
Static Timing Analysis of Embedded Software

Sharad Malik Margaret Martonosi

Yau-Tsun Steven Li

Department of Electrical Engineering, Princeton University

Abstract

This paper examines the problem of statically analyz-
ing the performance of embedded software. This prob-
lem is motivated by the increasing growth of embed-
ded systems and a lack of appropriate analysis tools.
We study di�erent performance metrics that need to
be considered in this context and examine a range of
techniques that have been proposed for analysis. Very
broadly these can be classi�ed into path analysis and
system utilization analysis techniques. It is observed
that these are interdependent, and thus need to be
considered together in any analysis framework.

1 The Emergence of Embedded Systems

Embedded systems are characterized by the presence of pro-
cessors running application speci�c programs. Typical ex-
amples include printers, cellular phones, automotive engine
controller units, etc. A key di�erence between an embedded
system and a general-purpose computer is that the software
in the embedded system is part of the system speci�cation
and does not change once the system is shipped to the end
user.

Recent years have seen a large growth of embedded sys-
tems. The migration from application speci�c logic to ap-
plication speci�c code running on processors is driven by
the demands of more complex system features, lower system
cost and shorter development cycles. These can be better
met with software programmable solutions made possible by
embedded systems. Two distinct points are responsible for
this.

Flexibility of Software Software is easier to develop and is
more
exible than hardware. It can implement more com-
plex algorithms. By using di�erent software versions, a fam-
ily of products based on same hardware can be developed to
target di�erent market segments, reducing both hardware
cost and design time. Software permits the designer to en-
hance the system features quickly so as to suit the end users'
changing requirements and to di�erentiate the product from
its competitors.

Design Automation Conference R

Copyright c
 1997 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for pro�t or commercial advan-
tage and that copies bear this notice and the full citation on the �rst
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior speci�c permission and/or a fee. Request permis-
sions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

Increasing Integration Densities The increase in integra-
tion densities makes available 1-10 Million transistors on
a single IC today. With these resources, the notion of a
\system on a chip" is becoming a viable implementation
technology. This integrates processors, memory, peripher-
als and a gate array ASIC on a single IC. This high level
of integration reduces size, power consumption and cost of
the system. The programmable component of the design
increases the applicability of the design and thus the sales
volume, amortizing high manufacturing setup costs. Less
reusable application speci�c logic is getting increasingly ex-
pensive to develop and manufacture and is the solution only
when speed constraints rule out programmable solutions.

The pull e�ect o�ered by
exibility of software and the
push e�ect from increasingly expensive application speci�c
logic solutions make embedded systems an attractive solu-
tion. As system complexity grows and microprocessor per-
formance increases, the embedded system design approach
for application speci�c systems is becoming more appealing.
Thus, we are seeing a movement from the logic gate being
the basic unit of computation on silicon, to an instruction
running on an embedded processor. This motivates research
e�orts in the analysis of embedded software. Our capabili-
ties as researchers and tool developers to model, analyze and
optimize the gate component of the design must now be ex-
tended to handle the embedded software component. This
paper examines one such aspect for embedded software {
techniques for statically analyzing the timing behavior (i.e.,
the performance) of embedded software.

By static analysis, we refer to techniques that use results
of information collected at or before compile time. This may
include information collected in pro�ling runs of the code
executed before the �nal compilation. In contrast, dynamic
performance analysis refers to on-the-
y performance moni-
toring while the embedded software is installed and running.
We limit the scope of this paper by considering only single
software components, i.e. the execution of a single program
on a known processor. The analysis of multiple processes
belongs to the larger �eld of system level performance anal-
ysis.

We start by examining the various performance metrics
of interest in Section 2. Next, we look at the di�erent ap-
plications of performance analysis in Section 3. In Section 4
we examine the di�erent components that make this anal-
ysis task di�cult, and for each we summarize the analysis
techniques that are described in existing literature. Finally,
in Section 5 we conclude and point out interesting future
directions for research.

2 Performance Metrics for Embedded Software

Extreme Case Performance Embedded systems generally
interact with the outside world. This may involve measuring
sensors and controlling actuators, communicating with other
systems, or interacting with users. These tasks may have to
be performed at precise times. A system with such timing

constraints is called a real-time system. For a real-time sys-
tem, the correctness of the system depends not only on the
logical results of computation, but also on the time at which
the results are produced. A real-time system can be further
classi�ed as either a hard real-time system or a soft real-time
system. A hard real-time system cannot tolerate any missed
timing deadlines. An example of a hard real-time system is
an automotive engine control unit, which must gather data
from sensors, and compute the proper air/fuel mixture and
ignition timing for the engine, within a single rotation. In
such systems, the response time must comply with the spec-
i�ed timing constraints under all possible conditions. Thus
the performance metric of interest here is the extreme case
performance of the software. Typically, the worst-case is of
interest, but in some cases, the best-casemay also be impor-
tant to ensure that the system does not respond faster than
expected.

Probabilistic Performance In a soft real-time system, the
timing requirements are less stringent. Occasionally missing
a timing deadline is tolerable. An example of a soft real-time
system is a cellular phone. During a conversation, it must
be able to encode outgoing voice and decode the incoming
signal in real-time. Occasional glitches in conversation due
to missed deadlines are not desired, but are nevertheless
tolerated. In this case, a probabilistic performance measure
that guarantees a high probability of meeting the time con-
straints su�ces.

Average Case Performance Some embedded systems do
not have real-time constraints. In this case, typically the
average case performance of the system is stated. The per-
formance of the system based on a small set of test-runs is
evaluated and it is used to represent the overall performance
of the system. Few or no guarantees are made on the vari-
ance of the performance. A typical example is a printer,
whose average speed is often stated in pages per minute.

The coverage of this paper is somewhat biased towards
extreme case performance analysis since this has been the
focus of most of the research in this area; this is an indication
of its challenging nature.

3 Applications of Performance Analysis

Design Validation The most direct application of perfor-
mance analysis is design validation, i.e. ensuring that the
design meets the speci�cations. As highlighted in Section 2
these performance speci�cations may take the form of hard/soft
real-time constraints or average case constraints.

Design Decisions and System Optimization Embedded sys-
tems generally have a set of tasks that can be implemented
either in hardware using ASICs or FPGAs, or in software
running on one or more processors. Performance estimates
for these tasks on di�erent targets are used to decide this
mapping. In the simplest case, with only a single known
processor and single hardware resource, this may reduce to
deciding the hardware software partition (e.g. [4]). With
additional processor resources available, this impacts the
selection of processors, and mapping of tasks to di�erent
processors. A tighter estimation allows the use of a slower
processor without violating any real-time constraints, thus
lowering the system cost. Performance estimates may be
used to optimize other system parameters such as cache and
bu�er sizes.

Real-Time Schedulers All real-time schedulers need to use
performance bounds for di�erent tasks to guarantee sys-
tem deadlines. Loose estimates may lead to the inability to
guarantee deadlines, or the poor utilization of hardware re-
sources. Real-time scheduling is an area of active research in
the real-time community. Surveys for uniprocessor schedul-
ing have been presented by Sha et al. [22] and for multi-
processor scheduling by Shin et al. [24] and Ramamrithan
et al. [20].

Compiler Optimization Performance analysis techniques may
be used to guide compiler optimizations to improve software
performance. As an example, Ghosh et al. [3] use analytical
techniques to determine the number of data reference cache
misses in loops. This is then used to modify the data layout
in memory by either changing the array o�set or padding
arrays.

4 Analysis Components

Performance analysis must deal with a number of distinct,
though not necessarily independent, sub-problems. In this
section, we examine these and in each case provide a sum-
mary of the techniques proposed in the literature to deal
with that aspect of the analysis problem. In most cases, the
body of work available is too large to be exhaustively cited,
our references are intended to point to representative work.

4.1 Path Analysis

Worst-case analysis is in general undecidable since it is equiv-
alent to the halting problem. To make this problem decid-
able, the program must meet certain restrictions [19]. These
restrictions are:

� all loop statements must have bounded iterations, i.e.,
they cannot loop forever

� there are no recursive function calls

� there are no dynamic function calls

The execution time of a given program depends on the
actual instruction trace (or program path) that is executed.
Determining the set of program paths to be considered is a
core component of any analysis technique. This can be fur-
ther broken down into the following sub-components, each
of which has been the focus of research attention.

4.1.1 Branch and Loop Analysis

For straight line code there is exactly one execution path to
consider. Complexity creeps in only in the presence of con-
trol
ow constructs such as branches and loops. These can
result in an exponential blowup of the number of possible
execution paths and are thus computationally challenging.
Researchers have used a variety of di�erent techniques to
deal with this depending on the performance metric being
considered.

General Heuristics For probabilistic or average case analy-
sis, general heuristics based on \typical" program statistics
can be used. Such heuristics include, for example, the ob-
servation that most backward branches are taken, and most
forward branches are not taken.

Pro�le Directed Speci�c statistics can be collected for a
given application by considering a sample data set and us-
ing pro�ling information to determine the actual branch de-
cisions and loop counts. Again this can be used only in
probabilistic and average case analysis.

if (ok)

S1 i = i*i + 1; /* i is non-zero! */

else

S2 i = 0;

/* ... */

if (i)

S3 j++;

else

S4 j = j*j;

Figure 1: Di�erent parts of the code are sometimes related.

Symbolic Data Flow Analysis In certain cases it may be
possible to determine the conditionals in branch statements
and loop iteration statements by symbolic data
ow analysis
techniques, similar to those used in program veri�cation,
e.g. the work by Rustagi and Whalley [21]. However, this
has very limited application due to the intractability of the
problem.

Extreme Case Selection In worst case (best case) analy-
sis, a straightforward approach is to always assume the worst
case (best case) choice is made for each branch and loop. For
example, in Shaw's simple timing schema approach [23], for
an if-then-else statement, the execution times of the true
and false statements are compared and the larger one taken
for worst case estimation. Consider the example shown in
Figure 1. S1 and S3 are always executed together, and so
are S2 and S4. But if the above method is used, statements
S1 and S4 will be selected for worst case analysis. These
two statements are never executed together in practice and
the above method results in loose estimation. Such path re-
lationships occur frequently in programs and it is important
to provide some mechanism for obtaining this information.

Puschner and Koza [19] as well as Mok et al. [15] ex-
tend this approach to allow the programmer to provide sim-
ple execution count information of certain statements. This
permits non-pessimistic choices locally. This is helpful in
specifying the total execution count of the loop body in a
nested loop, where the number of loop iteration of the inner
loop depends on the loop index of the outer loop. However,
this still su�ers from the problem that relationships between
di�erent parts of the program may not be exploited.

Path Enumeration In order to capture the relationship be-
tween di�erent parts of the program, some form of path enu-
meration may be used. This must be a partial enumeration,
since the number of program paths is typically exponential
in the size of the program. For extreme case analysis, this
partial enumeration must be pessimistic, i.e. it must include
paths that bound the extreme case behavior even if they are
never actually exercised. In his work Park [18] observed that
that all statically feasible execution paths can be expressed
by regular expressions. For example, the following equations
show the regular expression of the if-then-else statement
and that of the while loop statement with loop bound n

respectively.

if B then S1 else S2 : B � (S1 + S2)

while B do S : B � (S � B)n

In his work, the set of statically feasible execution paths is
represented by a regular expression Ap. The user can pro-
vide path information by using a script language called IDL

(information description language), which is subsequently
translated into another regular expression denoted as Ip.
The intersection of Ap and Ip, denoted as Ap \ Ip, repre-
sents all feasible execution paths of the program. The best
case and worst case execution paths, and their correspond-
ing execution times can be then determined from the regular
expression Ap \ Ip. Typical path information supported by
IDL includes:

� two statements are always executed together,

� two statements are mutually exclusive,

� a statement is executed a certain number of times.

The use of IDL is a vast improvement over earlier meth-
ods. Simple path relationships can be expressed. However,
the main drawback of this approach is that the intersection
of Ap and Ip is a complicated and expensive operation. To
simplify this operation, (i) the user can only expresses path
information in IDL instead of general regular expressions
simplifying the format of Ip (ii) pessimistic approximations
are used in the intersection operation. These limit the ac-
curacy of path analysis.

Bounding Techniques In the cinderella project [12], an
alternative attack on the problem is used. Instead of de-
termining the actual set of paths to be considered, feasible
paths are determined in terms of bounds on the execution
counts of various basic blocks. These are then used in an
integer-linear programming formulation to determine the ex-
treme case execution times.

Let xi be the execution count of a basic block Bi, and
ci be the execution time of the basic block. If there are N
basic blocks in the program, then the total execution time
of the program is given as:

Total execution time =

NX

i

cixi: (1)

The possible values of xi's are constrained by the pro-
gram structure and the possible values of the program vari-
ables. These are expressed as linear constraints divided into
two parts: (i) structural constraints, which are derived auto-
matically from the program's control
ow graph (CFG) [1],
and (b) functionality constraints, which are provided by the
user to specify loop bounds and other path information.
The construction of these constraints is illustrated by an
example shown in Fig. 2, in which a conditional statement
is nested inside a while loop. Fig. 2(b) shows the CFG.
A basic block execution count, xi, is associated with each
node. Each edge in the CFG is labeled with a variable di

which serves both as a label for that edge and as a count
of the the number of times that the program control passes
through that edge. Analysis of the CFG is equivalent to a
standard network-
ow problem. Structural constraints can
be derived from the CFG from the fact that, for each node
Bi, its execution count is equal to the number of times that
the control enters the node (in
ow), and is also equal to
the number of times that the control exits the node (out-

ow). The structural constraints do not provide any loop
bound information. This information can be provided by
the user as a functionality constraint. In this example, we
note that since k is positive before it enters the loop, the loop
body will be executed between 0 and 10 times each time the
loop is entered. The constraints to specify this information
are:0x1 � x3 � 10x1. The functionality constraints can also

/* k >= 0 */
s = k;
while (k < 10) {
if (ok)
j++;

else {
j = 0;
ok = true;

}
k++;

}
r = j;

B1 s = k;

d3

d6

d10

d5

d8

d7

d4

x1

d2

d1

x2 B2 while(k<10)

B7 r = j;x7

d9

B3 if(ok)x3

B4 j++;x4

B6 k++;x6

B5 j = 0;
 ok=true;

x5

(a) Code (b) Control
ow graph

Figure 2: An example showing how the structural and func-
tionality constraints are constructed.

be used to specify other constraints on execution paths. For
example, we observe that the else statement (B5) can be
executed at most once inside the loop. This information
can be speci�ed as: x5 � 1x1. These constraints form the
input to an integer linear programming formulation. More
complicated path information can also be speci�ed, and this
mechanism has been shown to be more powerful than Park's
IDL [18] in describing path information [11].

4.1.2 Interrupt Analysis

Somewhat related to branch and loop analysis is the is-
sue of interrupt analysis for preemptive execution, since it
also alters the
ow of control. Limited work here has fo-
cussed on studying the cache behavior of preemptive execu-
tion in multi-tasking systems, i.e., determining the worst-
case points for interrupts during program execution with
respect to impact on the state of the cache [10]. However,
in the experimental study, there is little variation in the ex-
ecution time with varying interrupt points. This points to
the use of simple analysis techniques in practice that do not
depend on locating the interrupt points.

4.2 Utilization of System Resources

Signi�cant variations in program execution time can result
from varying uses of system resources. The way the pro-
gram references memory or occupies pipeline resources can
have signi�cant impact on overall program and system per-
formance. In this section we discuss analysis techniques for
estimating or bounding the utilization of di�erent types of
systems resources.

4.2.1 Microarchitectural Resources

Some of the key performance factors in systems today re-
volve around the program's utilization of the processor's mi-
croarchitectural resources. Early works [15, 19, 18] in this
area assumed a very simple microarchitecture, such as the
Motorola M68000 microprocessor, where the instruction ex-
ecution times are assumed to be constant and independent
of each other. The e�ects of pipelines and cache memo-
ries are not considered. This simpli�es the determination
of estimated bound as microarchitecture modeling can be
performed independently before program path analysis.

With fairly complex superscalar pipelines becoming more
common even in embedded processors, simple processor mod-
els often no longer su�ce for estimating or bounding pro-
gram performance. To be useful, processor performance
models must consider the utilization of individual functional
units and the issue rate down the processor pipelines. Pipelines
are relatively easy to model and they have been studied
extensively. Speci�c cases have been studied by Bharrat
and Je�ay [2] (Cypress CY7C611 SPARC microprocessor),
Zhang et al. [27] (Intel 80C188 processor's two stage pipeline)
and Li et al. [12] (Intel i960KB). Narasimhan and Nilsen [17]
and Harmon [5] present various retargetable pipeline model-
ing methods. The above pipeline modeling methods model
the pipeline states within a short straight line sequence of
instructions, such as a basic block [1]. Hur et al. [8] (MIPS
R3000) and Healy et al. [6] (Micro-SPARC I) have consid-
ered pipeline e�ects across the branches and loops. It is gen-
erally felt that analysis using limited code length sequences
is fairly accurate.

4.2.2 Memory Behavior

With processors speeds improving at a much faster rate than
memory speeds, the relative importance of memory behav-
ior on program performance has increased signi�cantly in
recent years. In response to this, researchers have explored
several ways of producing estimates, or bounds, on program
memory performance.

Simulation One of the most common mechanisms for eval-
uating program memory behavior on di�erent platforms is
via simulation. Here, traces of memory referencing behavior
are fed into a simulator of a particular memory hierarchy
organization. Timing information and other cache statistics
are tracked and can be used to guide program performance
tuning [9, 14] or architectural choices.

Renewal Theory Models While simulation can provide de-
tailed views of program memory behavior, it su�ers from
the drawback that it can be quite slow. To avoid this,
researchers have considered techniques for generating per-
formance statistics based on samples of memory reference
traces. Since the cache state is unknown at the beginning
of each sample, renewal theory models have been developed
for analyzing memory behavior based on this partial infor-
mation [26]. For each cache set, Wood et al.'s model breaks
time in \live time", where the block will be referenced again
before it is replaced, and \dead time", where the block will
not be referenced again before it is replaced. They show
that the expected miss rate for each block is equal to the
dead time divided by the total time. This result can be
used to improve the accuracy of sampled cache performance
simulations.

Locality Analysis Locality analysis is widely used by com-
piler writers to o�er good estimates of memory behavior in
loop-oriented scienti�c codes [25]. The analysis relies on
computing a set of reuse vectors that summarize how the
loop's array accesses reference (and re-reference) memory
locations and cache lines. Subsequent work has built on
reuse analysis to guide memory prefetching algorithms [16].

CM Equations Further building on ideas from locality anal-
ysis, recent research has developed the cache-miss (CM)
equations, which give a detailed representation of the cache
misses in loop-oriented scienti�c code [3]. Linear Diophan-
tine equations are generated to summarize each loop's mem-
ory behavior. Mathematical techniques for manipulating

Diophantine equations allow us to compute the number of
possible solutions, where each solution corresponds to a po-
tential cache miss. These equations provide a general frame-
work to guide code optimizations, such as array padding or
data o�setting, for improving cache performance.

Bounding Techniques The cinderella project integrates
the bounding techniques used in path analysis with cache
modeling. A brief summary of direct-mapped instruction
cache modeling is provided here, details on other cache types
may be found in [13].

An l-block is de�ned as a contiguous sequence of in-
structions within the same basic block that are mapped to
the same cache set in the i-cache, and thus have identical
hit/miss behavior. Suppose a basic block Bi is partitioned
into ni l-blocks, denoted as Bi:1, Bi:2, . . . , Bi:ni

. The hit
and miss execution times of the l-block, are represented by
chiti:j and cmiss

i:j respectively. Let xhiti:j and xmiss
i:j be integer

variables that represent an l-block Bi:j 's hit and miss counts,
then the total execution time of the program can be de�ned
as:

Total execution time =

NX

i

niX

j

(chiti:j x
hit
i:j + c

miss
i:j x

miss
i:j): (2)

Since l-block Bi:j is inside the basic block Bi, its total exe-
cution count is equal to xi. Hence

xi = x
hit
i:j + x

miss
i:j ; j = 1; 2; : : : ; ni (3)

Equation (3) links the new cost function (2) with the pro-
gram structural constraints and the program functionality
constraints, both of which remain unchanged. In addition,
the cache activities can now be speci�ed in terms of the new
variables xhiti:j 's and xmiss

i:j 's.
For any two l-blocks mapped to the same cache set, they

con
ict with each other if their address tags [7] are di�er-
ent. Otherwise, they are said to be non-con
icting. When
a cache set contains two or more con
icting l-blocks, the
hit/miss counts of all the l-blocks mapped to this set will be
a�ected by the sequence in which these l-blocks are executed
(and not by the execution of any other l-blocks) This leads
to the abstraction of the control
ow of the l-blocks mapped
to that particular cache set in the form of a cache con
ict

graph.
A cache con
ict graph (CCG) is constructed for every

cache set containing two or more con
icting l-blocks. It
contains a start node `s', an end node `e', and a node `Bk:l'
for every l-block Bk:l mapped to the same cache set. The
start node represents the start of the program, and the end
node represents the end of the program. For every node
`Bk:l', a directed edge is drawn from node Bk:l to node Bm:n

if there exists a path in the CFG from basic block Bk to basic
block Bm without passing through any other l-blocks of the
same cache set.

Like the control
ow graph, some linear constraints can
be derived from the CCG. For each edge from node Bi:j to
node Bu:v, the variable p(i:j;u:v) counts the number of times
that the control passes through that edge. At each node
Bi:j , the sum of control
ow going into the node must be
equal to the sum of control
ow leaving the node, and it
must also be equal to the total execution count of l-block
Bi:j . Therefore, two constraints are constructed at each
node Bi:j :

xi =
X

u:v

p(u:v;i:j) =
X

u:v

p(i:j;u:v); (4)

where `u:v' may also include the start node `s' and the end
node `e'. Note that due to the existence of xi's, this set
of constraints is linked to the structural and functionality
constraints.

The program is executed once, so at the start node:

X

u:v

p(s;u:v) = 1: (5)

The number of cache hits is determined by:

p(i:j;i:j) � x
hit
i:j � p(s;i:j) + p(i:j;i:j) : (6)

Equations (2) through (6) are the cache constraints for a
direct mapped i-cache. These constraints, together with (3),
the structural constraints and the functionality constraints,
are used by the ILP solver with the goal of maximizing the
cost function (2).

To �rst order, program path analysis primarily focuses on
understanding embedded software characteristics, while mi-
croarchitecture utilization primarily has a hardware focus.
Despite this hardware/software division, there is a strong
coupling between these two areas. This is especially true for
extreme-case analysis. For example, you need to know the
worst-case execution path to determine the pipeline utiliza-
tion and cache misses. On the other hand, since they impact
the execution time, you need to know the cache misses and
pipeline stalls in order to determine the worst case path.
This mutual dependency makes this analysis problem hard.
The majority of research has focussed on either modeling the
microarchitecture, or on determining worst case paths. Most
e�orts fail to handle both the tasks well. The cinderella

project [12] does manage to deal with both aspects using a
single uniform ILP based bounding technique.

4.3 Input Characterization

Input data has a signi�cant impact on software performance.
However, it is an area that has had little study. For extreme-
case performance the input space is implicitly assumed to
be the entire set of possible inputs. However, not all of
these inputs may be generated by the environment. This
is analogous to the case of don't cares in logic design. How
do we specify these don't cares in a succinct manner? More
importantly, how can we then use them in analysis?

In probabilistic analysis we need to specify the distri-
bution of inputs. Again, there are no easy mechanisms for
describing this. Typically this reduces to a large set of in-
put samples. The analysis then reduces to analyzing the
behavior for each individual sample and then summarizing
the results. More desirable and e�cient would be a succinct
description of the input space and a single analysis step ca-
pable of exploiting this information.

The situation in average case analysis is probably the
most acceptable. Using a small set of typical inputs works
well as long as these are truly representative of the input
data. However, determining representative data may be
non-trivial for complex functions, e.g. how would you deter-
mine a representative set of pictures for a JPEG compression
program?

It is clear that in all these cases input characterization
is tied to the ability of analysis techniques to use this infor-
mation { that is where we need to seek solutions for these
problems.

5 Conclusions

Overall, this paper has explored the key issues in static tim-
ing analysis of embedded software. This area has brought
up a rich variety of research problems spanning stochas-
tic analysis, compiler techniques, and hardware modeling.
While current techniques o�er several e�ective alternatives
for estimating and bounding program performance, there
are several signi�cant avenues for future work. In partic-
ular, more accurately considering the e�ects of interrupts,
varying input data, and newer dynamic pipelines, will all
greatly extend the application of these static performance
tools.

REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Prin-
ciples, Techniques, and Tools. Addison-Wesley, 1986.
ISBN 0-201-10194-7.

[2] S. J. Bharrat and K. Je�ay. Predicting worst case exe-
cution times on a pipelined RISC processor. Technical
report, Department of Computer Science, University of
North Carolina at Chapel Hill, April 1994. TR94-072.

[3] S. Ghosh, M. Martonosi, and S. Malik. Cache Miss
Equations: An Analytical Representation of Cache
Misses. Proc. 1997 International Conference on Super-
computing, July 1997.

[4] R. K. Gupta and G. D. Micheli. Hardware-software co-
synthesis for digital systems. IEEE Design and Test of
Computers, pages 29{41, September 1993.

[5] M. G. Harmon. Predicting Execution Time on Con-
temporary Computer Architectures. PhD thesis, The
Florida State University, April 1991.

[6] C. A. Healy, D. B. Whalley, and M. G. Harmon. Inte-
grating the timing analysis of pipelining and instruction
caching. In Proceedings of 16th IEEE Real-Time Sys-
tems Symposium, pages 288{297, December 1995.

[7] J. L. Hennessy and D. A. Patterson. Computer Ar-
chitecture: A Quantitative Approach, Second Edition.
Morgan Kaufmann Publishers, Inc., 1996. ISBN 1-
55860-329-8.

[8] Y. Hur, Y. H. Bae, S.-S. Lim, S.-K. Kim, B.-D. Rhee,
S. L. Min, C. Y. Park, M. Lee, H. Shin, and C. S.
Kim. Worst case timing analysis of RISC processors:
R3000/R3010 case study. In Proceedings of 16th IEEE
Real-Time Systems Symposium, pages 308{319, Decem-
ber 1995.

[9] A. R. Lebeck and D. A. Wood. Cache Pro�ling and the
SPEC Benchmarks: A Case Study. IEEE Computer,
pages 15{26, Oct. 1994.

[10] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha,
S. Hong, C. Y. Park, M. Lee, and C. S. Kim. Analysis
of cache-related preemption delay in �xed-priority pre-
emptive scheduling. In Proceedings of the IEEE Real-
Time Systems Symposium, pages 264{274, December
1996.

[11] Y.-T. S. Li. Performance Analysis of Embedded Soft-
ware. PhD thesis, Princeton University, 1997. In prepa-
ration.

[12] Y.-T. S. Li, S. Malik, and A. Wolfe. E�cient microar-
chitecture modeling and path analysis for real-time soft-
ware. In Proceedings of 16th IEEE Real-Time Systems
Symposium, pages 298{307, December 1995.

[13] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for
real-time software: Beyond direct mapped instruction
caches. In Proceedings of 17th IEEE Real-Time Systems
Symposium, pages 254{263, December 1996.

[14] M. Martonosi, A. Gupta, and T. Anderson. Tuning
Memory Performance in Sequential and Parallel Pro-
grams. IEEE Computer, pages 32{40, Apr. 1995.

[15] A. K. Mok, P. Amerasinghe, M. Chen, and K. Tantisiri-
vat. Evaluating tight execution time bounds of pro-
grams by annotations. In Proceedings of the 6th IEEE
Workshop on Real-Time Operating Systems and Soft-
ware, pages 74{80, May 1989.

[16] T. C. Mowry, M. S. Lam, and A. Gupta. Design and
Evaluation of a Compiler Algorithm for Prefetching.
In Proc. Fifth Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), pages 62{73, Oct. 1992.

[17] K. Narasimhan and K. Nilsen. Portable execution time
analysis for RISC processors. In Proceedings of ACM
PLDI Workshop on Language, Compiler, and Tool Sup-
port for Real-Time Systems, pages L1{L10, June 1994.

[18] C. Y. Park. Predicting Deterministic Execution Times
of Real-Time Programs. PhD thesis, University of
Washington, Seattle 98195, August 1992.

[19] P. Puschner and C. Koza. Calculating the maximum
execution time of real-time programs. The Journal of
Real-Time Systems, 1(2):160{176, September 1989.

[20] K. Ramamritham, J. A. Stankovic, and P.-F. Shiah.
E�cient scheduling algorithms for real-time multipro-
cessor systems. IEEE Transactions on Parallel and Dis-
tributed Systems, pages 184{194, April 1990.

[21] V. Rustagi and D. B. Whalley. Calculating minimum
and maximum loop iterations. Technical report, Com-
puter Science Department, Florida State University,
May 1994.

[22] L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized
rate-monotonic scheduling theory: A framework for de-
veloping real-time systems. In Proceedings of the IEEE,
pages 68{82, January 1994.

[23] A. C. Shaw. Reasoning about time in higher-level lan-
guage software. IEEE Transactions on Software Engi-
neering, 15(7):875{889, July 1989.

[24] K. G. Shin and P. Ramanathan. Real-time computing:
A new discipline of computer science and engineering.
In Proceedings of the IEEE, pages 6{24, January 1994.

[25] M. E. Wolf and M. S. Lam. A Data Locality Optimiza-
tion Algorithm. In Proc. SIGPLAN `91 Conf. on Pro-
gramming Language Design and Implementation, pages
30{44, June 1991.

[26] D. A. Wood, M. D. Hill, and R. E. Kessler. A Model for
Estimating Trace-Sample Miss Ratios. In Proc. ACM
SIGMETRICS Conf. on Measurement and Modeling of
Computer Systems, pages 79{89, June 1991.

[27] N. Zhang, A. Burns, and M. Nicholson. Pipelined pro-
cessors and worst-case execution times. Journal of Real-
Time Systems, October 1993.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

