## Introduction to Robotics

Jeffrey Ichnowski jeffi@cs.unc.edu



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

### Robotics Background Outline

Introduction, Concepts

this presentation

#### **Motion Planning**

Alan's presentation

#### Control

Dhruv's presentation

#### Case-study

Hannah's presentation

#### **Robotics Research Areas**

Andrew's presentation

### What is a robot?

### Good











### Bad











### Useless





## Manufacturing





Aldebaran Nao

da Vinci Surgical Robot

Roomba





#### **Boston Dynamics WildCat**



Harvard Microrobotic Fly



#### HiBot ACM-R5H Snake Robot



CMU "Snake Monster" Hexapod

### What is a robot?

#### "I can't define a robot, but I know one when I see one."

–Joseph Engelberger,

developer of the Unimate, the first deployed industrial robot

## Where are robots?

Home Hospital Rehabilitation Manufacturing Disaster War Transportation Delivery Education/Entertainment

. . .

# What is Robotics?

- Sensing
- Artificial Intelligence: knowledge representation/ontologies, recognition, classification, identification
- Machine Learning: control learning, task learning
- Robot design: task oriented, biologically inspired,
- Task Planning
- Motion Planning
- Moving
  - Control, Contact
  - Walking, slithering, flying, swimming, driving
- Multiple robots, parallel robots
- Differing scale: from extremely large to nanoparticle
- Grasping
- Manipulation
- Localization, SLAM
- Software architecture, programming
- Human interaction
  - Human-robot interface
  - Force and tactile sensing and control
  - Haptics

. . .

- Safety, compliance
- Teleoperation
- Performance augmentation
- Fault handling and recovery

partial list from IROS conference schedule



### Sense



#### Pan Alan's presentation

"Plan a motion from point A to point B."

"Compute an obstacle-free sequence of configurations through the robot's configuration space that reaches a goal region while satisfying the robot's kinematic constraints and problemspecific constraints."

#### R.O.B.O.T. Comics



"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

#### Pan Alan's presentation

"Plan a motion from configuration A to configuration B."

Typically not concerned with differential constraints (e.g., dynamics).

More recent research starting to include optimality, uncertainties, modeling errors, differential constraints

#### R.O.B.O.T. Comics



"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

#### **MOVE** Dhruv's presentation





#### **Control theory:** feedback policies, adaptive execution, stability





## **Articulated Robot Parts**



# Space in which the robot operates



 $3D = \mathbb{R}^3$ 





#### Surface of Sphere



1 Link Robot



#### 2 Link Robot



#### **2** Prismatic Joints



#### 2D Point/Disc Robot (e.g., Roomba)



#### 2 Prismatic + 1 Rotational Joint



#### **1** Prismatic + 2 Rotational Joint



## **Robot Configuration**

Configuration: The complete specification of a robot's pose, position, and orientation in space.



## **Degrees of Freedom**

#### **DOF:** the dimension of the configuration vector



### DOF of Human/Humanoids



Nao Humanoid Robot

Head: 2 Arms: 5 x2 Hips: 1 Legs: 6 x2 = 25 D0F



Human ~200 DOF

### Kinematics

Forward Kinematics: computation of position and orientation of end effector as a function of the configuration.



$$f(\theta_1, \theta_2) = (x, y)$$

## **Inverse Kinematics**

## *Inverse Kinematics*: computation of configuration vector given an end effector position and orientation.



$$f^{-1}(x, y) = (\theta_1, \theta_2)$$

## **Inverse Kinematics**

#### Problem: multiple solutions. No closed form solution in many higher DOF robots.

$$(x, y) = \{(\theta_1, \theta_2), (\theta'_1, \theta'_2)\}$$

**C-Space** 

## **Configuration Space (C-Space): the set of possible configurations that can be applied to a robot.**



#### C-Space is where we do motion planning.

#### **C-Space: Cartesian Products**



### **C-Space: Revolute Joints**

#### $\mathbb{S}^1 = \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \right\}$





## **C-Space: Revolute Joints**



## **C-Space: Revolute Joints**







 $\mathbb{S}^1 \times \mathbb{S}^1 \neq \mathbb{S}^2$ 

### **C-Space "flattening"**



### **Additional Joints**



## **C-Space and Obstacles**

Robot with 2 revolute joints



Workspace and Obstacles



**C-Space and C-Obstacles** 

## **C-Space Obstacles demo**

http://cs.unc.edu/~jeffi/c-space/robot.xhtml

## DOF in a Car



#### What about the control?



**3 DOF**  $(x, y, \theta)$ 

**2 DOF**  $(\phi, v)$ 

### Holonomic / Nonholonomic



Holonomic: controllable DOF = total DOF. (i.e., can instantaneously move any direction. On car, cannot move sideways.)

## Geometric / Control

#### holonomic point/disc robot: control & geometric are the same

**car:** position & orientation vs. steering & velocity **3 DOF**  $(x, y, \theta)$  **2 DOF**  $(\phi, v)$ 

In which space should we plan?

# Open-Loop/Closed-Loop



#### Dealing with uncertainty and changing environments

## Recap

Sense, Plan, Move Configuration, DOF Kinematics, Inverse Kinematics **Configuration Space** Obstacles Holonomic / Nonholonomic Geometric / Control