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ABSTRACT
A large fraction of mammalian genome consists of transposable
elements (TEs). These elements are segments of DNA that either
move or are copied from one place in the genome to another. Such
movements can cause deleterious mutations and drive chromosome
evolution. Existing approaches search for TE insertion (TEi) by
aligning millions of mostly irrelevant short reads to either a refer-
ence genome or a TE sequence library. Here we present a new local
genome assembly based pipeline, called ELITE, for identifying and
characterizing TEi. ELITE uses an msBWT-based data structure to
store and index all the reads from a high-throughput sequencing
dataset and leverages a sampled FM-index to detect TEi efficiently.
In comparison with two existing tools, ELITE is faster and has a
higher precision and recall rate in predicting TEi. ELITE also works
on real data, which we validated using PCR assays of surrounding
genomic context. Additional features of ELITE include finding zy-
gosity status of a predicted TEi, discovering unannotated TEs that
are distantly related to the target one, and providing a summary of
TEi sharing pattern within a population.

CCS CONCEPTS
• Applied computing→ Computational biology.

KEYWORDS
repeats, local genome assembly, transposable element, msBWT,
FM-index, high throughput short reads.

ACM Reference Format:
Anwica Kashfeen, Harper B. Fauni, TimothyA. Bell, Fernando Pardo-Manuel
de Villena, and Leonard McMillan. 2019. ELITE: Efficiently Locating Inser-
tions of Transposable Elements. In 10th ACM International Conference on
Bioinformatics, Computational Biology and Health Informatics (ACM-BCB
’19), September 7–10, 2019, Niagara Falls, NY, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3307339.3342182

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM-BCB ’19, September 7–10, 2019, Niagara Falls, NY, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6666-3/19/09. . . $15.00
https://doi.org/10.1145/3307339.3342182

1 INTRODUCTION
In 1940 Barbara McClintock discovered a type of genomic rear-
rangements where segments of DNA either jump or are copied from
one place to another. These mobile segments are called Transposable
Elements (TEs). It has subsequently been discovered that a signif-
icant fraction of eukaryotic genomes sequences are composed of
TEs and their vestiges. About 45% of human [6], 37% of mouse [7],
and 85% of maize genomes [24] consist of TE-derived sequence.

TEs also play vital roles in the biology and evolution of organ-
isms [21][19]. Many TE classes tend to relocate and/or copy them-
selves into and around genes. Such insertions can interrupt, mod-
ify, or sometimes even completely disable the associated gene’s
function. Many diseases such as hemophilia A, neurofibromatosis,
choroideremia, cholinesterase deficiency, Apert syndrome, and β-
thalassemia are reported to be consequences of TE translocations
[27][26][20][5][3]. Due to TEs important role in genome biology,
various TE localization tools have been developed.

One class of tool such as RetroSeq [13], TEMP [30], MELT [9]
relies on an initial alignment step to a reference genome to identify
discordant read pairs. Detecting TEis by resolving these pairs de-
pend heavily on the quality and efficiency of the alignment method
and fails to report the exact insertion site without any additional
steps. As reported by [22] the best-performing algorithms have
precision rates ranging from to 63% to 95% for simulated data, and
between 25% to 73% for real data. Moreover, they can only locate
the class of TE that is present in the reference genome. However
human genome, which is a consensus of several individuals, may
not include all classes of TE.

A second TEi detection approach aligns short reads to a catalog
of consensus TE sequences. These tools such as ITIS [12], Relo-
caTE2 [4] attempt to find all the split reads containing both TE
and non-TE segment. The non-TE parts of these reads are then
clustered, combined, and mapped to a reference genome to identify
the insertion site. These methods can give the precise location of a
TEi but typically employ lower throughput aligners (i.e., BLAST[1]
or BLAT[14]). Moreover, for any new template of TE, they must
repeat all the steps of the alignment pipeline.

We present a new TE identification, mapping, and character-
ization tool for Efficiently Locating Insertions of Transposable
Elements, (ELITE). Unlike previous alignment-based approaches,
ELITE is a targeted local-genome-assembly-based method. ELITE
uses a branch-and-bound Depth-First-Search (DFS) algorithm for
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Figure 1: An overview of ELITE: ELITE first finds two highly
conserved seeds from any annotated TE sequence. One near
the proximal boundary, and the other near the distal bound-
ary (shown in gold). It assembles sequence paths around the
seeds from unaligned HTS read data using an FM-index. TE
annotation is used to guide the path traversal in a depth-
first search to estimate the TEi boundaries. The overhangs
of the assembled sequences are used tomap the TEi location.
When possible, nearby insertions are merged informed by
the sharing of a target-site duplication (TSD) sequence. Fi-
nally, up to three probes are constructed for use in testing
other samples for a similar polymorphic TEi.

the assembly, which efficiently searches the entire unaligned read
set of a high-throughput sequencing dataset represented as a multi-
string Burrows-Wheeler Transform (msBWT) [11], using an FM-
index [8]. Our runtime comparison shows that ELITE is faster than
two existing TE detection tools, TEMP[30] and MELT[9]. ELITE al-
lowsmore divergence in the TE sequencewhile keeping a conserved
TE kmer called seed. This divergence enables ELITE to discover
new TE families, that may not be annotated in any standard TE
database [2] [29]. ELITE also reports a summary of TE sharing
within a given set of samples, which includes TEis that are present
in all samples, TEis that are shared by only a subset of samples, and
TEis that are unique to a specific sample.

2 METHODS
Given a template TE, and a sample, we aim to find all the locations
of that and similar TE classes in that sample. As a preprocess, we
construct an msBWT of a whole-genome high-throughput sequenc-
ing dataset. An msBWT sorts all the reads alphabetically and then
assigns an index to each read. An auxiliary data structure called FM-
index is built on the fly. Searching of kmer is done incrementally in
reverse or suffix order. For example: to search ACT, it will first find
all the read indices containing Ts, then CTs, and finally ACTs. We
use this backward search approach to assemble TE sequences from
an interior seed towards a boundary. Searching is done for the two
sides of a TE, which we call proximal and distal. The assembled se-
quence beyond the TE boundary called the context is then mapped
to a reference genome to find the location of insertion. This TEi
discovery phase for the proximal side is illustrated in the figure2.
The execution order of the steps goes from right to left. After the
discovery phase, several additional steps are taken which involves
merging proximal and distal TEis, identifying their zygosity and
creating different probes to assess TEi pattern in a population. All
the steps are described in detail in the following subsections.

2.1 Choosing a Seed
We use a seed-based search approach to perform local assembly
where the seed is a highly repeated substring from the given TE.

Multiple seeds can be used to allow some mutations in the seed
itself. All the seeds, however, need to be within a certain distance
from the TE’s boundary because ELITE needs to have enough bases
beyond the boundary to infer the context of insertion. To ensure
this, we only consider the kmer as seed whose distance from TE
boundary is no more than half of the read length. Among all these,
we recommend a seed that occurs most in the sample’s genome.
We provide two recommended seeds, i.e., proximal and distal seed,
where each one is closer to its respective boundary.

2.2 Finding TE-like Sequences
The first step of our TEi discovery phase finds all mutated versions
of TE in a given sample. To allow for mutations as well as capture
related, and perhaps unannotated, TEs, we find all the sequences
that are less than a given edit distance away from the original TE.
We start with a seed as an input, which is our initial assembled se-
quence and use a depth-first-search algorithm1 to extend it further
towards the boundary of the TE (figure 2a).

Algorithm 1 Extending seed k-mer

1: procedure ExtendKmer(ranдe , seed , newTE)
2: if newTE Reaches TE Boundary then
3: Add newTE to the TE list
4: for base in A, C, G, T do
5: newTE ← base + newTE
6: newRanдe ← findIndicesOfStr(base,(range))
7: dist ← editDistance(erv,newTE)
8: if newRange > t1 and dist < t2 then
9: ExtendKmer(newRanдe , seed , newTE)
10: ▷ t1 and t2 are threshold parameters

The algorithm at first finds the range of indices for the seed k-
mer using a sampled FM-index of the compressed msBWT [11][8],
where the range represents the number of occurrences of seed
substring in the set of sequenced reads (specifically their interval
in an implicit suffix array). This range, along with the seed k-mer,
is used to initialize the recursive DFS used by the local assembly.
At each step in the recursion, the algorithm adds a new possible
base before the seed and updates the suffix array range (newRanдe)
concerning the newly added base and then continues along this
child’s path in the recursion tree.

If at any place the value of dist is greater than a certain threshold
t2 we prune that path. This prunes from our search sequences
that differ too much from the given TE template. Recursion is also
terminated if the newly added base causes the value of newRanдe
to drop below a threshold t1.

At this point, all the versions have the same bases as seed at the
end. To allow for variants in the seed, we then remove it from all
the TE versions and assemble each version in the reverse direction
towards the seed (figure 2b). Since searching in an msBWT using
an FM-index is done by extending suffixes, finding a prefix is more
straightforward than finding a suffix. Thus, when extending TE
sequences in this second DFS pass, where the seed is removed, we
conduct the search using the TE’s reverse complement sequence,
thus searching for alternative seeds that prefix. It works because
of DNA’s double-stranded structure where one strand contains
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Figure 2: TEi Discovery phase: We take the proximal sequence of a given TE and select a kmer located distal to the TE’s start
as a seed. A seed whose distance from the TE start is less than half of the read length, is of suitable length and has the highly
repeated in the data set is chosen. The seed is then extended to find all the potential versions of TE (shown in green). To
incorporate any variants that may appear in the seed, we then extend all of the potential TEs in the opposite direction. This
is accomplished in the BWT by searching for the extension’s reverse complement (shown in yellow). Finally all the versions
are further extended to get all the possible prefixes, which establishes their genomic context (shown in pink).

the reverse complemented sequence of the other to form a double
helix. Now to get back to the original strand, we again reverse
complement the TE versions. We repeat the same assembly process
for the distal side of a TE in the opposite direction.

2.3 Mapping TE Insertion Sites
After finding all the versions of a TE, we then attempt to locate them
in the genome. We assemble the genomic context by extending the
prefix and suffix of each discovered proximal and TE-like sequence,
respectively, to find the corresponding genomic context (figure 2c).
We use the same algorithm described in the previous subsection,
but initialized with the suffix array range of each TE version found
by the ExtendKmer routine. We set the edit distance threshold t2
to a large value and the support threshold, t1 to zero to allow the
DFS to extend until it runs out of reads containing the given TE
version. ELITE then maps all of the contexts found against the
reference genome using bowtie2 [15][16] to get the chromosome
and position. In this phase, ELITE only keeps the contexts that
are uniquely mapped. Finally, it examines the reference sequence
adjacent to the alignment position to assess whether it differs or
is a close match (as determined by t2) to the TE sequence used to
find the context originally. If the reference sequence adjacent to the
mapped TE differs, we consider the mapping a non-reference TEi.

2.4 Determining Zygosity
As a third step, for any non-reference TEi, ELITE determines if it
is present in the homozygous or heterozygous state. To find the
zygosity, we extend the mapped context sequence found in step
2 in the direction of TE, which differs depending on whether it
was discovered from the proximal or distal side of the TE template.
If we find sequence paths, one matching the expected TE, and a
second similar to the reference sequence (as determined by the
edit-distance parameter, t2) then we report the TEi as heterozygous.
But, if the extended sequence only leads to the expected TE-like
sequence, then we report it as homozygous. Usually, heterozygous
TEis are more likely to be active as they show segregation.

2.5 Merging Proximal and Distal TEis
ELITE independently considers the two sides of a TE during the first
three assembly steps. It merges any non-reference TEi if there exists
a pair of proximal and distal context whichmap to the same position
after adjusting the TSD. ELITE also attempts to find another side
of non-reference TE when a mapped TEi is discovered only from
one side. ELITE uses genomic sequence adjacent to the context on
the side of the detected TEi from the reference to once again guide
a DFS to find the TE-like context adjacent to it. If ELITE finds a
reference-like context flanked by the expected TSD followed by
any sequence that is a significant edit distance from the originating
context, the TEi is considered merged. For merging TEs in the
reference, we find all the proximal-distal context pairs that are near
the length of the TE plus or minus a gap parameter. If a consistent
TSD is observed, we merge the proximal-distal context pair. ELITE
keeps all mapped, but unresolved one-sided TEis if there is enough
reads to support the insertion. Because TEis can be onesided if the
context on the other side is unmappable, or if some insertion or
deletion modified the missing context following the TEi.

2.6 Assessing TEi pattern in a population
A final optional feature of ELITE is that, once a TEi is identified
and mapped, several targeted sequence probes (up to three) are
generated to accelerate the testing of subsequent samples. When
a TEi is discovered, one or more of three probe types are created1.
The first is a TEi specific proximal probe for finding split-reads that
contain the normal genomic context and the adjacent TE sequence.
The second distal probe includes genomic sequence at the other
end of the insertion preceded by a TSD sequence and the distal TE
sequence. The third absence probe represents the expected genomic
sequence without the TEi. Ideally, corresponding proximal and dis-
tal probes are derived from the TE-like sequence found during the
discovery phase. Absence probes are derived from all the samples,
which has some nonTE-like sequence in the same chromosome and
position. The presence or absence of a TEi is confirmed by querying
the TEprobe (proximal and distal) and absence probe, respectively.
However, having both makes a sample heterozygous in that site.



3 ALGORITHM COMPLEXITY ANALYSIS
Our algorithm to find TE-like sequence and the corresponding ge-
nomic contexts is essentially an exponential DFS algorithm. Given
that a DNA sequence is consists of 4 bases, i.e., A, C, G, and T, in the
worst case scenario, it will traverse all 4r possible path to extend r
bases before a seed. Fortunately, the genome is finite, and it’s not
possible for a genome to have all 4r sequences when r is too large.
In addition, msBWT allows us to look for any prefix of length r in
O(r ) time. Finding seed k-mer and extending it (O(k) + O(r )) are
the only two operations that we use in our discovery phase.

4 RESULT AND DISCUSSION
We have applied ELITE to six short-read sequencing data sets and
examined its error rate in the context of expected sharing based on
their origin/pedigree. We also report on the performance of ELITE
applied to a synthetic dataset where the truth is known to compare
ELITE to two TE detection tools. To validate several of ELITE’s TEi
prediction on real data, we performed standard PCR methods.

4.1 TE Discovery in Real Data
Laboratory inbred mouse strains are widely used in biomedical
research as their genomes are assumed to be fixed and reproducible.
We examined six such mouse strains using ELITE to determine
the variability of TEis between them. The most commonly used
mouse strain, C57BL/6J, is the basis for the mouse reference genome
(GRCm38.68), which is the primary source of existing TEi anno-
tations. Thus, we ran ELITE on a C57BL/6J sample and a second
related strain, B6N-Tyrc−Brd /BrdCrCrl, to assess the degree of TE
activity relative to the reference. We consider this pair the B6 type.

Table 1: Total number of TEis found by ELITE in each sam-
ple for the six TE templates. A large fraction of these are
also in reference. Total 8585 TEis are shared by all samples.
A small fractions are private to only one sample indicating
potentially recent TE movement.

Sample TEis Reference Shared Polymorphic Private

C57BL/6J(m03636A) 11661 11519 8585 3072 4
B6N-Tyrc−Brd /BrdCrCrl 11407 11264 8585 2818 4

A/JCr(f001) 11119 9086 8585 2529 5
A/JOlaHsd(m001) 10639 8673 8585 2047 7
A/JOlaHsd(f015) 11148 9099 8585 2550 13

A/J(f321) 11190 9148 8585 2591 14

We also ran ELITE on four additional samples from a second
widely used lab strain, A/J. Two of the A/J samples are independent
samples from the same vendor, which allows us to examine TEi
pattern relative to that vendor. C57BL/6J(m03636A) incorporates
multiple sequencing runs and is a mix of read lengths, 125-bp to
150-bp, all others resulted from a single run (with multiple lanes)
and used a uniform 150-bp read length. The Illumina sequencing
data from each sample was used to construct an msBWT for each
sample as described by Holt [11].

In each sequenced sample, ELITE looked for TEis using six dif-
ferent templates i.e., ERVB7_1-LTR_MM, ERVB4_2B-LTR_MM, RL-
TRETN_MM, RLTR1IAP_MM, MERVL_LTR, and IAPEY3C_LTR
obtained from Repbase. Separate seeds were found for each TE
template as described previously. For each template, we selected
two conserved kmers as seeds each of length 25 where one is from

Table 2: Non-reference TEi sharing patterns. Expected shar-
ing patterns are highlighted in green based on the popula-
tion structure. There are two primary groups in our popula-
tion i.e., B6, and AJ. The AJ samples can be further broken
down into subpopulations A/JOla according to vendor. Shar-
ing patterns that do not match these expectations are likely
indirect indicators of ELITE’s false-positive and false nega-
tive rates indicated in blue and pink respectively. A group of
three unclustered and unexpected sharing patterns fill out
the table shown in yellow. Combinations of multiple false-
negatives and/or false-positives create these patterns.

C57BL/6J B6N-Tyrc−Brd A/JCr A/JOla(m001) A/JOla(f015) A/J(f321) count

0 0 1 1 1 1 1789
0 0 1 0 1 1 74
0 0 0 1 1 1 1
1 1 1 1 1 1 113
1 1 1 0 1 1 8
1 0 1 1 1 1 3
0 1 1 1 1 1 2
1 1 0 1 1 1 1
0 0 0 1 1 0 45
0 0 1 0 0 1 35
1 1 0 0 0 0 10
1 1 0 1 0 0 2
1 1 0 0 0 1 1
0 0 1 1 0 0 2
0 1 1 1 0 0 2
0 0 0 0 1 1 1

the proximal side, and the other is from the distal side. The seeds
are located within 60-80 bases from the terminal end of the TE
sequences. The edit distance threshold, t2 was set according to
this offset to allow for no more than 1 edit per TE 8 bases, and the
minimal read support threshold used was 4 for approximately 25×
- 30× genome coverage. The number of mapped TEis per data set is
shown in Table 1. These are broken down according to the number
of TEis that are included in the reference sequence, those that are
common to all six samples, or shared, and those that are shared by
two to five samples, which we call polymorphic, and finally those
that appear in only a single sample, which we call private.

Since the mouse reference genome is based on B6, we see a large
fraction of TEi found in C57BL/6J and B6N-Tyrc−Brd /BrdCrCrl are
also present in reference. Table 2 breaks down the patterns of shar-
ing detected between samples focusing only on those TEis absent
from the reference genome. As expected, the single largest pattern
of TEi sharing is between the four A/J samples. The second most
common pattern of sharing is TEis that appear in all six samples,
but do not appear in the reference. There is also significant shar-
ing in subpopulations. In particular, between the two A/JOlaHsd
samples, from a common vendor, and the A/JCr and A/J samples
distributed from two separate vendors.

By analyzing the sharing patterns of TEis we also gain some
insight into ELITE’s error rate. The expected patterns of sharing
are highlighted as green rows in Table 2. Many of the unexpected
sharing patterns are shown clustered with their closest expected
pattern and include a highlighted cell which we hypothesize is due
to a specific error types. We indicate presumed false negatives in
pink, and presumed false positives in blue. ELITE’s false-negative
error rate brings into question the validity of private TEi which is
present only in one sample and has no sharing pattern. Thus, those
TEis are best validated by external means, including PCR based
experiments which we report on later.



Figure 3: 3.1.1 and 3.2.1: The precision rate of ELITE, MELT, and TEMP for TEi discovery in simulated mouse and human
genome as a function of genomic coverage is shown in red, green and blue respectively. As we can see, ELITE did not produce
a single false positive in eithermouse or human genome resulting in a precision rate of 1. However, TEMP (in both human and
mouse) and MELT (in mouse only) produced some false negatives when the coverage is around 40x. 3.1.2 and 3.2.2: The recall
rate of three tools. For each tool, it increased with the increase in coverage Although, at low coverage, ELITE performed poorly
compared to others, but caught up when the coverage is around 10x. At coverage higher than 10x, MELT and TEMP had many
false negatives resulting in a reduced recall rate compared to ELITE. 3.1.3 and 3.2.3: The absolute distance between predicted
and actual position for each TEi at coverage 40x. On average, this distance for TEMPwas around 100 and 50 bp inmouse (3.1.3)
and human (3.2.3) respectively. MELT’s predicted position was very close to the ground truth with few exceptions. However,
ELITE outperformed both by finding all the TEis within 6bp resolution. 3.1.4 and 3.2.4: The accuracy of zygosity prediction
by ELITE in mouse and human respectively. Blue bars stand for homozygous TEi, and red bars stand for heterozygous TEi.
Similar to recall, zygosity prediction accuracy also increased with the increase of coverage. At coverage 2x, ELITE failed to
locate any heterozygous insertion. Other two tools do not have the zygosity prediction feature.

The last three sharing patterns (total 5 TEis, shown in yellow) are
likely a result of multiple errors. There are only two presumed false-
negative TEis in the sample with the highest coverage, C57BL/6J.
However it is the only sample with a mix of read lengths (125-bp,
151-bp), and the shorter reads may play a role in introducing that
error. The single sample with the highest predicted error rate based
on these anomalous sharing patterns is A/JOlaHsd(m001), and the
type of error is dominated by an access of false negatives (74+8 false
negatives vs 2 false positives). This is consistent with the fact that
A/JOlaHsd(m001) has lower than usual coverage, which is what we
believe drives the false-negative error rate of ELITE.

4.2 Evaluation of ELITE on Simulated Data
To estimate the precision and recall of TEi discovery, we ran ELITE
and two additional state-of-the-art TE detection tools, i.e., MELT
and TEMP on simulated data.We inserted 100AluY and 100 ERVB7_1-
LTR_MM into chromosome 1 of human andmouse reference genome
respectively. Location of these insertions is chosen randomly. Among
the 100 TEis in mouse and human, 80 are inserted as homozygous
and 30 are heterozygous to estimate ELITE’s zygosity prediction
rate. We used Samtools [17] to simulate 150-bp paired-end reads at
different coverages ranging from 2x to 40x. For each set of simulated
data, we built an msBWT index from paired-end reads as required
by ELITE. Additionally, as a preprocessing step for both MELT and

TEMP, we aligned all the short reads to the corresponding reference
genome using BWA. We considered a TEi is found if it’s within 500
bases of the ground truth location. Recall and precision rate for all
the three tools are shown in figure 3. This figure also includes the
distance from ground truth to prediction position and accuracy of
ELITE’s zygosity prediction.

4.3 Validation via PCR
We validated the presence, absence, and zygosity of the nine pre-
dicted TEis found in three of the sequenced samples for which we
had available DNA (B6N-Tyrc−Brd /BrdCrCrl(m001), A/JCr(f001),
and A/JOla(f015)). We selected at least one TEi from the following
categories: shared by everyone (both AJ and B6), polymorphic ei-
ther in AJ or B6, and private in only one sample. To validate the
zygosity predictions we chose four homozygous and five heterozy-
gous TEis. Private TEis are biologically the most interesting ones
indicating recent activity as those are absent in other closely re-
lated samples. Thus we selected more TEis that are in the private
category, and prioritize the ones that are within a gene. In addition
to these, we chose two one-sided TEis where our algorithm failed
to find both sides of a TE. We created 27 PCR assays (3 assays per
TEi) 4. All of those PCR results suggest genotypes that are consis-
tent with ELITE’s TEi findings. Thus, via independent methods we
have confirmed 100% of 9 of ELITE predicted TEis.



PCR validation of TEi

FigureY. For each sample, the PCR products from the (1) Forward-Reverse primers and (2) Forward-LTR-

Reverse primers reactions are shown side by side. Reaction 1 detects the absence of the TEi and Reaction 2 
detects the presence of the TEi. Sequenced samples: a) A/JCr_F001, b) A/JOla_F015, c) 
B6N_Tyr_c_Brd_BrdCrCrl_M001. Testing samples: d) A/J_M93, e) A/JCrl_F002, f) A/JOlaHsd_M001, g) 
A/JOlaHsd_M002, h) A/JOlaHsd_F003, i) B6N/Tyr<c-Brd>BrdCrCrl_M001, j) C57BL/6J_M001, k) C57BL/6J_F002.
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Figure 4: The PCR products from 1) Forward-Reverse
and 2) Forward-LTR-Reverse primers reactions for
each sample are shown side by side. Reaction 1
and 2 detect the absence and presence of the TEi
respectively. Sequenced samples: a) A/JCr(f001), b)
A/JOlaHsd(f015), c) B6N-Tyrc−Brd /BrdCrCrl(m001). Ad-
ditional test samples: d) A/J(m93), e) A/JCrl(f002), f)
A/JOlaHsd(m001), g) A/JOlaHsd(m002), h) A/JOlaHsd(f003),
i) B6N-Tyrc−Brd /BrdCrCrl(m001), j) C57BL/6J(m001),
k) C57BL/6J(f002). TEi 1 is private and found only in
A/JCr(f001) at Chromosome 2:58948253. Its presence is
confirmed in that sample (a), but it does not appear in any
other test sample including a second A/JCr (e). TEi 2 was
found in A/JOlaHsd(f015), is also private, and was found in
a heterozygous state at Chromosome 4:98626789. The assay
(b) confirms this, as well as it being present and heterozy-
gous in 2 of 3 test samples from the same vendor (g,h). TEi 3
is private and was found in B6N-Tyrc−Brd /BrdCrCrl(m001)
at Chromosome 1:125336107, where it is confirmed (c). It
does not appear in the test sample from the same strain
(i). TEi 4 was predicted to be shared among all A/J samples
at Chromosome 1:28791918. It was confirmed in the two
sequenced samples (a,b) and it also appears in all A/J
test samples (d,e,f,g, and h). All four TEis were identified
as non-reference, and they are not found in any of the
reference-like test samples (j,k).

4.4 Validation via an A/J genome assembly
We used an assembled A/J genome[18] as a means to test if ELITE’s
predicted TEis are also included in it. At first, we first considered
those TEis that are shared by all of our A/J samples. For each TEi, we
queried for the context discovered by ELITE in the assembled A/J
genome and verified whether it was followed by the expected TE
sequence. More than 90% TEis reported in all A/J samples by ELITE
were also found in the A/J reference genome. Then we considered
only the new predicted TEis (i.e., those not already in the reference)
that appear in any A/J sample, 1544 of 2113 (73%) appear in the
A/J reference genome. Of these, 1440 of the 1789 (80%) that ELITE
found in every A/J sample also appear in the A/J assembled genome.
Next, we considered the predicted false negative cases from Table2.
Of the 75 predicted TEis that are shared by all but one A/J sample,
53 (71%) appear in the A/J reference, and all of the 53 were missing
from the low coverage A/JOlaHsd(m001) sample. Overall, there is a
substantial agreement between the TEi’s found by ELITE and those
incorporated into the A/J genome assembly. Moreover, it appears
that most of ELITE’s errors are due to false-negatives in samples
with low-coverage. For any missing TEis, the context itself was
absent from the new genome, thus not allowing us to verify the
presence or absence of the predicted TEi.

4.5 Runtime Comparison
We measured the total time spent on each of the four AJ samples
to discover TEis by ELITE, MELT, and TEMP (Table3). At first, we
constructed msBWT of each sample for running ELITE. On the
other hand, for running MELT and TEMP, we created bam files
by aligning all the short reads of each sample to the mouse ref-
erence genome using bwa-mem. Each bam file is then sorted and
indexed using samtools. We used 6 threads to run our msBWT
construction pipeline whereas 30 threads for running all the prepro-
cessing steps of MELT and TEMP due to its computational demand.
These preprocessing steps for each tool were run on a machine with
the following specification: Intel(R) Xeon(R) CPU E5-2643 v3 @
3.40GHz, 6 cores, 256 GB memory. Running the actual TE searching
tool after the preprocessing step does not require heavy resource.
Hence we ran the rest of the steps on an Intel(R) Xeon(R) E5420
CPU, 4 cores, 2.50 GHz with 32 GB RAM. ELITE, MELT, and TEMP
are written in Python, Java, and Perl, respectively.

Table 3: Total time required for each tool to locate six classes
of TE in four A/J samples (in minutes). Data preprocessing
time of each tool is shown in the last two columns, where
the BWT index corresponds to ELITE, and Alignment tim-
ing corresponds to both MELT and TEMP.

Sample ELITE MELT TEMP BWT index Alignment

A/JCr(f001) 55 95 312 581 507
A/JOlaHsd(m001) 42 72 238 178 267
A/JOlaHsd(f015) 32 55 200 403 407

A/J(f321) 45 77 360 408 514

As we can see from table 3, ELITE is about 1.7 times faster than
MELT. TEMP is significantly slower than both ELITE and MELT. It
is also apparent that the preprocessing step for each tool is the most
computationally heavy step. However, even in this case, except for
sample A/JCr(f001), creating a BWT index is always faster than
typical alignment. Other than providing a faster way to detect TEi,
msBWT is not biased to any reference genome and has many uses,
including data compression, fast kmer query, local assembly, local
alignment, error correction, etc [25][23][10][28].

5 CONCLUSIONS
We have developed a tool ELITE, that uses a novel local-genome-
assembly-based algorithm to efficiently discover TEis and ran it
effectively on real large-scale data. In addition to several indepen-
dent validation methods, we also proved the legitimacy of ELITE’s
findings by showing its presence in real DNA. We showed dif-
ferent pattern of TEi discovered by ELITE within a population is
highly consistent with their origin. ELITE’s TEi presence and ab-
sence probe are useful for the biologists to create primer for PCR
validation. Results produced by ELITE also led to interesting biolog-
ical finding i,e, many private TEis segregating in a closely related
population are in the heterozygous state. They are thus providing
stronger evidence for recent activity. Overall, the large number of
TEis found by ELITE indicate that TEs are a significant source of
genetic variation that must be taken into consideration.
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