
Real-Time Incremental Visualization of Dynamic
Ultrasound Volumes Using Parallel BSP Trees

William F. Garrett, Henry Fuchs, Mary C. Whitton, and Andrei State
PUBLISHED IN THE PROCEEDINGS OF VISUALIZATION ’96

Department of Computer Science1

University of North Carolina at Chapel Hill

ABSTRACT
We present a method for producing real-time volume
visualizations of continuously captured, arbitrarily-oriented 2D
arrays (slices) of data. Our system constructs a 3D
representation on-the-fly from incoming 2D ultrasound slices
by modeling and rendering the slices as planar polygons with
translucent surface textures. We use binary space partition
(BSP) tree data structures to provide non-intersecting,
visibility-ordered primitives for accurate opacity accumulation
images. New in our system is a method of using parallel, time-
shifted BSP trees to efficiently manage the continuously
captured ultrasound data and to decrease the variability in image
generation time between output frames. This technique i s
employed in a functioning real-time augmented reality system
that a physician has used to examine human patients prior to
breast biopsy procedures. We expect the technique can be used
for real-time visualization of any 2D data being collected from
a tracked sensor moving along an arbitrary path.

CR Categories and Subject Descriptors: E.1 [Data
Structures]: Trees, I.3.1: [Hardware Architecture]: Three-
dimensional displays, I.3.7 [Three-Dimensional Graphics and
Realism]: Color, shading, shadowing, and texture and Visible
line/surface algorithms, J.3 [Life and Medical Sciences]:
Medical information systems.

Additional Keywords and Phrases: Augmented reality,
ultrasound echography, 3D medical imaging, BSP tree.

1 INTRODUCTION
Ultrasound echography is a popular imaging modality for many
medical applications including fetal and cardiological
examinations. We are developing an augmented reality system
for use in ultrasound-guided needle biopsy of the breast (Plate
1). As the anatomy being examined is inherently three
dimensional, the physician would often like to see the data
rendered as a volume rather than as the 2D cross-sectional
images (slices) generated by most ultrasound machines.
Although 3D ultrasound acquisition systems are available
commercially, they are not widely used. The 3D systems are
problematic for applications such as breast biopsy because the
apparatus may obstruct the physician’s access to the patient’s
body. 2D acquisition systems are likely to remain common
many years, so it is fruitful to investigate real-time rendering
of data from this class of sensors.

Our goal is to provide the physician with a volume
representation of ultrasound data displayed in real time as she
scans a patient with a hand-held 2D ultrasound probe. The
rendering portion of our system must address three problems:
the arbitrary position and orientation of the ultrasound data,
the continuous capture of new data that must be combined with

older data for display, and the need for real-time operation.
Plate 2, showing a hand scanned in a tank of water, illustrates
how 3D shape can be recognizably represented in opacity
accumulation images of multiple slices. Plate 3 illustrates the
challenge of rendering a combination of older and newer data
when scanning a moving target, in this case a closed hand
opening during the scan.

A hand-held ultrasound probe can be moved freely with six
degrees of freedom. Although each slice is in a known and
fixed position relative to the ultrasound probe at the time it i s
captured, slices can have arbitrary position and orientation
with respect to each other. Figure 1 shows that slices may
intersect and samples may be non-uniformly spaced due to
variations in the speed of probe movement. In contrast, other
popular 3D imaging modalities, e.g. CT and MRI, produce
parallel slices of data with known geometric relationships
between slices. Compositing 2D slices to make a 3D image
from data collected with a hand-held ultrasound probe requires
properly rendering an irregular array of data after deriving the
slice positions and orientations from the (tracked) probe
location.

Figure 1: Intersecting and unevenly spaced ultrasound slices.
Lighter shading indicates older slices.

The second problem is the real-time, continuous nature of the
source data. Accumulating and displaying all the data collected
at 30 frames/sec in a scanning session would lead to
uninterpretable images. The system must manage an “active
set” of data by continually adding new slices and eliminating
older ones. The user should be able to control the number of
slices in the active set. The system should also (optionally)
visually distinguish older and newer data so that newer data i s
emphasized and shape and position changes are more
noticeable.

Third, for real-time augmented reality applications the system
must run at a minimum of 10 frames per second in stereo. This
constraint made us look beyond traditional volume

--
1CB# 3175 Sitterson Hall, Chapel Hill, NC 27599-3175, tel. 919-962-1700
Email: {garrett, fuchs, whitton, state}@cs.unc.edu

transducer path

transducer

breast

ultrasound
slices

visualization methods which require computationally
expensive data resampling.

In [State 1996] we described an augmented reality system that
merges ultrasound rendering with live images of the physical
environment. The work reported here enabled the 3D real-time
volume visualization in that system, but was described only
briefly in that paper. The method is extended and analyzed
here.

2 BACKGROUND
Our work builds on previous research in volume rendering,
ultrasound visualization, and BSP trees. Of particular relevance
is research on using textures and hardware texture accelerators
to render volumes and research using polygonal primitives to
represent ultrasound slices.

2.1 Volume Rendering
Volume rendering methods, like rendering methods in general,
can be divided into two categories: backward-mapping
methods (e.g., ray casting [Tuy 1984], where the image plane
is mapped onto the data, and forward-mapping methods (e.g.,
splatting [Westover 1990]) where data is mapped to screen
space. Most methods require (re)sampling data to a regular 3D
grid or compiling adjacency information for irregular grids.
Moreover, to render with translucency (e.g., “Levoy rendering”
[Levoy 1988] or simple opacity accumulation), the volume
must be sampled in back-to-front or front-to-back order for
proper compositing.

Most computers are not powerful enough to resample and render
large, screen-filling datasets (2563 voxels) at interactive rates
(10 Hz or better) but many modern computers do offer hardware
acceleration for rendering textured polygons. Cullip and
Neumann [Cullip 1994] proposed a simple method for using the
texture-rendering capabilities of a Silicon Graphics
RealityEngine for volume rendering. Stein, Becker, and Max
[Stein 1994] demonstrate how the volume rendering method of
cell projection [Shirley 1990] can be implemented with
hardware-assisted texture mapping. Cabral, Cam, and Foran
[Cabral 1994] provide some of the mathematical foundations
for generating volume-rendered images with texture-mapping
hardware.

2.2 Ultrasound Visualization Systems
Thune and Olstad [Thune 1991] presented a system for
capturing time-varying 3D ultrasound data using a restricted
motion (rotation only) ultrasound probe and rendering images
off-line. Sakas and Walter [Sakas 1995] built a system for
visualizing 3D ultrasound data, characterized by the use of a
motor-driven ultrasound probe, multi-step filtering, and very
high visual quality. Their technique includes space-filling
interpolation between ultrasound slices during volume
reconstruction.

State, et. al. [State 1994] generated a sequence of images
showing a moving observer’s view of a reconstructed volume (a
fetus) within a pregnant patient. The researchers collected
time-stamped data from a tracker on a freely movable hand-held
ultrasound probe, a tracker on the user’s head, and images from
a head-mounted video camera. The animation, although
showing lower volume reconstruction quality than [Sakas
1995], simulated what a real-time augmented-reality

visualization running on a more-powerful future machine might
display to a user.

Bajura, Fuchs, and Ohbuchi [Bajura 1992] introduced the
concept of rendering ultrasound slices as polygon-like objects
in an early real-time augmented reality system. The system
displayed intersecting, opaque primitives via z-buffering. The
researchers exploited the hardware accelerated sphere primitive
of Pixel Planes 5 and approximated a textured polygon by
rendering an array of small, intersecting spheres each centered
on a sample point on the ultrasound slice and colored with the
value of that sample point.

Ohbuchi, Chen, and Fuchs [Ohbuchi 1992] developed a system
that incrementally resampled and rendered (via ray casting)
ultrasound slice data. This work was expanded to a primitive
augmented-reality system that ran at near-real-time frame rates
(~1Hz) on the Pixel-Planes 5 graphics multicomputer [State
1994, State 1995]. The present work can best be described as
improving on the results of that system by using new rendering
algorithms and a different hardware platform to achieve real-
time frame rates (10-15 Hz).

2.3 BSP Trees
A binary space partition (BSP) tree is a data structure for
managing planar polygons in 3D. Intersecting polygons are
divided into non-intersecting fragments as the tree is built.
The structure can be traversed to produce non-intersecting
primitives in low-to-high visibility order for any given
viewpoint [Fuchs 1980].

BSP trees are most appropriate for static geometry with a
moving viewpoint; the tree is built once and traversed many
times [Fuchs 1983]. One serious drawback in using BSP trees
with a changing data set is that while adding new objects
requires only inserting the new primitive(s) into the tree (an
inexpensive operation), removing geometry may require
rebuilding the entire tree (discussed in greater detail in 4.1).
[Chrysanthou 1996] shows how the rebuilding can sometimes
be avoided by recombining the subtrees that remain after a
piece of geometry is removed.

2.4 Contribution
Our work makes two contributions. First, it demonstrates real-
time volume representations of sets of arbitrarily oriented
slices of ultrasound data using BSP trees and texturing on a
standard, commercial high-end graphics workstation. Second,
it presents a method of parallel BSP trees to manage a
dynamically changing set of ultrasound data and to minimize
variation in per-frame BSP tree management times for more
consistent overall frame rendering times.

3 RENDERING TEXTURED SLICES
Ultrasound echography data is captured from the scanner as a
live, gray scale video image and is placed in texture memory at
the start of the rendering loop in our application. Although the
echography data is both generated by the ultrasound machine
and captured by our system as 2D imagery, the samples
(pixels/texels) are not planar samples. The region actually
sampled is nominally wedge shaped (with the thicker end away
from the ultrasound probe) due to the spreading characteristics
of the sound waves used in echography. Thus each value in the
2D ultrasound image represents contributions from the values

through the wedge.

In the interest of rendering speed, our rendering method does
not reconstruct the volume or otherwise address the issue of
data values in the space between slices. We model each
ultrasound slice as a planar polygon and render it directly, with
the ultrasound video image applied to it as a translucent texture.
Ultrasound scans often comprise many closely-spaced slices,
which diminishes the effect of neglecting inter-slice regions.
Thus, although composed only of 2D polygons, our real-time
images produce recognizable 3D structures.

The precise size, shape, position, and orientation of the slice
of ultrasound data relative to the ultrasound probe i s
predetermined by a one-time calibration procedure [State
1994]. We track the ultrasound probe with a highly accurate
mechanical tracker (FARO Technologies Metrecom IND-1).
The probe calibration data, combined with the real-time
tracking information, gives the 3D position and orientation of
each polygon representing an ultrasound slice.

Proper opacity-accumulation compositing (one of the
rendering modes implemented in our system) requires that slice
polygons be non-intersecting and be presented in low-to-high
visibility order (i.e., if polygon A obscures polygon B from
the current viewpoint, B must be rendered before A). We use the
BSP tree data structure for the slice polygons because it meets
both these requirements.

We generate our volume representations by rendering polygons
from the BSP tree with the appropriate textures applied. Using
the various texturing modes of the Silicon Graphics
RealityEngine2 we can duplicate traditional volume rendering
algorithms such as opacity accumulation and maximum
intensity projection. We also use the texture lookup tables to
adjust the brightness and opacity mappings for better
discrimination of the target in our visualization.

One of the stated goals of the visualization is to provide a
method of weighting data by age so that moving targets can be
viewed. We implemented our system with exponential age-
based attenuation (Plate 3).

Since the image is completely re-rendered from the BSP tree
during every frame, we are able to attenuate slice image
intensities and opacities as a rendering effect. Each slice
polygon is time-stamped as the slice is captured from the
ultrasound system. As each slice is inserted into the BSP tree
and split into fragments, the slice's time stamp is propagated
to the fragments. During tree traversal for rendering, the time
stamps are used to compute each fragment’s age and attenuate
the polygon’s brightness accordingly. The original slice data,
stored in texture memory, are not modified.

4 DUAL BSP TREES
BSP trees work well for static data sets viewed from
dynamically changing viewpoints. Our goal, however, is real-
time visualization of the n most recently captured slices from a
continuous data stream. This active set of data changes every
frame, one new slice arrives and one old slice expires at each
time step.

4.1 Continuously Captured Data
While adding new geometric primitives to a BSP tree requires
only inserting the new primitives into the tree, removing a
geometric primitive often requires rebuilding the entire sub-tree

beneath the nodes that are deleted. As an alternative to
rebuilding, expired slices can be flagged as “invisible” and not
rendered during traversal, but such an operation doesn’t reduce
the number of nodes in the tree. The constantly growing
number of nodes causes greater fragmentation of newly-inserted
geometry. Inserting into large trees is expensive, so the tree
must occasionally be rebuilt to eliminate the expired nodes.

Despite the drawback of periodic rebuilding, BSP trees are
attractive for our application since most of the slice polygons
in one frame are present in the next. For example, if the active
data set comprises 100 slices, 99% of the contents (99 slices)
are displayed in the next frame. It pays to maintain a structure
across time steps.

We solve the problem of deleting and rebuilding by
maintaining two parallel BSP trees, out of phase in time.
Consider that we want to render the n most recent slices every
frame. When we start the system, we initialize an active tree
and insert one slice into it in each of the first n-1 frames (time
steps) of the system. At frame n-1, we start a replacement tree
and insert slices into both trees through frame 2n-2. Note that
after the slice insertion at time step 2n-1 the replacement tree
will have n slices — the number needed to render the active set.
Since rendering takes place after insertion, the first tree can be
reinitialized at the end of step 2n-2 and the replacement tree
becomes the active tree. Figure 2 illustrates this process for
active set size n=4.

After startup all slices are inserted into both the active and
replacement trees. Because of the way the trees overlap, each
has a maximum of 2n-2 slices inserted before it is reinitialized.
Each tree is active for display for n-1 frames and flags n-2
slices as expired before the trees are swapped and the older tree
is reinitialized.

Time
Step

Slices in
Tree A

Slices in
Tree B

Slices
Displayed

Tree
Used for
Display

1 1 - 1 A
2 1-2 - 1-2 A
3 1-3 - 1-3 A
4 1-4 4 1-4 A
5 1-5 4-5 2-5 A
6 1-6 4-6 3-6 A
7 7 4-7 4-7 B
8 7-8 4-8 5-8 B
9 7-9 4-9 6-9 B

10 7-10 10 7-10 A
11 7-11 10-11 8-11 A
12 7-12 10-12 9-12 A
13 13 10-13 10-13 B
14 13-14 10-14 11-14 B
15 13-15 10-15 12-15 B
16 13-16 16 13-16 A
17 13-17 16-17 14-17 A
....

Figure 2: Behavior of dual BSP tree with an active set of n=4.
Except for start-up in steps 1 through 3, the system always

displays the 4 most recent samples. After start-up, the active
BSP tree switches every third step. The double lines between

cells indicate when the trees are reinitialized.

It is easy to see that the value of n (the number of slices
displayed in each frame) can be changed interactively. If n i s
increased, we simply delay switching to the replacement tree
and continue growing the existing trees to the new values of n
and 2n. Decreasing n can be accommodated by switching and
starting the replacement tree early.

4.2 Analysis of Dual BSP Trees
A major requirement of our real-time system is to have a
consistent update rate for the images presented to the user.
Using a single BSP tree data structure for a changing data set
requires that the tree be rebuilt occasionally. Figures 3 and 4
show that tree rebuilding (every nth frame after startup) causes
spikes in the per-frame tree management time, thus making the
frame update rate uneven.

The dual-tree approach amortizes the cost of rebuilding by
making two insertions per frame: one into the active tree and
one into the replacement tree. While each frame time i s
slightly longer, this scheme results in more even
computational load per frame and a lower upper-limit on the
per-frame tree management time.

The performance data in Figures 3 and 4 show the time (in
milliseconds) required to insert a new slice in the BSP tree for
each frame. Slice geometry data were captured from a typical
ultrasound scanning session and were used to test the single-
and dual-tree systems. The slice set is shown in Plate 4. The
dual-tree system operated as described in 4.1. The single-tree
system incrementally built a BSP tree to 2n slices, at which
point the tree was destroyed and a new tree of size n was built
using the original unfragmented slice data.

Figure 3 shows that the maximum insertion time for any one
frame was less than 5 ms with the dual-tree scheme but more
than 30 ms with the single-tree scheme. Figure 4, which
reflects the same sequence of tracking data but uses a larger
active set, shows maximum times of 10 ms and 130 ms,
respectively. In our visualization system, the total time budget
to generate a new stereo frame is 100 ms, and managing the
BSP tree(s) is only one of many tasks that must be handled.
Reducing the maximum insert time from 30% to 5%, or 130%
to 10%, of the frame time is a significant improvement in
system performance. The lower variations and lower maximum
times of the dual-tree approach are preferable in a real-time
system where consistent update rate is important.

The memory space required by the dual tree system
demonstrated in Figure 3 was only 20% greater than the storage
required for the single BSP tree. This increase is negligible, as
the overhead of representing slice geometry is tiny compared
to the storage required for the textures that embody the
ultrasound data. Each node (slice fragment) in the tree contains
a list of vertices with texture coordinates, a few scalar
properties, and a pointer to a stored texture map. While the
geometry for each fragment occupies approximately 200 bytes,
each texture occupies 64 kilobytes.

An issue not fully explored above is the impact of changing the
size at which the BSP tree is rebuilt in the single-tree scheme.
Here we rebuild after 2n inserts, but we could easily choose to
rebuild after 3n, 1.7n, etc. instead. We sidestep this question
for two reasons. First, changing the maximum size of the
single tree alters only the average per-frame computation time,
not the peak time. The peaks occur at rebuilding time and

depend on the minimum tree size (i.e., the size of the active set)
rather than the maximum size. Second, a serious exploration of
this parameter space would require testing with many more data
sets and is not within the scope of this work. We experimented
with a few values and found that the average times usually
varied by only 5%.

5 GENERALIZATION TO b PARALLEL
BSP TREES

In our system we use dual BSP trees, but we also investigated a
generalization to b parallel BSP trees. With two trees, just
before swapping, the active tree holds 2n-2 slices and the
replacement tree holds n-1 (where n is the number of slices to
be shown at any time). With more than two trees, trees are
deleted and created more frequently and fewer inserts are made to
any one tree before it is reinitialized (so the maximum size of
the trees decreases). Figure 5 shows how b trees are managed in
parallel and Figure 6 summarizes their characteristics.

Increasing the number of trees in the system presents a
performance tradeoff: an extra insertion must be performed
every frame for each tree added, but each additional tree
decreases the maximum size any tree is allowed to reach before
being deleted. The question is, essentially, whether it is better
to have numerous small trees or few larger ones. The answer

Frame

In
se

rt
 t

im
e

(m
s)

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700

Single Tree System

Dual Tree System

Figure 3: BSP tree insertion time per frame for single and dual
tree systems with an active set of 50 slices.

Frame

In
se

rt
 t

im
e

(m
s)

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700

Single Tree System

Dual Tree System

Figure 4: BSP tree insertion time per frame for single and dual
tree systems with an active set of 100 slices.

depends on the nature of the geometry data and how much i t
costs to insert it into the trees.

[Fuchs 1980] shows that BSP trees can have as many as O(n3)
internal nodes (fragments) after n inserts. Insertion time i s
roughly proportional to the number of internal nodes; in the
worst case, an incoming slice must be checked and split against
each fragment in the BSP tree. Geometry data and BSP tree
statistics compiled from several ultrasound scans show that, in
our application, BSP trees grow at between O(n) and O(n2)
during a typical scan, and that the cost of insertion varies
directly but with the internal size of the tree. When the growth
is faster than O(n), a system of more than two trees is optimal.

Again, the growth of the tree depends on the geometric nature
of the data. Figure 7, below, shows the results for various
values of b for a different set of geometry data than used in
previous comparisons. The numbers suggest that a choice of
b=5 or b=6 (i.e., 5 or 6 parallel BSP trees) is optimal in this
case. The geometry data that produced these results, contrived

to produce high levels of fragmentation, is shown in Plate 5.

6 CONCLUSIONS AND FUTURE
WORK

We have presented a method and demonstrated a system for
incrementally rendering 2D ultrasound data in real time to
create a recognizable visualization of a 3D anatomical target.
Small cysts and other imaging targets look three-dimensional;
we can see needle tracks in a training phantom (Plate 1).

Representing 2D ultrasound slices as planar, textured polygons
allows us to avoid resampling the data and allows us to take
advantage of hardware accelerated texturing in the Silicon
Graphics RealityEngine2. We chose a BSP data structure to
meet the requirement that primitives be presented in low-to-
high visibility order for proper compositing. We manage the
continuous data stream and reduce maximum tree management
per frame times via parallel, time-shifted BSP trees.

Many issues remain. 3D volumetric display of anatomical
features in an augmented-reality environment is a new
metaphor for physicians. Issues such as number of slices to
display, decay factor for older slices, and user interface need to
be explored.

Since we do not use space-filling interpolation between
ultrasound slices, the intensity and thus the useful visual
content of the rendered image varies greatly depending on
whether slices are viewed mostly face-on or mostly edge-on.
We need to address this fundamental problem of the 2D
primitives we render.

We continue to work on improvements in image quality.
Ultrasound images tend to be fairly noisy, exhibiting problems
such as speckle and reflection. Improving rendering quality
and discernability of the target anatomy while maintaining
real-time update rates is the challenge ahead of us.

ACKNOWLEDGMENTS
We thank David Chen, Arthur Gregory, David Harrison, Mark
Livingston, Etta Pisano (MD), and Chris Tector for their help
with the system. We thank the anonymous reviewers for their
comments and criticism. PIE Medical Equipment B.V.
generously provided us with an ultrasound machine. This work
was supported in part by ARPA DABT63-93-C-0048.
Approved by ARPA for Public Release—Distribution
Unlimited. Additional support was provided by the National
Science Foundation Science and Technology Center for
Computer Graphics and Scientific Visualization (NSF prime
contract 8920219).

REFERENCES
[Akeley 1993]

Akeley, Kurt. “RealityEngine Graphics.” Proceedings o f
SIGGRAPH '93 (Anaheim, CA, August 1-6, 1993). In
Computer Graphics Proceedings, Annual Conference
Series, 1993, ACM SIGGRAPH, New York, 1993, pp.
109-116.

[Bajura 1992]
Bajura, Michael, Henry Fuchs, and Ryutarou Ohbuchi.
“Merging Virtual Objects with the Real World: Seeing
Ultrasound Imagery within the Patient.” Proceedings o f
SIGGRAPH ’92 (Chicago, Illinois, July 26-31, 1992). In

Tree 1:
Tree 2:
Tree 3:

Tree b:

TIME

Moving Window
of Displayed Slices

Figure 5: Rendering from and maintaining a system of b
parallel BSP trees.

#trees 2 3 4 b
max. size of

tree
 2 2n −

3 3
2

n −

4 4
3

n −

b n
b

−()
−

1
1

tree added
every

#frames

 n −1

n −1
2

n −1
3

n
b

−
−

1
1

inserts per
frame

 2 3 4 b

Figure 6: Characteristics of parallel BSP tree systems.

Number of Parallel Trees

T
im

e
(m

ill
is

ec
o

n
d

s)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

21.920.319.919.522.233

107111

7078.272.4
101

122

191

503
472

Avg. time/frame

Max. time/frame

Figure 7: Average and maximum times per frame to insert
geometry into systems of 1-8 trees. The geometry data set

used here is different from that used in Figures 3-4 and is
shown in Plate 5.

Computer Graphics 26, 2 (July 1992), 203-209.
[Cabral 1994]

Cabral, B., Cam, N., and Foran, J. “Accelerated Volume
Rendering and Tomographic Reconstruction Using
Texture Mapping Hardware.” Proceedings of the 1994
Symposium on Volume Visualization (Washington, DC,
October 17-18,1994), pp. 91-98.

[Chrysanthou 1996]
Chrysanthou, Yiorgos. “Shadow Computation for 3D
Interaction and Animation.” Ph.D. Thesis, University o f
London (January 1996).

[Cullip 1994]
Cullip, Timothy and Ulrich Neumann. “Accelerating
Volume Reconstruction With 3D Texture Hardware.” UNC
Technical Report TR93-027 (May 1994).

[Fuchs 1980]
Fuchs, Henry, Zvi Kedem, and Bruce Naylor. “On Visible
Surface Generation by a Priori Tree Structures.”
Proceedings of SIGGRAPH ’80 (July 1980). In Computer
Graphics 14, 3 (July 1980), 124-133.

[Fuchs 1983]
Fuchs, Henry, Gregory Abram, and Eric Grant. “Near
Real-time Shaded Display of Rigid Objects.” Proceedings
of SIGGRAPH ’83 (July 1983). In Computer Graphics
17, 3 (July 1983), 65-72.

[Herman 1979]
Herman, Gabor and Hsun Kao Liu. “Three-Dimensional
Display of Human Organs from Computed Tomograms.”
Computer Graphics and Image Processing, 1979, 1-21.

[Lengyel 1995]
Lengyel, Jed, Donald Greenberg, and Richard Popp.
“Time-Dependent Three-Dimensional Intervascular
Ultrasound.” Proceedings of SIGGRAPH 95 (Los
Angeles, CA, August 6-11, 1995). In Computer Graphics
Proceedings, Annual Conference Series, 1995, ACM
SIGGRAPH, pp. 457-464.

[Levoy 1988]
Levoy, Marc. “Display of Surfaces from Volume Data.”
IEEE Computer Graphics and Applications 8, 5 (May
1988), 29-37.

[Nelson 1993]
Nelson, Thomas and Todd Elvins. “Visualization of 3D
Ultrasound Data.” IEEE Computer Graphics and
Applications (November 1993), 50-57.

[Ohbuchi 1992]
Ohbuchi, Ryutaro, David Chen, and Henry Fuchs.
“Incremental Volume Reconstruction and Rendering for
3D Ultrasound Imaging.” SPIE Vol. 1808 Visualization
in Biomedical Computing 1992, 312-323.

[Ohbuchi 1994]
Ohbuchi, Ryutarou. “Incremental Acquisition and
Visualization of 3D Ultrasound Images.” Ph.D. Thesis.
UNC 1994-0362 (1994).

[Sakas 1995]
Sakas, Georgios and Stefan Walter. “Extracting Surfaces

from Fuzzy 3D-Ultrasound Data.” Proceedings o f
SIGGRAPH 95 (Los Angeles, CA, August 6-11, 1995). In
Computer Graphics Proceedings, Annual Conference
Series, 1995, ACM SIGGRAPH, pp. 465-474.

[Shirley 1990]
Shirley, Peter and Allan Tuchman. “A Polygonal
Approach to Direct Scalar Volume Rendering.” Computer
Graphics 24, 5 (November 1990), 63-70.

[State 1994]
State, Andrei, David Chen, Chris Tector, Andrew Brandt,
Hong Chen, Ryutarou Ohbuchi, Mike Bajura, and Henry
Fuchs. “Case Study: Observing a Volume Rendered Fetus
within a Pregnant Patient.” Proceedings of IEEE
Visualization ’94 (Washington, DC, October 17-21,
1994).

[State 1995]
State, Andrei, Jonathan McAllister, Ulrich Neumann,
Hong Chen, Timothy Cullip, David Chen, and Henry
Fuchs. “Interactive Volume Visualization on a
Heterogeneous Message-Passing Multicomputer.”
Proceedings of the 1995 Symposium on 3D Interactive
Graphics (Monterrey, CA, April 9-12, 1995), pp. 69-74.

[State 1996]
State, Andrei, Mark Livingston, William Garrett, Gentaro
Hirota, Mary Whitton, Etta Pisano, and Henry Fuchs.
“Technologies for Augmented-Reality Systems:
Realizing Ultrasound-Guided Needle Biopsies.”
Proceedings of SIGGRAPH 96 (New Orleans, Lousiana,
August 4-9, 1996). In Computer Graphics Proceedings,
Annual Conference Series, 1996, ACM SIGGRAPH.

[Stein 1994]
Stein, Clifford M., Barry Becker, and Nelson Max.
“Sorting and Hardware Assisted Rendering for Volume
Visualization.” Proceedings of 1994 Symposium on
Volume Visualization (Washington, DC, October 17-
18,1994), pp. 83-89.

[Thune 1991]
Thune, Nils and Bjørn Olstad. “Visualizing 4-D Medical
Ultrasound Data.” Proceedings of Visualization 1991
(San Diego, CA, October 22-25, 1991), 210-215.

[Tuy 1984]
Tuy, Heang, and Lee Tan Tuy. “Direct 2-D Display of 3-D
Objects.” IEEE Computer Graphics and Applications 4 ,
10 (November 1984), 29-33.

[Westover 1990]
Westover, Lee. “Footprint Evaluation for Volume
Rendering.” Proceedings of SIGGRAPH ’90 (August
1990). In Computer Graphics 24, 4 (1990), 367-376.

[Watkin 1993]
Watkin, K., L. Baer, S. Mathur, R. Jones, S. Hakim, I.
Diouf, B. Nuwayhid, and S. Khalife. “Three-Dimensional
Reconstruction and Enhancement of Arbitrarily Oriented
and Positioned 2D Medical Ultrasonic Images.” IEEE
Canadian Electrical and Computer Engineering:
Proceedings (1993), 1188-1195.

Plate 1. Head-mounted display view from an augmented reality system designed to assist a physician with ultrasound-guided needle
biopsy of the breast. A cyst aspiration needle has been inserted into a simulated lesion within the breast phantom. The needle is visually

aligned with its scanned image. The lesion is the white blob inside the computer-generated opening (red) within the breast.

Plate 2. Scanning a motionless human hand (left hand, palm up). The wireframe object near the top is the ultrasound probe and the
wireframe polygon below it shows the slice imaged most recently. The volume consists of over 100 planar, translucent, textured polygons

“emitted” during a 10-second sweep along a U-shaped path.

Plate 3. Scanning a moving human hand. The sweep started at the wrist and scanned the closed fist; then the hand opened and the probe
scanned the fingertips. Polygon intensity is progressively attenuated by age, displaying the (older) fist faintly and the recently-imaged

outstretched fingers brightly. This “3D radar” effect depicts decreasing confidence in regions of space that have not been scanned recently.

Plate 4. A slice geometry data set
captured during a typical ultrasound
scanning session. Slices are drawn
as simple colored polygons to emphasize
intersections.

Plate 5. A slice geometry dataset
contrived to produce numerous

intersections.

