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POSIX

• Portable Operating System for UnIX

• Application portability at source-code level

• POSIX Family formally known as IEEE 1003

• Originally 17 separate documents, but 10 
have since been combined
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POSIX Versions

• Prior to 1997:

• POSIX.1 (Core Services, 1988)

• POSIX.1b (Real-time extensions, 1993)

• POSIX.4 was POSIX.1b before approval

• POSIX.1c (Threads, 1995)

• Posix.2 (Shell and Utilities, 1992)
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POSIX Versions (2)

• After 1997:

• POSIX:2001

• Base definitions, System interfaces and 
Headers, Commands and Utilities

• POSIX:2004 - Minor updates

• POSIX:2008 - Current version
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POSIX.1-2008

• ... is massive. It covers:

• Concurrent execution

• Directory protection

• File access permissions

• File hierarchy

• Filenames
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POSIX.1-2008 (2)

• Continued...

• Memory synchronization

• Tracing

• Threads

• ...

• We are interested in real-time extensions.
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POSIX.4 - Scheduling

• POSIX requires only that the 
implementation define how scheduling 
policies modify thread priorities

• POSIX.4 concretely specifies three 
scheduling policies
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POSIX.4 - Scheduling (2)

• Scheduling attributes of a process may be:

• SCHED_FIFO: At least 32 priority levels with fixed-
priority preemptive scheduling. Process with the 
same priority are FIFO. Runs until blocked ore 
preempted by a higher priority process.

• SCHED_RR: Also 32 priority levels, except process 
with the same priority are scheduled round-robin.

• SCHED_OTHER: Static priority 0. Implementation 
defined; standard Linux scheduler.
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POSIX.4 - VM

• Functions to lock all or part of process 
address space into physical memory.

• Avoids delays due to memory access.

• Aside: PREEMPT_RT recommends calling 
mlockall() as soon as possible from 
main() to reduce future page faults.
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POSIX.4 - Real-Time 
Signals

• POSIX.4 defines a new range of signals. There 
are many more user signals than just SIGUSR1 
and SIGUSR2.

• Signals are queued, not lost. If several signals 
arrive before the handler is called, they are all 
delivered.

• Signals are delivered in priority order.

• Signals may contain an integer or pointer as data.
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POSIX.4 - IPC

• POSIX.4 defines message queues to 
communicate between processes.

• Messages are prioritized to avoid priority 
inversion.

• Message transmission and reception may be 
blocking or non-blocking.
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POSIX.4 -
Synchronization and Memory

• POSIX.4 defines named and unnamed  counting 
semaphores

• Named: Names constructed like file paths

• Unnamed: Memory based

• Priority inversions are still an issue.

• mmap() maps portions of process address space 
to memory objects. It is now in POSIX.1-2008
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POSIX.4 - Clocks & I/O
• CLOCK_REALTIME must have resolution at least 50 HZ 

(20 ms)

• POSIX.4 provides (a-)synchronous I/O.

• Synchronous: Ensure that the data hits the disk (fsync())

• Asynchronous: Does I/O in parallel with the application

• OS queues read/write requests and immediately returns 
control to the application.

• I/O is carried out in parallel with the application.

• A signal can be delivered to the application when I/O is 
complete.
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POSIX Trivia

• POSIX mandates 512-byte block size

• GNU OS implementers used 1024-
byte blocks

• POSIXLY_CORRECT was introduced 
to force standards-compliant behavior

• Stallman’s original plan was to name 
the variable POSIX_ME_HARDER
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Partitioned OSes

• OSes for embedded applications support 
both temporal and spatial partitioning. 

• Partitioning prevents unwanted 
interference between applications.

• Partitioning contains application faults to 
the partition in which they occurred.
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Temporal Partitioning

• Temporal partitioning is simply dividing up 
CPU time and access to other resources.

• This is typically done through static table-
driven scheduling.
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Spatial Partitioning

• Memory partitioning must be provided with 
hardware.

• MMU: Virtual address translation

• MPU: Simplified MMU

• MMU does virtual address translation in 
hardware to partition applications spatially. 

• Ensures one software component cannot 
access the memory of another.
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MMU Addressing
• Real: No address 

translation.

• Block: Translate 
segments of logical 
addresses to equivalent 
sized segments of 
physical memory.

• Page-based: Translation is 
done on a page-by-page 
basis.
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Page-table format used on Intel x86, Pentium, and 
Pentium Pro family, as well as on the PowerPC 821 and 

860 PowerQUICC processors.
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PPC Address Translation

• PPC architecture G1 through G4 can map 
linear chunks of addresses between 128 MB 
and 256 MB.

• The PPC can also do segmented address 
translation, in which we have standard 4 KB 
pages.
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PowerPC 60x family and MPC750
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System designer loads MMU 
segment registers with a 
value associated to the 
current context. 

1. This value is prepended to 
the virtual address, resulting 
in the a 52-bit virtual address.

2. Virtual address is hashed by 
the MMU and points to the 
Page Table Entry Group.

3. Comparison done to find 
physical address.
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TLB

• When the Intel processor context 
switches, the TLB must be flushed.

• The PPC page table is global, so no TLB 
flush is required.

• The segment registers simply shift the 
window in the 52-bit address space.
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LynxOS

LynuxWorks offers many RTOSes.

• LynxOS RTOS: Hard RTOS for embedded 
systems. 

• LynxOS-SE RTOS:  Memory is partitioned, 
ARINC 653 based fixed-cyclic scheduling.

• LynxOS-178 RTOS: DO-178B level A. 
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LynxOS-178

• LynxOS-178 is used:

• By the Navy in missiles and helicopters.

• By the Air Force in refueling tankers for 
electronic display control units.

• For Airbus navigation systems.

• For the Boeing 777 cabin services system.

• ... much more.
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LynxOS-178 Details

• Supports Pentium and PPC architectures.

• Meets all DO-178B requirements, and 
provides design data, test suites, etc. to 
certify new applications.

• POSIX.1 with real-time and thread 
extensions. 

• ARINC 653 APEX for partition 
communication.
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ARINC 653-1 & LynxOS

• ARINC 653-1 Application Executive 
Software (APEX) Interface defines:

• Interpartition Communication through 
ports:

• Sampling port: Memory space updated at a 
given rate.

• Queuing port: Values queued/dequeued by 
writers/readers.
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ARINC 653 Intrapartition 
Communication

• Buffer Services: A message passing queue.

• Blackboard Services: Processes may read, 
write, and clear a single message.

• Semaphore Services: Counting semaphore.

• Event Services: Can notify process when 
conditions occur. 
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LynxOS-178 
Architecture

• Time partitioning through a fixed-cyclic 
scheduler.

• Memory partitioning in discrete blocks. 
Processes in a partition use virtual 
addressing in that partition’s block.

• Each device assigned to one partition.

• Isolate driver faults.
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LynxOS-178 
Architecture

• Each partition mounts a RAM disk for 
storage (supports flash, too).

• Developers can use the serial port.

• Can mount an external disk for “testing” 
and “data capture.”
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LynxOS-178 
Architecture (2)

• Kontron VMPC6x board 
holds boot code in 
firmware.

• 500 MHz PPC G4

• Up to 512 MB RAM

• CPU Support Package 
contains MMU and FP 
units.

• CSP routines linked 
with kernel.
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LynxOS-178 
Architecture (3)

• Board Support Package: 
Interface with interrupt 
and PCI controllers.

• Static device drivers are 
linked with the kernel.

• Dynamic device drivers 
are for optional devices 
and loaded before 
partitioning is invoked.
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LynxOS-178 
Architecture (4)

• POSIX application code 
must be C or C++.

• Cinit is first process, 
which mounts file 
systems, loads dynamic 
device drivers, etc.

• Cinit appears in each 
partition as Pinit, and is 
the first process in each.
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Interrupts in LynxOS

• LynxOS doesn’t schedule processes, it 
schedules POSIX threads. 

• LynxOS supports kernel threads, which are 
threads that execute within the kernel to 
handle interrupts.

• The interrupt handling threads spawn with 
the lowest priority, and later assume the 
priority of the user process they service.
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Interrupts in LynxOS (2)

• The rest of the interrupt handling is done 
with standard split interrupt handling.

• After the kernel does the first half of the 
interrupt processing for a device, interrupts 
remain disabled for that device until the 
kernel thread finishes execution.
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