standards: A number of standards
have been developed for the design of computer systems.
Although the primary motivation for the development of
standards is ease of interoperability, logistics, maintainabil-
ity, reduced cost, and so on, one of the side benefits of
using standards is the reduction of design errors. Widely
used standards usually result in detailed, precise, and stable
specifications that can be adhered to in the design phase
and, over time, verified against in the verification phase.
Design errors due to ambiguous or changing specifications
can be substantially reduced by the use of standards.

3) Formal Methods: Formal methods are mathematically
based techniques for specifying, developing, and verifying
computer systems with strong emphasis on consistency,
completeness, and correctness of system properties. Formal
methods have been applied at various levels of specification
and design to hardware, software, and algorithmic parts
of fault-tolerant computers too numerous to be listed here.
Recent examples include microprocessor design (e.g., [30])
and an embedded Reliable Computing Platform [5] .

Many ultra-reliable computer components are suitable
for the insertion of formal methods technology. Generally
speaking, these components are both critical to the correct
operation of the machine and are not expected to change
significantly from one application to another, thus making
the potentially significant effort involved in formal meth-
ods a cost-effective means to reduce the introduction of
specification, design, and implementation errors. Such com-
ponents include voters, fault-tolerant clocks, synchroniza-
tion software, task-scheduling software, message-passing
software, and fault detection, identification, and recovery
software.

4) Design Automation: Design-automation tools and
techniques can help automate parts of the hardware and
software design cycle. By replacing a labor-intensive design
process with automated tools, the incidence of human errors
can be reduced.

In the software arena, more than 75 different CASE
(Computer-Aided Software Engineering) tools are available
that provide different levels of automated software gener-
ation. A Draper developed tool, called ASTER, has been
used, among other applications, to produce transport aircraft
autoland code in Ada starting from a high level control law

LALA AND HARPER: ARCHITECTURES FOR SAFETY-CRITICAL REAL-TIME APPLICATIONS 35

I

tests, Device

Fig. 2. VHDL and formal methods design and verification methodology.

specification. The Ada code was compiled and integrated
with the existing system software on the FTPP.

In the hardware arena, VHSIC Hardware Description
Language (VHDL) is becoming widely available to describe
hardware designs at various levels of abstraction, from a
high-level functional description to all the way down to the
gate level. Synthesis tools can be used to convert VHDL or
other high-level design descriptions through various levels
of detailed hardware design, right down to the silicon
implementation with some help from the human designer.

A part of the FTPP Network Element called the Score-
board was specified in VHDL and synthesized using com-
mercially available logic synthesis tools. The Scoreboard
hardware, consisting of three 8000-gate ACTEL I1 FPGA's
and some RAM chips, was described in VHDL and syn-
thesized using Synopss. To our amazement, it worked the
first time and passes all tests to date.

5) Integrated Formal Methods and VHDL Design Meth-
odology: Based on our experience with VHDL and formal
methods, we have defined a methodology which integrates
the conventional VHDL-based top-down digital design and
synthesis methodology with formal specification and ver-
ification (Fig. 2). This methodology is an extension of
the one used for constructing, specifying, and verifying
the FTPP Scoreboard. This methodology appears to be
an excellent way to transition the powerful technology
of formal methods into the general digital engineering
community.

High

A
I

Safety and Liveness Properties I
I Abstract Consistency Check

No Implementation Resmctions
CSP, 2, EHDM, Caliban ,... I

I
I
I
I
I
I
I

Abstraction Level

I
I
I
I
I
I
I
I
I
I
I

t
L O W

The participants come from engineering and formal
methods disciplines. The engineering participants use the
computer-aided design and synthesis to which they are
accustomed, and are not expected to become experts
in formal methods. The formal methods participants are
responsible for formalizing key abstract properties of the
specification of the design. They are also responsible for
verifying that the derived formal descriptions do in fact
comply with the formalized version of the specification.
They perform this function using formal descriptions and
methods which are familiar to them, and which can be
automatically extracted from the engineers' descriptions
of the design.

The design effort begins with an informal specification
of the intended functionality of the device. Following this,
an essentially creative act is performed which results in a
number of databases and functions. In a top-down VHDL-
based design methodology a hierarchical set of VHDL
descriptions is manually constructed. A top-level VHDL
model of a design, executable in a VHDL Test Bench,
is constructed which is believed to meet the informal
specification. A set of functional verification tests is derived
from the informal specification for injection into any exe-
cutable VHDL description, with the objective of empirically
demonstrating that the description meets the intent of the
informal specification.

More detailed lower level VHDL models are manually
constructed and each VHDL representation in the hierarchy

36 PROCEEDINGS OF THE IEEE, VOL. 82, NO. 1, JANUARY 1994

can be tested in the Test Bench to ensure that it is in com-
pliance with the informal interpretation of the highest level
informal specification. At a certain level in the hierarchy, a
“synthesizeable” description is reached which is suitable for
input into an integrated circuit synthesis software package.
The synthesis package generates documentation suitable
for device fabrication, as well as gate-level executable
functionality and timing models in both vendor-specific
simulation language and in VHDL. The VHDL description
of the gate-level circuit can be stimulated and verified with
the functional verification tests through the Test Bench.
Moreover, the synthesis package provides back-annotated
delays which are of use in re-executing higher level models.
If the critical timing requirements are not met, then the
design is modified at one or more hierarchical levels and
resynthesized until all requirements are met.

From the gate-level description of the circuit, Automated
Test Pattern Generation software may be used to generate
test pattems for use in manufacturing tests. The objective of
these tests is to ensure that each node in the circuit can be
visibly toggled in order to identify stuck-at manufacturing
faults. The test pattems are executed on an integrated circuit
tester. Some synthesis software packages include software
to automatically design boundary scan paths, boundary scan
test pattems, and I/O pads which comply with the IEEE
1 149.1 standard on scan path testing. The device’s boundary
scan capability can be used both for manufacturing quality
control tests and for offline testing of the device while in
the field.

The formal methods organization also constructs a hi-
erarchical representation of the design. They begin by
extracting the salient abstract properties of the informal
specification through review of the informal specification,
VHDL models, Test Bench, and functional verification
tests, and discussions with the engineering team members.
The formal methods team transforms these properties into
a syntax and semantics which are formally tractable in the
language of their own choosing, using automated syntax
conversion tools. It is the intent that lower level formal
specifications of the design will be rigorously shown to
meet this specification by the formal methods practitioners.

Lower level formal specifications are generated via an
automated process of syntactic transformation to the desired
formal specifications using an automated process developed
by the formal methods practitioners. Such transformation
tools are currently under development by a number of
researchers. For this to work, suitable care must be taken
by the engineering team to remain reasonably within lim-
itations of the formal semantics used by the formalists.
Formal proofs may then be constructed which demonstrate
that each level of the hierarchical formal model is a correct
representation of the level above it. A complete proof chain
may be constructed from the gate-level model which was
produced by the synthesis tool all the way up to the formal
specification of the abstract properties.

As part of the FTPP Scoreboard design and fabrication,
a partial formal specification of the Scoreboard’s function-
ality was constructed from its top-level VHDL description,

and formal proofs were constructed showing that certain
lower level VHDL-derived descriptions correctly imple-
mented this functionality. In the course of constructing
the functional description, several high-level specification
omissions were uncovered. One of these would have caused
all channels of the FTPP to halt simultaneously under input
conditions which were bizarre enough to have been omitted
during normal testing, but realistic enough to occur in
practice.

6) Simplihing Abstractions: Human errors are more
likely when dealing with complex systems and un-
conventional concepts than when dealing with simple
systems and familiar concepts. In a fault-tolerant parallel
computer, concepts that can add to the design complexity
include fault and error containment, synchronization of
redundant processes, communication between redundant
processes, synchronization of and communication between
distributed/parallel processes (all of these in the presence
of one or more faults), detection, isolation, and recovery
from faults, and so on.

If the design complexity can be reduced then the in-
cidence of human errors can be reduced. Some of the
fault-tolerance concepts can be stated simply and precisely
using a mathematical formalism. These include the require-
ments for synchronization, agreement, and validity. Other
concepts that can be stated precisely include requirements
for fault containment and error containment. Because of
their simplicity, fault-tolerant computers that are based on
these concepts and implement these requirements are likely
to contain fewer design errors.

Another architectural consideration is the hiding of irre-
ducible design complexity. For example, certain architec-
tures implement fault tolerance in such a manner that the
virtual architecture apparent to the applications programmer
and the operating system programmer appears to be that of
a conventional nonredundant computer. The complexities
of a redundant architecture are made visible only to the
tasks that must deal with detection and isolation of faults
and recovery from faults. The FTPP virtual architecture
presented to the applications programmer, for example, is
that of a set of communicating tasks needing no knowledge
of their replication level or mapping to physical processors.

7) Performance Common-Mode Failure Avoidance: A
frequently encountered source of common-mode failures
in hard real-time systems is the inability of the system
to deliver the required services by the required deadline
under various workload conditions. To avoid this source
of CMF’s, a complete and accurate performance model
is needed, along with the capability to predict a priori,
via static code analysis, whether performance timing faults
will occur. Such a performance model is only possible with
an unambiguously structured and thoroughly benchmarked
scheduling system. The scheduler used for hard real-time
FTPP applications is a variant of rate monotonic scheduling
which has been optimized to support task suites having
harmonic iteration rates [131. A concept similar to temporal
encapsulation [15] is used to restrict the points in time at
which tasks may interact with each other and the outside

LALA AND HARPER: ARCHITECTURES FOR SAFETY-CRITICAL REAL-TIME APPLICATIONS 37

world to crystal oscillator-generated interrupts. Temporal
encapsulation abstracts timing behavior away from highly
variable task execution times, facilitates predictability and
determinism, and provides an unambiguous framework for
predicting, detecting, and recovering from performance

applications. Therefore, our recommended approach is to
limit the design diversity to applications programs which
have the most likelihood of containing residual design
errors.

common-mode failures.
Within this framework, it is necessary to benchmark

critical functions such as operating system calls, message-
passing latencies, task scheduler time, context switches,
FDIR, etc. This enables accurate prediction of the net
processor, bus, network, and other resources that are avail-
able to the applications software under various conditions
such as normal operating mode, faulted conditions, reduced
number of PE’s, etc. The performance measurement and
analysis apparatus is also invaluable in determining that
application code does not exceed its specified time al-
lotment. These empirical measurements can be combined
with a static code analysis tool which evaluates the source
code to determine the number and frequency of calls to
time-consuming functions, and thus compute the overall
execution time of each task.

8) Software and Hardware Engineering Practice: Many
software and hardware errors can be avoided by following
well-established engineering design practices. Since these
techniques are well known, they will not be discussed here
further except to note that there is an amazing correlation
between shortcuts and design flaws.

9) Design Diversity: Design diversity is listed here as a
fault-avoidance rather than a fault-tolerance technique since
it attempts to confine each design fault to a single fault-
containment region, thereby avoiding a common-mode fail-
ure. Design diversity is the concept of implementing dif-
ferent copies in a redundant system using different designs
starting from a common set of specifications. The concept
can be applied to hardware, software, programming lan-
guage, design development environment, and other design
activities. This approach can potentially eliminate many
common-mode design faults since each redundant copy
uses a different design. Some design faults such as those
that result from an incorrect interpretation of ambiguous
specifications could still find their way into multiple or
all designs. Thus design diversity cannot provide 100%
coverage of all design faults.

When attempting to employ design diversity it is critical
not to defeat the benefits of bit-wise exact match Byzantine
Resilience. It is equally critical not to confuse faults in
the diverse redundant application software with faults in
the redundant hardware. When redundant hardware and/or
software elements are implemented using different designs,
bit-wise exact consensus cannot be guaranteed between
the outputs of redundant processors. However, using the
approach described in [20], it is possible to provide an
exact bit-wise match Byzantine resilient core fault-tolerant
computer in which design diversity is used for applications
programs. We also believe that the core of the fault-tolerant
computer, including PE’s, NE’s, OS, can be made error-
free or nearly so by the use of many other techniques cited
here and then that core can be reused for many different

C . Common-Mode Fault Removal

Faults that slip past the design process can be found and
removed at various stages prior to the computer system
becoming operational. Fault-removal techniques and tools
include design reviews, simulations, testing, fault injection,
and a rigorous program of discrepancy reporting and clo-
sure. Traditionally, these techniques have been relied on
almost exclusively to deal with common-mode failures.
Most of these techniques, with the exception of fault
injection, are well-developed and well-known. We will,
therefore, limit the discussion to the use of fault injection
for CMF removal.

Insertion of faults in an otherwise fault-free computer
system that is designed to tolerate faults is a powerful
technique to exercise redundancy management hardware
and software that is specialized, error-prone, difficult to
test, and not likely to be exercised under normal conditions,
i.e., likely to stay dormant until a real fault occurs. Fault
insertion techniques can also be used to operate the system
in various degraded modes which are expected to be
encountered in operational life of the system. Degraded-
mode operation stresses not only fault handling and re-
dundancy management aspects but also task scheduling,
task and frame completion deadlines, workload assignment
to processors, inter-task communication, flow control, and
other performance-related system aspects. Fault insertion
exposes the weaknesses in the hardware and software
design, the interactions between hardware and software,
and the interactions between redundancy management and
system performance. It is an accelerated form of testing the
hardware, software, and the system, analogous to “shake
and bake” testing of hardware devices.

Many researchers, too numerous to be cited here, have
developed and used fault/error injection tools. A recent
paper [11 attempts to formalize the process of using fault in-
jection for explicitly removing design/implementation faults
in fault-tolerance algorithms and mechanisms. Fault in-
sertions at higher levels such as module, link, and fault
containment region have also been used at Draper for
the purposes of design verification. Faults may also be
injected into various levels of the executable VHDL design
hierarchy, subject to Test Bench simulation time constraints.

D. Common-Mode Failure Tolerance
Common-mode failures may eventually manifest them-

selves in the field due to transient and permanent external
faults which overwhelm environmental defenses, intermit-
tent and permanent design faults that are not removed prior
to operational use, and a general unwillingness of reality to
conform to specifications. At this point the only recourse
is to 1) detect the occurrence of such a failure and 2) take
some corrective action.

38 PROCEEDINGS OF THE IEEE. VOL. 82, NO. 1 , JANUARY 1994

1) Common-Mode Failure Detection: Before a recovery
procedure can be invoked to deal with common-mode
failures in real time, it is necessary to detect the occurrence
of such an event. Many ad hoc techniques have been
developed over the years to accomplish this objective. Most
of these techniques can also be used prior to operational use
of the system to remove faults. The difference is that in
the fault-removal phase, detection of a fault leads to some
trap in the debugging environment, while in the operational
phase it will lead to a recovery routine. Similarly, fault-
removal techniques discussed above can also be used to
aid in the task of detecting faults in real time, albeit with
a high penalty in performance.

Watchdog timers can be used to catch both hardware
and software wandering into undesirable states. Note that
failure of a watchdog timer to expire does not necessarily
indicate the absence of a common-mode failure. Hardware
exceptions such as illegal address, illegal opcode, access
violation, privilege violation, etc., are all indications of
a malfunction. Ada provides numerous run-time checks
such as type checks, range constraints, etc., that can detect
malfunctions in real time. Additionally, a user can define
exceptions and exception handlers at various levels to
trap abnormal or unexpected program/machine behavior.
Memory management units can be programmed to limit
access to memory and control registers by different tasks.
Violations can be trapped by the MMU and trigger a
recovery action. Acceptance test is a very broad term and
can be applied to applications tasks and various components
of the operating system such as the task scheduler and
dispatcher. The results of the target task are checked for
acceptability using some criteria which may range from
a single physical reasonableness check, such as a pitch
command not exceeding a certain rate, to an elaborate check
of certain control blocks to ascertain whether the operating
system scheduled all tasks appropriately. Presence tests are
normally used in FTP’s and FTPP’s to detect the loss of
synchronization of a single channel due to a physical fault.
However, it has also been modified to detect a total loss
of synchronization between multiple channels of an AIPS
FTP, a sure indication of a common-mode failure.

It should be noted that a physical fault can trigger any
of these detection mechanisms just as well as a common-
mode failure. Therefore, it is necessary to corroborate the
error information across redundant channels to ascertain
which recovery mechanism (i.e., physical fault recovery,
or common-mode failure recovery) to use.

2) Common-Mode Failure Recovery: Recovery from
CMF in real time requires that the state of the system be
restored to a previously known correct point from which
the computation activity can resume. This assumes that the
occurrence of the common-mode failure has been detected
by one of the techniques discussed earlier.

If a common-mode failure causes an Ada exception or
a hardware exception to be raised, then an appropriate
exception handler that is written for that abnormal condition
can affect recovery. The recovery may involve a local
action such as flushing input buffers to clear up an overflow

condition or it may cascade into a more complex set of
recovery actions such as restarting a task, a single redundant
virtual group, or the whole system.

If the errors from CMF are limited to a single task and do
not propagate to the operating system, then only the affected
task needs to be restored andlor restarted with new inputs.
The state can be rolled back using a checkpointed state from
stable storage and recovery can be effected by invoking
an alternate version of the task using the old inputs,
assuming that the fault was caused by the task software.
This is termed the backward recovery block approach.
If the fault is caused by a simultaneous transient in all
redundant hardware channels then the same task software
can be re-executed using old inputs. This is termed temporal
redundancy. Altematively, forward recovery can be effected
by restarting the task at some future point in time, usually
the next iteration, using new inputs. This assumes that the
fault was caused by input-sensitive software that will not
repeat with new and different inputs.

In case the CMF results in the loss of synchronization,
redundant channels must be resynchronized before rollback
can begin. Furthermore, the state of the virtual group must
be restored before resuming computational activity. Finally,
if all else fails, the whole system must be restarted and a
new system state established with current sensor inputs.

VI. CONCLUSION
The realm of applicability of safety-critical hard real-

time computing has come a long way in the past 30 years.
Applications have expanded from the Apollo AGN&C
computer to air transport autoland, continuous fly-by-wire,
full-authority digital engine controls, nuclear power plants,
ground transport, and swim-by-wire for undersea vehicles,
and will undoubtedly expand in the future as computers find
their way into every human activity. Fortunately, depend-
ability technology has also progressed from sole reliance
on expensive fault avoidance, to ad hoc fault-tolerance
techniques, to fault tolerance based on rigorous distributed
systems theory. For safety-critical applications, physical
operational hardware faults no longer pose the major threat
to dependability. The dominant threat is now common-
mode failures, for which no single theory can be applied
and which requires a multidiscipline, multiphased defense.
A form of common-mode failure unique to hard real-time
systems is a failure to meet a real-time deadline to deliver a
service. Finally, validation and verification, often the most
expensive part of a system’s development, is important
since these systems must be proven to possess the requisite
dependability characteristics. This paper outlined typical
requirements facing designers of safety-critical hard real-
time computers and differentiated them from requirements
of other applications. It provided a historical perspective in
the field, and presented a set of architectural principles and
techniques to address the issues described above.

REFERENCES

[11 D. Avresky er al., “Fault injection for the formal testing of fault
tolerance,” presented at the 22nd Int. Symp. on Fault Tolerant
Computing, Boston, MA, July 1992.

LALA AND HARPER: ARCHITECTURES FOR SAFETY-CRITICAL REAL-TIME APPLICATIONS 39

[2] G. Belcher, presented at the NATO Advisory Group for
Aerospace Research & Development (AGARD) Working
Group Meet., Edinburgh, Scotland, Oct. 1992.

[3] W. G. Bouricius et al., ‘‘Reliability modeling for fault-tolerant
computers,” IEEE Trans. Comput., vol. C-20, no. 11, pp.
130&1311, Nov. 1971.

[4] G. Davis, “An analysis of redundancy management algorithms
for asynchronous fault tolerant control systems,” NASA Tech.
Memo. 100007, Sept. 1987.

[SI B. L. Di Vito and R. W. Butler, “Formal techniques for
synchronized fault-tolerant systems,” presented at the 3rd Int.
Conf. on Dependable Computing for Critical Applications,
Sicily, Italy, Sept. 1992.

[6] D. Dolev, “The Byzantine Generals strike again,” J . Algorithms,
vol. 3, pp. 14-30, 1982.

[7] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal
synchronism needed for distributed consensus,” IBM Res. Rep.
RJ 4292 (46990), May 8, 1984.

1 C. S. Draper et al., “Space navigation guidance and control,”
Agardograph 105, NATO Advisory Group for Aerospace Re-
search & Development. London, UK: W. and J. Mackay &
Co. Ltd., Aug. 1966.
M. J. Fischer and N. A. Lynch, “A lower bound for the time
to assure interactive consistency,” Informat. Process. Lett., vol.
14, no. 4, pp. 183-186, June 13, 1982.
J. F. Hanaway and R. W. Moorehead, “Space Shuttle avionics
system,” NASA SP-504, Superintendent of Documents, U.S.
Govt. Printing Office, Washington, DC 20402, 1989.
R. Harper, “Critical issues in ultra-reliable parallel process-
ing,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, June 1987.
R. Harper and J. Lala, “Fault tolerant parallel processor,” J .
Guidance, Contr. Dynamics, pp. 554-563, May-June 1991.
R. Harper et al., “Advanced information processing system:
Army fault tolerant architecture conceptual’ study final report,
volumes I and 11,” NASA Contractor Rep.189632, Langley
Research Center, Hampton, VA, July 1992.
A. D. Hills and N. A. Mirza, “Fault tolerant avionics,” presented
at the AIAAJEEE 8th Digital Avionics Systems Conf., San
Jose, CA, Oct. 1988.
H. Kopetz et. al., “Distributed fault-tolerant real-time systems:
The MARS approach,” IEEE Micro, vol. 9, no. 1, pp. 2 5 4 0 ,
Feb. 1991.
J. H. Lala, “An advanced information processing system,”
presented at the 6th AIAA-IEEE Digital Avionics Systems
Conf., Baltimore, MD, Dec. 1984.
-, “Advanced information processing system: fault detec-
tion and error handling,” presented at the AIAA Guidance,
Navigation and Control Conf., Snowmass, CO, Aug. 1985.
-, “Fault detection, isolation, and reconfiguration in the fault
tolerant multiprocessor,” J . Guidance, Contr., Dynamics, pp.
585-592, Sept.-Oct. 1986.
-, “A Byzantine resilient fault tolerant computer for nuclear
power plant applications,” presented at the 16th Annu. Int.
Symp. on Fault Tolerant Computing Systems, Vienna, Austria,

[23] Dependability: Basic Concepts and Terminology, J. C. Laprie,
Ed., vol. 5 of Dependable Computing and Fault-Tolerant Sys-
tems.Vienna, New York: Springer-Verlag, 1992, pp. 11-16.

[24] D. A. Mackall, ‘‘AFWF-16 digital flight control system ex-
perience,” presented at the 1st Ann. NASA Aircraft Controls
Workshop, NASA Langley Research Center, Hampton, VA,
Oct. 1983.

[25] S. S. Osder, “Digital fly-by-wire system for advanced AH-64
helicopters,”presented at the AIAAJEEE 8th Digital Avionics
Systems Conf., San Jose, CA, Oct. 1988.

[26] D. L. Palumbo and R. W. Butler, “A performance evaluation
of the software-implemented fault-tolerance computer,” MAA
J . Guidance, Contr., Dynamics, vol. 9, no. 2, pp. 175-180,
Mar.-Apr. 1986.

[27] G. Pappas, W. Shotts, M. O’Brien, and W. Wyman, “The
DARPA/Navy unmanned undersea program,” in Unmanned
Systems (published by the Association for Unmanned Vehicles
Systems), vol. 9, no. 2, Spring 1991.

[28] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement
in the presence of faults,” J . ACM, vol. 27, no. 2, pp. 228-234,
Apr. 1980.

[29] K. L. Peterson and R. S. Babin, “Integrated reliability and safety
analysis of the DC- 10 all-weather landing system,” presented
at the 1973 Annual Reliability and Maintainability Symp.,
Philadelphia, PA, Jan. 1973.

[30] M. Srivas and M. Bickford, “Formal verification of a pipelined
microprocessor,” IEEE Software (Special Issue on Formal
Methods), vol. 7, no. 5 , Sept. 1990.

[31] K. J. Szalai et al., “Digital fly-by-wire flight control validation
experience,” NASA Tech. Memo. 72860, Dec. 1978.

[32] J. Wensley, “SIFT: The design and analysis of a fault-tolerant
computer for aircraft control,” Proc. IEEE, vol. 66, pp.
1240-1255, Oct. 1987.

Jaynarayan H. Lala (Fellow, IEEE) received
the B. S. degree in aeronautical engineering from
the Indian Institute of Technology, Bombay,
India, in 1971. He received the M. S. degree
in aeronautics and astronautics and the Ph. D.
degree in instrumentation, both from the Massa-
chusetts Institute of Technology, Cambridge, in
1973 and 1976, respectively.

He is the leader of the Advanced Computer
Architectures Group at the Charles Stark Draper
Laboratory in Cambridge, MA. His research

interests include design, evaluation, and validation of fault-tolerant ar-
chitectures for high-integrity systems.

. - -
July 1 4 , 1986.
J. H. Lala and L. S. Alger, “Hardware and software fault
tolerance: A unified architectural approach,” presented at the
18th Int. Symp. on Fault Tolerant Computing, Tokyo, Japan,
June 1988.
J. H. Lala, R. E Harper, and L. S. Alger, “Ultrareliable real time
systems: A design approach and example computer systems,”
IEEE Computer Mag (Special Issue on Real-Time Systems),
vol 24, no. 5 , May 1991.
J. Lala and R. Harper, “Reducing the probability of common-
mode failure in the fault tolerant parallel processor,” presented
at the AIAAJEEE 12th Digital Avionics Systems Conf, Fort
Worth, TX, Oct. 1993.

Richard E. Harper (Member, IEEE) received
the B A degree in physics and the M S degree
in aeronautics and astronautics from Mississippi
State University, Mississippi State , MS, in 1976
and 1977, respectively He received the Ph
D degree from the Massachusetts Institute of
Technology, Cambridge, In 1987

He is a Pnncipal Member of the Technical
Staff of the Advanced Computer Architecture$
Group at the Charles Stark Draper LdbOratOry,
Cdmbridge, MA His technical interests lie in

the area) of reliable computing and communication systems.

40 PROCEEDINGS OF THE IEEE. VOL X2, NO I . JANUARY 1994

.~

