
RTOSes
Part I

Christopher Kenna
September 24, 2010

1

Tuesday, October 5, 2010

POSIX

• Portable Operating System for UnIX

• Application portability at source-code level

• POSIX Family formally known as IEEE 1003

• Originally 17 separate documents, but 10
have since been combined

2

Tuesday, October 5, 2010

POSIX Versions

• Prior to 1997:

• POSIX.1 (Core Services, 1988)

• POSIX.1b (Real-time extensions, 1993)

• POSIX.4 was POSIX.1b before approval

• POSIX.1c (Threads, 1995)

• Posix.2 (Shell and Utilities, 1992)

3

Tuesday, October 5, 2010

POSIX Versions (2)

• After 1997:

• POSIX:2001

• Base definitions, System interfaces and
Headers, Commands and Utilities

• POSIX:2004 - Minor updates

• POSIX:2008 - Current version

4

Tuesday, October 5, 2010

POSIX.1-2008

• ... is massive. It covers:

• Concurrent execution

• Directory protection

• File access permissions

• File hierarchy

• Filenames

5

Tuesday, October 5, 2010

POSIX.1-2008 (2)

• Continued...

• Memory synchronization

• Tracing

• Threads

• ...

• We are interested in real-time extensions.

6

Tuesday, October 5, 2010

POSIX.4 - Scheduling

• POSIX requires only that the
implementation define how scheduling
policies modify thread priorities

• POSIX.4 concretely specifies three
scheduling policies

7

Tuesday, October 5, 2010

POSIX.4 - Scheduling (2)

• Scheduling attributes of a process may be:

• SCHED_FIFO: At least 32 priority levels with fixed-
priority preemptive scheduling. Process with the
same priority are FIFO. Runs until blocked ore
preempted by a higher priority process.

• SCHED_RR: Also 32 priority levels, except process
with the same priority are scheduled round-robin.

• SCHED_OTHER: Static priority 0. Implementation
defined; standard Linux scheduler.

8

Tuesday, October 5, 2010

POSIX.4 - VM

• Functions to lock all or part of process
address space into physical memory.

• Avoids delays due to memory access.

• Aside: PREEMPT_RT recommends calling
mlockall() as soon as possible from
main() to reduce future page faults.

9

Tuesday, October 5, 2010

POSIX.4 - Real-Time
Signals

• POSIX.4 defines a new range of signals. There
are many more user signals than just SIGUSR1
and SIGUSR2.

• Signals are queued, not lost. If several signals
arrive before the handler is called, they are all
delivered.

• Signals are delivered in priority order.

• Signals may contain an integer or pointer as data.

10

Tuesday, October 5, 2010

POSIX.4 - IPC

• POSIX.4 defines message queues to
communicate between processes.

• Messages are prioritized to avoid priority
inversion.

• Message transmission and reception may be
blocking or non-blocking.

11

Tuesday, October 5, 2010

POSIX.4 -
Synchronization and Memory

• POSIX.4 defines named and unnamed counting
semaphores

• Named: Names constructed like file paths

• Unnamed: Memory based

• Priority inversions are still an issue.

• mmap() maps portions of process address space
to memory objects. It is now in POSIX.1-2008

12

Tuesday, October 5, 2010

POSIX.4 - Clocks & I/O
• CLOCK_REALTIME must have resolution at least 50 HZ

(20 ms)

• POSIX.4 provides (a-)synchronous I/O.

• Synchronous: Ensure that the data hits the disk (fsync())

• Asynchronous: Does I/O in parallel with the application

• OS queues read/write requests and immediately returns
control to the application.

• I/O is carried out in parallel with the application.

• A signal can be delivered to the application when I/O is
complete.

13

Tuesday, October 5, 2010

POSIX Trivia

• POSIX mandates 512-byte block size

• GNU OS implementers used 1024-
byte blocks

• POSIXLY_CORRECT was introduced
to force standards-compliant behavior

• Stallman’s original plan was to name
the variable POSIX_ME_HARDER

14

RMS

Tuesday, October 5, 2010

Partitioned OSes

• OSes for embedded applications support
both temporal and spatial partitioning.

• Partitioning prevents unwanted
interference between applications.

• Partitioning contains application faults to
the partition in which they occurred.

15

Tuesday, October 5, 2010

Temporal Partitioning

• Temporal partitioning is simply dividing up
CPU time and access to other resources.

• This is typically done through static table-
driven scheduling.

16

Tuesday, October 5, 2010

Spatial Partitioning

• Memory partitioning must be provided with
hardware.

• MMU: Virtual address translation

• MPU: Simplified MMU

• MMU does virtual address translation in
hardware to partition applications spatially.

• Ensures one software component cannot
access the memory of another.

17

Tuesday, October 5, 2010

MMU Addressing
• Real: No address

translation.

• Block: Translate
segments of logical
addresses to equivalent
sized segments of
physical memory.

• Page-based: Translation is
done on a page-by-page
basis.

18

Tuesday, October 5, 2010

Page-table format used on Intel x86, Pentium, and
Pentium Pro family, as well as on the PowerPC 821 and

860 PowerQUICC processors.
19

Tuesday, October 5, 2010

PPC Address Translation

• PPC architecture G1 through G4 can map
linear chunks of addresses between 128 MB
and 256 MB.

• The PPC can also do segmented address
translation, in which we have standard 4 KB
pages.

20

Tuesday, October 5, 2010

PowerPC 60x family and MPC750

21

System designer loads MMU
segment registers with a
value associated to the
current context.

1. This value is prepended to
the virtual address, resulting
in the a 52-bit virtual address.

2. Virtual address is hashed by
the MMU and points to the
Page Table Entry Group.

3. Comparison done to find
physical address.

Tuesday, October 5, 2010

TLB

• When the Intel processor context
switches, the TLB must be flushed.

• The PPC page table is global, so no TLB
flush is required.

• The segment registers simply shift the
window in the 52-bit address space.

22

Tuesday, October 5, 2010

LynxOS

LynuxWorks offers many RTOSes.

• LynxOS RTOS: Hard RTOS for embedded
systems.

• LynxOS-SE RTOS: Memory is partitioned,
ARINC 653 based fixed-cyclic scheduling.

• LynxOS-178 RTOS: DO-178B level A.

23

Tuesday, October 5, 2010

LynxOS-178

• LynxOS-178 is used:

• By the Navy in missiles and helicopters.

• By the Air Force in refueling tankers for
electronic display control units.

• For Airbus navigation systems.

• For the Boeing 777 cabin services system.

• ... much more.

24

Tuesday, October 5, 2010

LynxOS-178 Details

• Supports Pentium and PPC architectures.

• Meets all DO-178B requirements, and
provides design data, test suites, etc. to
certify new applications.

• POSIX.1 with real-time and thread
extensions.

• ARINC 653 APEX for partition
communication.

25

Tuesday, October 5, 2010

ARINC 653-1 & LynxOS

• ARINC 653-1 Application Executive
Software (APEX) Interface defines:

• Interpartition Communication through
ports:

• Sampling port: Memory space updated at a
given rate.

• Queuing port: Values queued/dequeued by
writers/readers.

26

Tuesday, October 5, 2010

ARINC 653 Intrapartition
Communication

• Buffer Services: A message passing queue.

• Blackboard Services: Processes may read,
write, and clear a single message.

• Semaphore Services: Counting semaphore.

• Event Services: Can notify process when
conditions occur.

27

Tuesday, October 5, 2010

LynxOS-178
Architecture

• Time partitioning through a fixed-cyclic
scheduler.

• Memory partitioning in discrete blocks.
Processes in a partition use virtual
addressing in that partition’s block.

• Each device assigned to one partition.

• Isolate driver faults.

28

Tuesday, October 5, 2010

LynxOS-178
Architecture

• Each partition mounts a RAM disk for
storage (supports flash, too).

• Developers can use the serial port.

• Can mount an external disk for “testing”
and “data capture.”

29

Tuesday, October 5, 2010

LynxOS-178
Architecture (2)

• Kontron VMPC6x board
holds boot code in
firmware.

• 500 MHz PPC G4

• Up to 512 MB RAM

• CPU Support Package
contains MMU and FP
units.

• CSP routines linked
with kernel.

30

Tuesday, October 5, 2010

LynxOS-178
Architecture (3)

• Board Support Package:
Interface with interrupt
and PCI controllers.

• Static device drivers are
linked with the kernel.

• Dynamic device drivers
are for optional devices
and loaded before
partitioning is invoked.

31

Tuesday, October 5, 2010

LynxOS-178
Architecture (4)

• POSIX application code
must be C or C++.

• Cinit is first process,
which mounts file
systems, loads dynamic
device drivers, etc.

• Cinit appears in each
partition as Pinit, and is
the first process in each.

32

Tuesday, October 5, 2010

Interrupts in LynxOS

• LynxOS doesn’t schedule processes, it
schedules POSIX threads.

• LynxOS supports kernel threads, which are
threads that execute within the kernel to
handle interrupts.

• The interrupt handling threads spawn with
the lowest priority, and later assume the
priority of the user process they service.

33

Tuesday, October 5, 2010

Interrupts in LynxOS (2)

• The rest of the interrupt handling is done
with standard split interrupt handling.

• After the kernel does the first half of the
interrupt processing for a device, interrupts
remain disabled for that device until the
kernel thread finishes execution.

34

Tuesday, October 5, 2010

