Vehicle Localization

Hannah Rae Kerner
21 April 2015



T —
T ASS 4.
‘—J .

Spotted in Mtn Vlew Google Car




Why precision localization?

e in order for a robot to follow a road, it needs

to know where the road is
e to stay in a particular lane, it needs to know

where the lane is

o for an autonomous robot to stay in a lane,
localization must be accurate to decimeters at least



Vehicle Localization Problem

e Autonomous driving and ADAS applications
can be significantly improved by more

accurate (cm-level) vehicle localization

o important for safety in urban environments
O narrow passages, turns, etc

o GPS-denied areas e.g. parking garages, in between
buildings, etc

e GPS-IMU-odometry based methods are not
adequate for this positioning accuracy



Techniques for Improvement

e Many techniques for increasing location
accuracy for urban driving

o Extended Kalman Filters, Belief Theory, multi-
vehicle cooperation, and more...

e \We'll look at the one published by the group
that led the development of the Google
driverless car



Map-Based Precision Vehicle
Localization in Urban Environments

Jesse Levinson, Michael Montemerlo, Sebastian Thrun
Stanford Artificial Intelligence Laboratory (2008)

Augment inertial navigation (GPS + odometry) by:

1. learning a detailed map of the environment
2. using the vehicle’s LIDAR sensor to localize
relative to that map

http://www.roboticsproceedings.org/rss03/p16.pdf



1. Learning a detailed map

Map contains:

e 2-D overhead views of the road surface

e infrared spectrum

e captures lane markings, tire marks,
pavement, vegetation (grass), etc



Acquiring the map

multiple SICK laser
range finders pointing

d Ownwa rd at th e rOad ) Figure 2. Visualization of the scanning process: the LIDAR scanner acquires

range data and infrared ground reflectivity. The resulting maps therefore are

" 3-D infrared images of the ground reflectivity. Notice that lane markings have
m O u nted O n Ve h ICI e much higher reflectivity than :avement. " '

O

return range to sampling of points on the
ground

return measure of infrared reflectivity

result: 3-D infrared images of ground reflectivity



Eliminating Dynamic Objects

fits a ground plane to
each laser scan and
removes objects above
the plane

e other cars, buildings,
Figure 3. Example of ground plane extraction. Only measurements that

Ia m p pOStS, etC a I Ong coincide with t)l(le grl)round plrar;gl arg retain:d; all cr:ther.;1 Zre discl:irded rzshown

in green here). As a result, moving objects such as car (and even parked cars)

the ro ad are not :;tz, i;l(())rtmilgilttsxded in the map. This makes our approach robust in dynamic
included in the map




Map Storage

rectangular area acquired by range scan
decomposed into square grid

saves only squares for which there is data

after lossless compression, grid images require
~10MB per mile of road at 5cm res.

thus a 200GB hard drive can hold 20,000 miles of
data

particle filter maintains cache of image squares
near the vehicle, thus requiring constant amount of
memory



2. Localizing relative to map in RT

1. Particle filter analyzes range data to

determine the ground plane the vehicle is on
(also combines GPS data when available)

2. Correlates measured infrared reflectivity with
the map (using the Pearson product-moment
correlation)

3. Tracks location by projecting particles
forward through time via the velocity outputs
from inertial navigation system



Localization

e uses hardware-accelerated OpenGL to
render map for localization (faster than real-
time even with low-end graphics card)

e |ocalization computed with 200 Hz motion
update

o measurements arrive from each laser at 75 Hz

e uses a particle filter (Monte-Carlo localizer)
o maintains 3-D pose vector: x, y, yaw



Weather Complications

(a) Map acquired on a sunny day.

e wet surfaces tend to
reflect less IR light than

same loc. differ slightly
e particle filter normalizes |
b rlg htn eSS a nd Sta n d a rd Figure 4. Patch of the map acquired in bright sunlight on a sunny day
(top), and at night in heavy rain (middle). By correlating scans with the map,

d eVI atl on fo r eac h ran g @ instead of aking absolute differences, the weather elated brighiness variaton
scan as well as corresponding map stripes




Experimental Results

e state-of-the-art
iInertial nav system

e three down-facing
laser range
finders: left, right,

a n d re a r Figure 1. The acquisition vehicle is equipped with a tightly integrated inertial
. navigation system which uses GPS, IMU, and wheel odometry for localization.
[ 5_Cm p IXel It also possesses laser range finders for road mapping and localization.

resolution



Experimental Results

tested mapping algorithm successfully on variety of urban roads, e.g. this map
acquired in Burlingame in 32 loops:
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“Ghosting” removal

(a) GPS leads to ghosting (b) Our method: No ghosting (a) Map with hole (b) Ghosting (¢) Our approach
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Figure 8. Infrared reflectivity ground map before and after SLAM optimiza-  Figure 9. Filtering dynamic objects from the map leaves holes (left). These

tion. Residual GPS drift can be seen in the ghost images of the road markings  holes are often filled if a second pass is made over the road, but ghost

(left). After optimization, all ghost images have been removed (right). images remain (center). After SLAM, the hole is filled and the ghost image
is removed.



Empirical Results

e very reliably tracks location of vehicle with

relative accuracy of ~10cm
o used 200 to 300 particles

e both mapping and localization processes
robust to dynamic and hilly environments

o so long as the road surface remains approx. laterally
planar in the neighborhood of the vehicle



Localization without GPS

successfully localizes even with GPS turned off (using only
odometry and steering angle)

Stanford Ave.

Distance | Our Error | Odometry
Traveled (m) (cm) | Error (cm)
50 7 98

100 3 149

150 35 0

200 13 8

250 - 133

300 22 272

350 8 428
400 23 589
450 13 783
499 10 924

Figure 12. This table compares the accuracy of pose estimation in the
absence of GPS or IMU data. The right column is obtained by odometry
only; the center by particle filter localization relative to the map. Clearly,
odometry alone accumulates error. Our approach localizes reliably without
any GPS or IMU.



Localization using only LIDAR

e GPS, IMU, and odometry were all ignored
e particle state vector: x, y, yaw, steering

angle, velocity, and acc.
o Initialized near true position

o assumed reasonable rates
of change

e reasonably successfully
tracked pos. and velocity
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Empirical Results

e |ocalization results
after 20 minutes of
driving on top of
acquired map

e |ateral error almost
always within 10cm
but on turns
sometimes as much

Figure 10. (Best viewed in color) Typical driving path during localization
as 3ocm shown in green, and overlayed on a previously built map, acquired during 20

minutes of driving. For this and other paths, we find that the particle filter
reliably localizes the vehicle.



Importance of
Localization
Techniques

average disagreement
between real-time GPS
pose and their localization
method was 66-cm

(a) GPS localization induces >1 meter of error.

Figure 11. (a) GPS localization is prone to error, even (as shown here) with
a high-end integrated inertial system and differential GPS using a nearby
stationary antenna. (b) The particle filter result shows no noticeable error.



Autonomous Driving Experiments

e ten attempts to drive autonomously through an urban
area

o gas and brakes operated mostly manually, but all
steering done by computer
e followed fixed reference trajectory through Stanford
campus without error 10/10 times
e often the lane width not occupied by vehicle was less
than 2 meters, yet GPS-only consistently failed within
meters: GPS localization not sufficient



Conclusions

e accurate localization enables autonomous
cars to perform accurate lane keeping and
obey traffic laws

e GPS is not sufficient for autonomous vehicle
localization, yet almost all outdoor
localization work is GPS-based

e this method is better for both accuracy and
availability

e disadvantage of approach: reliance on maps



