
Locking Protocol &

 Multiprocessor Scheduling

(Most slides are from Jim Anderson Real-Time course)

Resources & Locking Protocols

• We continue to consider single-processor

systems.

• For simplicity, we will assume there is only one

kind of lock request.

• Two jobs have a resource conflict if some of

the resources they require are the same.

• A matching lock/unlock pair is a critical

section

Priority Inversions

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

When tasks share resources, there may be priority inversions.

Example:
priority inversion

Deadlocks

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

When tasks share resources, deadlocks may be a problem.

Example: J1 accesses green, then red (nested). J3 accesses red, then

green (nested).

can’t lock green!

Resource Access Control Protocols

• We now consider several protocols for allocating

resources that control priority inversions and/or

deadlocks.

1 Nonpreemptive Critical Section Protocol

2 The Priority Inheritance Protocol

3 The Priority Ceiling Protocol

4 Stack Resource Policy

Nonpreemptive Critical Section Protocol

• The simplest protocol: just execute each critical

section nonpreemptively

The Priority Inheritance Protocol

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

When tasks share resources, there may be priority inversions.

Example:
priority inversion

The Priority Inheritance Protocol
Priority Inheritance Protocol: When a low-priority job blocks a high-

priority job, it inherits the high-priority job’s priority.

This prevents an untimely preemption by a medium-priority job.

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

executed at J1’s priority

Deadlocks

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

When tasks share resources, deadlocks may be a problem.

Example: J1 accesses green, then red (nested). J3 accesses red, then

green (nested).

can’t lock green!

PIP Definition
Each job Jk has an assigned priority (e.g., RM priority) and a current priority k(t).

1. Scheduling Rule: Ready jobs are scheduled on the processor preemptively in a

 priority-driven manner according to their current priorities. At its release time t,

 the current priority of every job is equal to its assigned priority. The job remains

 at this priority except under the condition stated in rule 3.

2. Allocation Rule: When a job J requests a resource R at time t,

(a) if R is free, R is allocated to J until J releases it, and

(b) if R is not free, the request is denied and J is blocked.

3. Priority-inheritance Rule: When the requesting job J becomes blocked, the job

 Jl that blocks J inherits the current priority of J. The job Jl executes at its inherited

 priority until it releases R (or until it inherits an even higher priority); the priority

 of Jl returns to its priority l(t) at the time t when it acquired the resource R.

The Priority Ceiling Protocol

• Two key assumptions:

• The assigned priorities of all jobs are fixed (as before).

• The resources required by all jobs are known a priori before the

execution of any job begins.

• Definition: The priority ceiling of any resource R is the

highest priority of all the jobs that require R, and is denoted

(R).

• Definition: The current priority ceiling (R) of the

system is equal to the highest priority ceiling of the

resources currently in use, or  if no resources are currently

in use ( is a priority lower than any real priority).

PCP Definition
1. Scheduling Rule:

(a) At its release time t, the current priority (t) of every job J equals its assigned priority.

 The job remains at this priority except under the conditions of rule 3.

(b) Every ready job J is scheduled preemptively and in a priority-driven manner at its

 current priority (t).

2. Allocation Rule: Whenever a job J requests a resource R at time t, one of the following

 two conditions occurs:

(a) R is held by another job. J’s request fails and J becomes blocked.

(b) R is free.

(i) If J’s priority (t) is higher than the current priority ceiling (t), R is allocated to J.

(ii) If J’s priority (t) is not higher than the ceiling (t), R is allocated to J only if J is

 the job holding the resource(s) whose priority ceiling equals (t); otherwise, J’s

 request is denied and J becomes blocked.

3. Priority-inheritance Rule: When J becomes blocked, the job Jl that blocks J inherits the

 current priority (t) of J. Jl executes at its inherited priority until it releases every resource

 whose priority ceiling is  (t) (or until it inherits an even higher priority); at that time, the

 priority of Jl returns to its priority (t) at the time t when it was granted the resources.

Deadlocks

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

When tasks share resources, deadlocks may be a problem.

Example: J1 accesses green, then red (nested). J3 accesses red, then

green (nested).

can’t lock green!

Deadlock Avoidance
With the PIP, deadlock could occur if nested critical sections are

invoked in an inconsistent order. Here’s an example we looked at earlier.

Example: J1 accesses green, then red (nested). J3 accesses red, then

green (nested).

The PCP would prevent J1 from locking green.

0 2 4 6 8 10 12 14 16 18

J3

J2

J1

want lock green, but cannot

Stack Resource Policy

0. Update of the Current Ceiling: Whenever all the resources are free,

 the ceiling of the system is . The ceiling (t) is updated each

 time a resource is allocated or freed.

1. Scheduling Rule: After a job is released, it is blocked from starting

 executing until its assigned priority is higher than the current

 ceiling (t) of the system. At all times, jobs that are not blocked

 are scheduled on the processor in priority-driven, preemptive manner

 according to their assigned priorities.

2. Allocation Rule: Whenever a job requests a resource, it is allocated

 the resource.

Example

0 2 4 6 8 10 12 14 16 18 20

J1

J2

J3

J4

J5

Properties of the SRP

• No job is ever blocked once its execution

begins.

– Thus, there can never be any deadlock.

With the SRP, a job is blocked only before it begins

execution, so extra context switches due to blockings

are avoided.

Multiprocessor Scheduling
(Partitioning)

Partition tasks so that each task always runs

on the same processor.

Steps:

1. Assign tasks to processors.

2. Schedule tasks on each

processor using a uniprocessor

algorithm.

Global Scheduling
(An Alternative to Partitioning)

A single scheduling algorithm is used that

schedules all tasks.

Important Differences:

• A single task queue.

• Tasks may migrate among the

processors.

Clustered Scheduling

Partition onto clusters of cores, globally

schedule within each cluster.

Important Differences:

• Bin packing issues, but to a

lesser extent.

• Tasks may migrate among

the processors within cluster

pool.

Some Example Algorithms

• Uniprocessor scheduling algorithm can still be

used with all 3 multiprocessor scheduling

approaches.

– Partitioned-EDF, Global-EDF, Clustered-EDF…

HRT: Optimality is lost

SRT: Tardiness is bounded if:
• Total Utilization ≤ m (where m is the number of processors)

• ui ≤ 1

Multiprocessor Real-Time Locking

• Spin-Based Locking is used by the flexible

multiprocessor locking protocol (FMLP) [Block,

et al., 2007]

• Suspension-Based Locking is used by OMLP

[Brandenburg, et al., 2010]

Other Multiprocessor Locking Protocols

• For Partitioned Static-Priority Schedulers

– DPCP [Rajkumar et al. 88, 91]:

– MPCP [Rajkumar 90, 91]:

• For PEDF

– Two PCP variants [Chen and Tripathi 94]

– MSRP [Gai et al. 03]:

• For Global Static-Priority Schedulers

– PIP [Easwaran and Andersson, 09]

– P-PCP [Easwaran and Andersson, 09]

References

A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, " A Flexible Real-Time

Locking Protocol for Multiprocessors ", Proceedings of the 13th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications, pp.

47-57, August 2007.

B. Brandenburg and J. Anderson, " Optimality Results for Multiprocessor Real-

Time Locking", Proceedings of the 31st IEEE Real-Time Systems Symposium, pp.

49-60, December 2010.

R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization protocols for

multiprocessors. Proc. of the 9th Real-Time Systems Symposium, pages 259–269,

1988.

R. Rajkumar. Real-time synchronization protocols for shared memory

multiprocessors. Proc. of the 10th International Conference on Distributed

Computing Systems, pages 116–123, 1990.

References

R. Rajkumar. Synchronization In Real-Time Systems – A Priority Inheritance

Approach. Kluwer Academic Publishers, 1991.

C. Chen and S. Tripathi. Multiprocessor priority ceiling based protocols. Technical

Report CS-TR-3252, Univ. of Maryland, 1994.

P. Gai, M. di Natale, G. Lipari, A. Ferrari, C.Gabellini, and P. Marceca. A

comparison of MPCP and MSRP when sharing resources in the Janus multiple

processor on a chip platform. In Proc. of the 9th IEEE Real-Time And Embedded

Technology Application Symposium, pages 189–198, 2003.

A. Easwaran and B. Andersson. Resource sharing in global fixedpriority

preemptive multiprocessor scheduling. In Proc. of the 30th IEEE Real-Time

Systems Symposium, pages 377–386, 2009.

