
Frontier: Finding the Boundaries of Novel Transposable Element
Insertions in Genomes

Anwica Kashfeen

anwica@cs.unc.edu

UNC Chapel Hill

Chapel Hill, NC, USA

Leonard McMillan

mcmillan@.cs.unc.edu

UNC Chapel Hill

Chapel Hill, NC, USA

ABSTRACT
Transposable Elements (TEs) are DNA subsequences that have

historically copied themselves throughout a genome. Apart from

constituting a large fraction of all eukaryotic genomes, TEs are a

significant source of genetic variation and are directly responsible

for many diseases. TEs are also one of the most difficult genomic

regions to analyze. A typical approach for identifying TE insertions

(TEi) involves the detection of split-reads, which requires checking

if each read can be split into TE and non-TE parts. Identification of

the TE part depends on a model for each distinct TE class, and these

classes vary significantly both within and between species. Previ-

ous methods for detecting segregating TEis depend on template

libraries and their computational cost increases with the number of

templates. Here we propose a novel template-free method for iden-

tifying the split-reads with TEis called Frontier. We define Frontier

as the boundary between highly repeated and normal genomic se-

quence. We leverage the pervasiveness of TE sequences to identify

candidate reads that might include the boundary of an insertion. We

then apply machine learning methods to further classify whether

the read includes actual TE-like sequence. For each predicted TEi

boundary we apply a second classifier to infer the corresponding

TE type (LINE, SINE, ALU, ERV/LTR). Both classifiers achieve high

precision (> .9), recall (> .8) and F1 score (> .8) when applied to

real data. The resulting trained model, can detect and classify about

50 million frontier reads in less than an hour.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Applied
computing → Computational biology.

KEYWORDS
neural networks, split-read, msBWT, LCP, transposable element

ACM Reference Format:
Anwica Kashfeen and Leonard McMillan. 2018. Frontier: Finding the Bound-

aries of Novel Transposable Element Insertions in Genomes. InWoodstock
’18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock,
NY. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/1122445.

1122456

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Repetitive DNA sequence is found throughout the genome in many

species including plants, bacteria, and mammals[21][37][3]. Ana-

lyzing and distinguishing between the numerous copies present

in the genome is a computational challenge, and, thus, is often

ignored when analyzing genetic variation[30]. Current variant

detection methods focus mostly on detecting Single Nucleotide

Polymorphisms (SNPs) and small insertions or deletions (INDELS)

as they are relatively easier to detect in high-throughput short-

read sequencing data[35]. Moreover, repetitive DNA sequences

introduce ambiguity when aligning and assembling short reads,

especially in cases when the repeated element is longer than the

read fragment[32][31]. Researchers often use programs like Repeat-

masker [29] and Dust [26] to mask known repetitive regions before

performing genomic analysis. Reportedly 45% of the mouse and

53% of the human genome is masked by Repeatmasker.

Masking or ignoring repeats simplifies many analyses but hin-

ders the chance to discover other interesting biological phenomena.

Insertions of a particular class of repetitive sequence, called Trans-

posable Elements (TEs)[25], can lead to serious functional conse-

quences, as they are mobile and frequently inserted within and

near genes[36][34][27][7][2]. RNA-mediated TEs employ a copy-

paste mechanism of insertion that, over time, increases the size

of the genome. Moreover, recent studies suggest that many segre-

gating structural variants in humans are due to TE insertions[10].

In comparison to SNPs, TE insertions are believed to have more

pronounced effects on gene expression and phenotypic variation

in some organisms[33].

Over the past two decades, many TE or SV detection tools have

been developed. Most of these methods use discordant read pairs,

split reads, or a combination of the two to identify non-reference

TEs. Since a split read spans the boundary of a TE insertion, it can

be used to precisely detect the insertion location and any associated

Target Site Duplication (TSD). However, split-read TE detection

requires comparing each read to one or more TE templates to de-

tect a boundary between TE-like and non-TE-like sequences and is

therefore computationally expensive. Most importantly, it requires

that a model for each TE type is known in advance, and the se-

quences of TE types vary significantly with TE classes and between

species. Templates for TEs can be found in libraries like Repeat-

Masker, Dfam, Repbase but are limited to TE sequences identified

in a reference genome assembly. If an isolated population contains

a novel TE, chances are very low that they will be found in these

libraries. That’s why we developed a template-free TE discovery

pipeline that automatically identifies all the spanning boundaries

of TE insertions under the assumption that the target TE appears

with high frequency in the genome.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anwica et al.

LCP Filter

sh
o

rt
 r

ea
d

s

Classifier I
Reference

Mapping

frontier

full-TE

non-TE

other

frontier candidates frontier with unique context

Reference

TE Filter

de novo frontier

Classifier II

LINE

SINE/Alu

LTR/ERV

SINE/B2

Figure 1: Frontier Pipeline: Initially we use the Longest-Common Prefixes (LCPs) of the suffix array from a full short-read
sequencing dataset (represented as a multi-string Burrows-Wheeler Transform (msBWT)) to extract all substrings of reads
where a sizable prefix is highly repeated, but, then appears as normal genomic coverage when the prefix is extended. These
Frontier candidate reads are then fed to an initial Classifier-I to predict one of 4 different read classes, a true TEi boundary
(frontier), a small variantwithin aTE (full-TE), no repetitive sequence (non-TE), and repetitive sequence that are not TE (Other).
Only the class type frontier i.e., reads with partial TE and non-TE segments are kept. Then two subsequent filters are applied,
the first keeps only the unique contexts and the second identifies only the non-reference frontiers. Finally these non-reference
frontiers are fed to the Classifier-II to predict the TE type of each frontier read.

In an attempt to find TE insertions, we start with finding Frontier
reads. Frontier reads include the boundaries of TE insertions, where

on one side of the boundary the sequence is highly repeated, and

the other side appears to have normal coverage. We introduce a

template-free, data-driven approach by exploiting TE’s repetitive

property. We use two data structures, msBWT and LCP to identify

repeat intervals that occur in a high-throughput short-read sequenc-

ing dataset above a given threshold. We then consider sub-intervals

of the unidentified repeat intervals to find extended sequences with

normal genomic coverage. We call these Frontier candidates. How-
ever, there are certain cases where a non-frontier candidate might

look like a true Frontier. Such as, any mutation in the TE sequence

might cause the high count of TE segment to drop into a normal

coverage range. There also exist boundaries of highly repeated

sequences that are not part of any transposable element such as

microsatellites and telomeric sequences. Therefore, to find the True

Frontier, we propose a deep learning model which takes filtered

short-reads i.e., Frontier Candidates as inputs.
We employ two classifiers, Classifier-I for predicting the true

frontier and Classifier-II for predicting the TE type seen at the

Frontier. Both classifiers use the same network structure with two

convolutional layers followed by two fully connected linear layers.

We transform the sequence of a Frontier Candidate into a matrix

similar to a one-hot vector and feed it directly to the Classifier-I.
We next take the predicted frontiers from this classifier and map

their context (i.e., the sequence on the side of the boundary where

coverage drops to a normal level) to a reference genome to identify

the unique contexts. We then filter all the frontiers that are also

present in the reference. This provides a list of non-reference novel

frontiers, which are then fed to the Classifier-II to predict the TE
type. Here we included the 4 major classes of TEs present in mouse

reference genome [28]. We use the short read dataset of a C57BL/6J

(B6) strain, which is the basis for the mouse reference genome

(mm10), to build training data for Classifier-I and Classifier-II. Using
RepeatMasker’s TEi annotation of the mouse reference, we labeled

all the frontier reads of that dataset. After training both classifiers

based on the B6 data, we used them to predict frontiers in 7 other

mouse strains. We showed on average it can find more than 80%

of the Frontiers with high precision (≈ 0.9). Additionally, once the

classifier is trained, on average it takes less than an hour to classify

all the frontier candidates.

2 RELATEDWORK
Detecting repeats and/or Transposable Elements in high-throughput

short reads is a challenge. Usually, TEs are considerably longer than

a read length. Thus, each read contains only a fragment of a TE

that can be mapped throughout the genome making it extremely

difficult to determine how many, and where the TEs are in the

genome. Some existing tools focus on identifying all the repeats/TE

types in the genome while others focus on locating TE insertions.

RepDeonovo [8], RepARK [20] and others use a program like Jel-

lyfish [24] to initially obtain a list of most frequent k-mers, then

extend those that appear with high frequency to assemble potential

TE subsequences, which are finally clustered and aligned to obtain

consensus repeat sequences. These tools only report the different

types of repeats present in a short read dataset and do not identify

the insert location.

Other tools attempt to detect the location of TE insertions. Some,

including MELT [13], TEMP [38], RetroSeq [19] use discordant

read-pairs to find TEs. A discordant read-pair occurs when one the

read maps uniquely to the reference genome while its mate maps

to multiple places. Since TEs are expected to be located throughout

the genome, these methods assume that there is a TE has been

inserted somewhere around the uniquely mapped read. However,

the insertion location reported by these methods can be signifi-

cantly off (0-300bp). Alignment-based methods also tend to report

a considerably high number of false positives. Moreover, these are

heavily biased in favor of TE-templates present in the reference.

A third class of TE insertion methods are split-read-based, and

can precisely detect the insertion location to the basepair. These

methods find a “break-point” where a TE sequence is inserted.

Since a short read cannot contain the whole TE, looking only at the

sequence near TE boundaries serves the purpose. To find the bound-

ary of a TE, these tools like ELITE [18], Relocate2 [6], ITIS [16]

rely on a known TE template in advance. Relocate2, ITIS aligns all

the short read to the TE template. From the partially aligned reads,

they clip the segments that do not match with the TE template and

map to a reference genome to find the insertion location. Often

these clipped segments are not unique thus are ignored for the

rest of the pipeline. ELITE also finds split-read by adopting a local

genome-assembly approach seeded by a segment of a TE near its

boundary. All methods for detecting TE insertions fail to find novel

TE insertions because of their dependency on a known TE template.

Frontier: Finding the Boundaries of Novel Transposable Element Insertions in Genomes Woodstock ’18, June 03–05, 2018, Woodstock, NY

The Frontier pipeline identifies repeats directly from short reads

without templates based on the longest-common prefixes of adja-

cent entries of a suffix array. These repeated suffix-prefixes are then

extended further to only keep the segments that have a normal

coverage thus suggesting a single copy. This also ensures a higher

chance that the extended segment might be mapped uniquely. We

call these frontier candidates where repeated subsequence extends

into a single copy sequence. These candidates are then run through

a classifier to predict if they contain a TE and non-TE segment

adjacent to each other – we call such sequences the actual Frontier.

Finally, in a separate classifier, we infer the likely TE class of the TE

portion of each frontier. Even though machine learning is widely

used throughout bioinformatics, previous work on transposable

elements has focused primarily on this second stage of assigning

a TE class. Examples of such tools for classifying TE sequences

include [9], [14] and [1]. Our pipeline’s main contribution is to use

machine learning to identify split-reads from the set of all reads in

a sequenced dataset without the need of any TE-template.

3 BACKGROUND
We use two data structures called a multi-string Burrows-Wheeler

Transform (msBWT) and Longest Common Prefix (LCP) array in

the first stage of our discovery pipeline. The Burrows-Wheeler

Transform (BWT) [5] was originally developed to compress text

data. The transformation effectively determines the sequence of

predecessors of all the sorted suffixes of a text, and it is a permuta-

tion of the original text. This BWT permutation can also be inverted

to reconstruct the original text. The BWT also leads to long runs of

repeated characters in any text with redundancy. Therefore, simple

compression techniques, like run-length encoding, can be used to

compress the original text.

Beyond compressing data, the BWT has also been shown to be

as efficient as a suffix-tree for performing substring searches. Using

a light-weight auxiliary data structure called an FM-index[12]. It

is light-weight in the sense that it can be computed on the fly

while accessing the BWT. The FM-index supports searching for all

substrings of length k (𝑘-mer) within a string in 𝑂 (𝑘) time. The

classic BWT was devised to compress a single string or text. It

has since been extended to support collections of strings while

maintaining its essential properties. A BWT of a string collection

is called a multi-string BWT. Holt [15] showed that assembling

BWTs for multiple strings can be done incrementally by merging

msBWTs. Another auxiliary BWT data structure called the LCP [17]

can be built while constructing an msBWT. While an msBWT’s

FM-index allows for the traversal of all suffixes from each of its

included strings, which we will refer to as reads, the LCP provides

the length of the Longest Common Prefix between two adjacent

suffixes in the suffix array implicitly represented by the msBWT.

LCP and msBWT have a one-to-one correspondence with each

other. That means 𝑖𝑡ℎ element of the LCP array stores the length of

prefix shared by 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ read suffix’s predecessor symbol

of the msBWT. There are many algorithms for creating msBWT

and LCP in linear time [11] [4]. We used Holt’s approach [15] for

building the msBWT and LCP, because of the supporting functions

offered in the supplied API. The relationship between the BWT and

LCP data structures and their use for finding repeat intervals is

illustrated in figure2.

Figure 2: An example illustrating relationships between
the LCP, Suffix Array, and BWT shown for the sequence
GGGCATGGGGTAGGGGCAT. Only the BWT and LCP are
used to identify Frontier candidates, whereas the suffix ar-
ray is implicit. Intervals of the suffix array where adja-
cent suffixes share a prefix of 3 or more bases include [4,6],
[6,8], and [10,15]. These represent the substrings CAT, GCA,
and GGG respectively. These intervals are determined in
a single linear scan of the LCP. Of these, and assuming
a repeat threshold of 4, only the interval [10,15] is suffi-
ciently large to be considered a repetitive element. A sub-
sequent rescan of this interval identifies four distinct pre-
fixes of length 6 that appear two or fewer times (GGGCAT,
GGGGCA, GGGGTA, and GGGTAG). These prefixes are eas-
ily recovered using the BWT. The memory requirements of
the LCP and BWT are proportional to, and typically smaller
than, the original sequence.

4 METHOD
Given a short-read high-throughput sequence dataset, we aim to

find novel frontiers i.e., the boundary of unannotated TE insertions.

Since TEs are repeated throughout the genome, we expect any TE

sequence to have unusually high coverage when compared to a

regular genomic sequence. Therefore, we identify all the reads that

contain a subsequence that appears with a very high count (repeat),

followed by a subsequent sequence with a normal count (context).

The boundary between this repeat/potential TE and context/non-

TE segment is called the Frontier and reads containing this pattern

are called Frontier Candidates. However, not all the repeats are TEs
nor are all the contexts non-TE. Therefore to find the true frontier,
we apply a machine learning classifier to distinguish these cases.

Contexts of each frontier are then mapped to a reference genome to

identify the chromosome and position of insertion. Once we know

the position, we revisit the reference genome to check if there is

an annotated TE nearby. If not we hypothesize an insertion, we

annotate it as a novel TEi. For each novel TEi, we further classify it

according to TE type (LINE, SINE, ALU, LTR/ERV) using a second

classifier. The pipeline is shown in figure1.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anwica et al.

Algorithm 1 Finding Frontier Candidate

1: procedure FindRepeat(𝐾 , , 𝐿𝐶𝑃 ,𝑚)

2: 𝑟𝑒𝑝𝑒𝑎𝑡 = ∅
3: Select 𝑛 random indices 𝑖 from LCP where LCP[i] > 𝐾
4: Divide LCP into chunks: 𝐿𝐶𝑃 [𝑖1 : 𝑖2],𝐿𝐶𝑃 [𝑖𝑛−1, 𝑖𝑛)]
5: for each chunk do
6: 𝑐𝑜𝑢𝑛𝑡 = 0

7: while 𝑐ℎ𝑢𝑛𝑘 [𝑖] < 𝐾 do
8: 𝑖 + +
9: 𝑙𝑜𝑤 = 𝑖

10: while 𝑐ℎ𝑢𝑛𝑘 [𝑖] ≥ 𝐾 do
11: 𝑖 + +
12: 𝑐𝑜𝑢𝑛𝑡 + +
13: ℎ𝑖𝑔ℎ = 𝑖

14: if count ≥ 𝑚 − 1 then
15: 𝑟𝑒𝑝𝑒𝑎𝑡 = 𝑟𝑒𝑝𝑒𝑎𝑡 ∪ 𝑛𝑒𝑤_𝑟𝑒𝑝𝑒𝑎𝑡

16: ⊲𝑚 = minimum frequency of repeat

17: ⊲ 𝐾 = length of repeat segment

4.1 Identifying Frontier Candidates
At first, we build two data structures i.e., msBWT and LCP from

a given whole-genome high-throughput sequencing read dataset.

The msBWT can be used as an index for recovering entries of an

implicit suffix-array and for performing 𝑘-mer searches within the

collection of reads. The LCP is an array that contains the longest

common prefix between two consecutive sorted read suffixes. The

indices ofmsBWT and LCP array have a one-to-one correspondence.

That is the 𝑖𝑡ℎ element of the LCP array will hold the length of

prefix shared by 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ read suffix in the msBWT. Using

this LCP, along with msBWT, we find all the k-mers that occurred

over given repeat threshold,𝑚 (typically 500 to 800 based on the

read coverage).

A scan through the LCP can determine the intervals of any 𝑘-mer

(prefix of the implicit suffix array entry) that is repeated at least

𝑚 times. We achieve it by finding at least𝑚 − 1 consecutive rows

with an LCP value greater than 𝑘 . The algorithm builds a list of all

repeat intervals. Initially, if the value of LCP is less than k, then it

goes to the next value until it finds one which is greater than or

equal to k. It saves the index corresponding with this value as low.
Then it continues sequentially until the LCP value is less than 𝑘 .

This index corresponds to the high end of the repeat interval. If

ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤 ≥ 𝑚 − 1 the (low,high+1) interval is saved to a list of

genomic repeat intervals. It continues to find intervals until the end

of the LCP array. However, a short read dataset can contain 100s

of millions of reads depending on the organism and sequencing

coverage. To overcome this problem, we break the LCP into smaller

chunks and process each chunk in parallel, and finally merge the

results. After finding all the genomic repeat intervals, the algorithm

then proceeds to subdivide them into subintervals with normal

coverage. Once again the LCP is scanned to find extended prefixes

contained within the genomic repeat intervals of length k+k’ with

normal coverage, typically below a coverage-dependent high-count

threshold (15-20) and above a noise threshold (2). Finally, all the

reads in these interval ranges are extracted usingmsBWT and called

frontier candidates.

C G T A A C G T G C C G G A A A T

0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0

1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 6 3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 8 0 0 0 0 0 0 3 3 0 0

0 0 0 0 9 0 6 0 0 1 0 0 1 1

5 0 0 0 0 7 0 3 2 0 0 0 0 0

k-𝑚𝑒𝑟1

k-𝑚𝑒𝑟2

k-𝑚𝑒𝑟1
count

k-𝑚𝑒𝑟2 count

k-𝑚𝑒𝑟𝑛

k-𝑚𝑒𝑟𝑛 count

A

C

G

T

C G T A A C G T G C C G G A A A T

Figure 3: Input data representation: We use a modified
one-hot vector encoding to represent input sequences of
our classifiers where the one values are replaced by a
𝑙𝑜𝑔2(k-mer count) of a subsequence centered around the rep-
resented base. This effectively trims the sequence by 𝑘 − 1.
The 𝑘-mer counts used are the sum of the subsequence’s fre-
quency in the reads of the NGS data set in both the forward
and reverse-complement direction. They are computed us-
ing an FM-index of the msBWT. Since the k-mer is derived
from an frontier candidate read from the dataset, it is guar-
anteed to appear at least one time. This encodes sequence
motifs in combination with their genomic frequency.

4.2 Identifying True Frontiers
In this step, we classify each read from the previous step to predict

whether it is an actual Frontier or not (non-TE, Full-TE and others).

As described earlier, a Frontier is a boundary between TE and

non-TE context. Each read from previous steps has two adjacent

parts, one where the repeat/TE side has high coverage and the

other side has normal coverage. But mutations or interruption

from other TEs or repeats can also cause a drop in 𝑘-mer count.

Besides, common non-TE repeats like microsatellites, telomeric

sequence, and tandem repeats are not TEs even though they also

tend have very high coverage. Thus to specifically identify TEs, we

build a machine learning model to filter frontier candidates. This

model takes frontier candidates and 𝑘-mer frequency counts from

overlapping windows from the candidate as input and outputs their

classes i.e. whether true Frontier, TE, non-TE or other.

4.2.1 Input Data Preperation. Each input of our model consists of

a read and its corresponding overlapping-kmer count. However, to

encode a read as an input we convert it to a numerical form. Since

DNA can have only 4 bases, A, C, G, or T we map each R-length

sequence into a 4xR dimensional matrix for each read, where R

is the read length and 4 rows correspond to the 4 bases. If at any

position, the sequence in a read has A, then in that position, we

put 1 in the A’s row, and 0 in the others, using a so-called 1-hot

encoding. The same goes for all the other bases. The second input

we use is the overlapping k-mer count. We then divide the sequence

into 𝑅 −𝑘 + 1 segments or 𝑘-mers and count the occurrence of each

𝑘-mer in the dataset using the msBWT. Then we replace the 1s of

the 1-hot encoding with the 𝑙𝑜𝑔2 of the 𝑘-mer count. This trims k-1

bases from the sequence as we can only get 𝑅 − 𝑘 + 1 kmers from a

Frontier: Finding the Boundaries of Novel Transposable Element Insertions in Genomes Woodstock ’18, June 03–05, 2018, Woodstock, NY

Figure 4: Architecture of deep-learning neural network used: A 4-layer convolutional neural network is used for classiying
Frontier. First two layers are CNN, each of these are followed by a maxpool and a RelU. The flattened output from CNN 2 is
then fed to a fully connected linear layer. Final layer’s output is 4D for predicting probability for 4 classes.

read of length R. Thus, we choose a k value large enough so that

it is informative of actual coverage, but small enough so that the

read is adequately sampled at many base positions.

4.2.2 Model Description. We designed a 4-layer deep neural net-

work to classify each frontier read. The first two layers are CNNs,

followed by two linear layers. The architecture is shown in figure 4.

The first CNN layer in our model has 4 input channels, 9 output

channels, and a kernel of size 15. Recall our input data represen-

tation which is a 4𝑥𝑅 − 𝑘 + 1 matrix for each read, is now divided

into 4 vectors. Each of these 4 vectors is fed to each input channel

independently. We use 1D convolution as we have 1D vectors as

input instead of matrix. The output of this layer is fed to a second

CNN which has 9 input channels, 12 output channels, and a kernel

of size 5. The output of this layer is then fed to a fully connected

linear layer followed by another linear layer which predicts the

class for each input. The dimension of this layer’s output is the

same as the number of classes, representing the probability of being

in that class. We have 4 output classes i.e., i) Frontier ii) Full-TE iii)

non-TE iv) others. A candidate is a Frontier if it contains both a TE

and a non-TE segment. It’s a Full-TE if all the bases are part of a

TE. It’s a non-TE if it contains no TE or any other kind of repetitive

sequence. All other repeat types of uncategorized reads fall into

the other class. Even though we are only interested in the frontier

class, suggesting that a binary classifier should work, in practice,

we observed that having 4 classes improves the classification results

for the frontier class. Also for a binary classifier, all of the many

types of non-frontier reads fall into a single class. Since there are

many examples in this class compared to frontier, it creates a hugely

imbalanced dataset which is not preferred for a good classifier.

4.3 Mapping Frontier Context
After finding all the true frontiers, we then identify their positions

in a reference genome.We determine the position of the context (i.e.,

the segment of the frontier that has normal genomic coverage) using

bowtie2[22] (which is also BWT based). Mapping the Frontier’s

context allows us to find the TE’s insertion location in terms of

the reference genome’s chromosome and position. We only keep

the frontiers where the context maps uniquely. For each unique

context, we consider the surrounding sequence from reference and

check if it contains any annotated repeat/TE. If no repeat is found,

then we annotate it as a Novel Transposable Element Insertion.

4.4 Identifying Frontier’s TE type
The final step of our pipeline is to classify each Novel frontier based
on its TE type. We use the same network structure as the Classifier-
I. Only difference is that the input vectors for Classifier-II do not

incorporate the overlapping k-mer count. We have 4 major TE

types included in our model, those are LINE, SINE/Alu, SINE/B2,

and LTR/ERV. These are the most frequent types of TEs seen in

mouse genome and annotated by RepeatMasker. Using this classifier

for any species other than mouse might require a change in the

number of output classes, which can be trivially done by changing

parameters in the network model.

5 EXPERIMENTS
We applied our Frontier pipeline to eight short-read sequencing

datasets. This includes five classical inbred laboratory strains and

three wild-derived strains. All samples were sequenced using either

Illumina X10 or Illumina HiSeq4000 sequencers with paired-end

reads. One sample, C57BL/6J incorporates multiple sequencing runs

and is a mix of read lengths, 125-bp to 151-bp, all others resulted

from a single run (with multiple lanes) and used a uniform 150-bp

read length. The Illumina sequencing data from each sample was

used to construct an msBWT and corresponding LCP as described

by Holt[15]. The details for each sample are shown in Table 1.

Type Strain Sample Total reads Read length

AJ A/J f321 634,232,014 150

B6 C57BL/6J m03636A 1,045,633,612 125/151

129S1 129S1/SvlmJ m157 586,539,366 150

NOD NOD/ShiLtJ m146 837,204,388 150

NZO NZO/F111 m146 624,071,858 150

CAST CAST/EiJ m090 512,388,000 150

PWK PWK/PhJ f6114 481,626,592 150

WSB WSB/EiJ f111 429,564,492 150

Table 1: Samples used for evaluating the performance of two
Frontier classifiers. B6 sampleC57BL/6J is also used formak-
ing training dataset. Trained models obtained from B6 were
directly applied to other samples to find their frontiers and
corresponding type.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anwica et al.

Figure 5: Recall rate of algorithm 1 on simulated data. The X-
axis shows reads coverage, and Y axis shows the recall rate
ranging from 0 to 1, Recall for homozygous and heterozy-
gous frontier discovery is shown in the blue and red bar re-
spectively. For both chromosome 1 and 10, the recall rate
increases with increased coverage, specially for the cases
where TEi was inserted heterozygous. However, the recall
rate stablizes (≈ .9) when the coverage is around 15x.

5.1 Evaluation of Algorithm 1
We applied our algorithm 1 on both simulated and real datasets.

For each dataset, we first found all the intervals in the msBWT that

contain repeats. We divided the LCP array into multiple segments

and sent each one to a different processor for finding repeats in

parallel. We consider a subsequence as a repeat if it’s present at least

10 times in the sample’s genome. For example, in a sample with

coverage 40x, we expect to see it around 10x40 = 400 times in short

reads. After finding the repeat intervals, we looked for intervals that

are adjacent to a context with normal coverage. We set the length

of repeat and context to 45 and 30 respectively. So each Frontier

candidate has a length of 75. We later experimented with different

parameters and compared their performances. However, the sum of

the lengths of the repeated portion and context portion of a frontier

read must be smaller than the total read size. We ran this step of

our pipeline on a machine with the following specification: Intel(R)

Xeon(R) CPU E5-2643 v3 @ 3.40GHz, 6 cores, 256 GB memory. We

also built msBWT and LCP on this machine. We used simulated

data for evaluating algorithm 1.

To estimate the recall rate of frontier candidate discovery, we ran

1 on simulated data where ground truth is known. We inserted 50

TEs into chromosome 1 and chromosome 10 of the mouse reference

genome. For each insertion, we recorded the frontier sequence (last

45-mer of TE + first 30-mer of regular genomic context = 75-mer

frontier candidate) as ground truth. For both chromosomes, of the

50 inserted TEis, 30 were inserted as homozygous and 20 were in-

serted as heterozygous. We used Samtools [23] to simulate 150-bp

reads at different coverages ranging from 2x to 20x. we ran 1 on

both chromosomes to get a list of frontier candidates. To measure

the recall rate, we checked if each ground truth frontier candidate

is found by running algorithm 1. Since there are many old exist-

ing TEis already in the mouse genome, the algorithm found more

candidates than the ones we inserted. That’s why we calculated

only the recall rate and skipped precision. Recall rates for both

chromosomes are shown in figure5. As expected, frontier candi-

dates with heterozygous TEi require higher coverage compared to

homozygous TEis to be found. When the coverage was around 15x,

our algorithm 5 was able to find 95% of the candidates irrespective

of the zygosity.

Model LCP-filter Precision Recall F1 score

Baseline No .493 .557 .53

Frontier Yes .884 .841 .862

Frontier* Yes .913 .906 .909

Table 2: Comparison between baseline and proposed Fron-
tier classifiers. The Baseline performs poorly in general as
compared to classifier that uses and LCP-filter. Frontier* per-
forms the best by using the overlapping k-mer count. How-
ever, for a very large dataset, the overhead of counting all the
overlapping k-mer is high. So we recommend using Frontier
for a large dataset as it can still predict more than 84% of the
frontiers with high precision (.884).

5.2 Building Frontier Training Dataset
For each frontier candidate, we searched for their position in the

reference and checked if RepeatMasker has annotated any TEi in

that region. We found a total of 33331533 candidates that either

contain partial or full TE sequence. Candidates that contain partial

TE sequence are in class (i): Frontier. We only used the ones where

the length of TE and non-TE segment in a candidate are at least 25.

Then candidates whose entire sequence is a part of a TE sequence

are in class (ii): Full-TE. Candidates with no TE/repeat segments

are in class (iii): non-TE and all the other kinds of candidates with

different kinds of non-TE repeats are in class (iv): others. We had

a total of 895332 examples in class (i): frontier. There were many

examples for class (ii),(iii), and (iv), but we sub-sampled them by

randomly selecting 895332 examples to make our training dataset

balanced. For each read, we computed the 𝑘-mer frequency for

overlapping 21-mers from that read using the msBWT along with

FM-index. These counts were used as a part of input in addition

to the sequence as described in 4.2.1. For our second classifier, we

used RepeatMasker’s annotation to label the 4 different TE types

present in each Frontier.

5.3 Performance of Classifier-I on B6
To evaluate the performance of our frontier classifier, Classifier-
I, we compared it with a typical sequence-based classifier. Since

there was no attempt made previously to classify Frontier, we built

a baseline classifier that did not use LCP-filter. It takes the read

sequence directly from the short read dataset instead of the frontier

candidate as input. Note that Frontier classifiers use the frontier
candidates obtained from LCP-filter. Since baseline does not use this

filter, it cannot be trained with the same frontier candidates. Thus

we made another training data for the baseline classifier. Using

RepeatMasker’s annotation of TEi in the reference genome, we

identified random 50000 places of TEi. We made examples of the

frontier class by adding 35 bases nonTE sequence after a 45-mer

TE segment. For the class full-TE, we made data by taking 75-mers

entirely from a TE sequence. For the class non-TE, we took 75-mers

that were outside any annotated TEi. Then finally for the last class

(other), we chose random 75-mers that did not fall into any of the

previously mentioned three classes. Using 90% examples from this

dataset, we trained the baseline classifier and tested its performance

on the rest 10%.

Frontier: Finding the Boundaries of Novel Transposable Element Insertions in Genomes Woodstock ’18, June 03–05, 2018, Woodstock, NY

Figure 6: Effect of three different parameters on the performance of Classifier-I. X-axis shows the different values of param-
eters i.e., repeat lengths ranges from 30 to 60 for (a), context lengths ranges from 20 to 50 for (b), overlapping kmer lengths
ranges from 10 to 35 for (c). For all three plots, Y-axis shows precision, recall and f1-score for the corresponding parameter
values (possible ranges from 0 to 1). (a) For different repeat lengths, precision and f1 score of Frontier* (with overlapping kmer
count) increases with the increase in repeat length and becomes stable when the length is around 45. No significant change
is observed for frontier (without overlapping kmer count). (b) For different context lengths, precision of Frontier (without
kmer count) decreases with the increase in context length. On the other hand, for frontier* (with overlapping kmer count),
precision, recall, f1-score all improved as context length increases. (c) For different overlapping kmer lengths, frontier* (with
overlapping kmer count) performs best when the length is around 15-20 bases irrespective of the length of context.

To obtain the result of our proposed classifier, we used the dataset

described in 5.2. Here we also used 90% of the examples for training

and the rest 10% for testing. To see how the overlapping kmer affects

the performance of the classifier, we ran two separatemodels, where

one used the overlapping kmer count (Frontier*) and the other did

not (Frontier). However, all three models, including the baseline

have the same network structure with two CNNs and 2 Linear

Layers. The comparison of the three models is given in table 2 in

terms of three metrics: precision, recall, and F1 score. Since this is

a multi-class classifier, we report the metrics values for the class

Frontier which is our main interest. We can see both classifiers that

used frontier candidates as input achieved high precision, recall,

and F1 score when compared to the baseline. Overlapping kmer

count also helped to get better precision.

Figure 7: Confusion Matrix showing the result of running
Classifier I on 1000 randomly selected candidates. Each row
of thismatrix shows the True labels, and each column shows
the predicted labels. There are 243 Frontiers, and our clas-
sifier misclassifed 24 examples in total. It also misclassified
many Full-TEs as others. The classification errors of Full TEs
have no impact since we only process further those reads
identified as Frontier. Many of these appear to be older and
highly mutated TE insertions.

We also provide a confusion matrix to demonstrate the classi-

fier’s performance in predicting other classes. The matrix is shown

in figure 7. Here we showed the result of Frontier* that used over-

lapping k-mer count. A randomly sampled set of 1000 examples

were used to create this matrix. All 4 classes have approximately

equal numbers of examples. As we can see, 127 (47%) out of 267

Full-TEs are misclassified as others and 50 (18%) as non-TE. We

investigated this small set of data and observed that most of the

Full-TEs in those cases are very old and have many mutations that

diverge significantly from their original sequence. However, we

achieve a recall rate >.9 for the other classes and we care only for

the candidates classified as Frontier in this step.

5.4 Effect of different parameters on the
Performance of Classifier-I

We have three parameters in our pipeline that initially were chosen

in an ad-hoc fashion. One of these is the length of the repeat portion

of a frontier candidate. Recall that in the first step of our pipeline 4.1,

we searched the msBWT and LCP to find all the repeat segments

where the length of repeat segment𝐾 = 45. To examine the effect of

this choice for repeat length, we varied it ranging from 30 to 60 base

pairs and observed the classifier’s performance. We ran our two

separate models where one considered the overlapping k-mer count

and the other one did not. Figure 6(a) shows the effect of different

repeat lengths on our classifier. The length of overlapping k-mer

counts was kept fixed at 21. For different repeat lengths, we ran

our classifier and calculated its precision, recall, and F1 score. Even

though we did not see any significant change in the performance

of Frontier (without k-mer count), the precision and f1 score for

Frontier* decreased with the decrease in candidate length.

Another parameter used while searching for frontier candidates

was the context length. Initially, we set the context length to 30. But

to see if the length of context affects the classifier’s performance, we

ran the samemodel with different context lengths. The performance

comparison is shown in figure 6(b). The Frontier* classifier that uses

overlapping 𝑘-mer count performed better and recall rate increased

with the increase in context length. For this experiment, we kept

fixed the length of overlapping kmer to 21 and repeat length to 45.

From our experiment, we observed that, frontier* discovered more

true frontiers and achieved the best recall rate. We believe this is

due to incorporating the overlapping 𝑘-mer counts as a signal of

the expected variable coverage across a Frontier read.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anwica et al.

The last parameter we varied is the length of overlaping kmer.

This only applies to Frontier* (with overlapping kmer count). The

idea behind including this count is to capture changes in coverage

for portions of the read. Sometimes, only the sequence itself is not

sufficient enough to say if it’s a TE nor a non-TE sequence. A mu-

tation in a TE subsequence can drop its count from high to normal.

This may lead the classifier to miss-classify the TE as a Frontier.

But if that TE sequence is broken down into small overlapping k-

mers, then the k-mers without the SNP will still have a high count.

That’s why we used overlapping kmer count as Classifier-I’s input
in addition to the sequence. However, if the value of 𝑘 is too low,

then it will be all over the genome, thus will lose its purpose. On

the other hand, if the value is too high, we will lose more bases

from the sequence because the length of the input depends on 𝑘 .

To see how the value of 𝑘 affects the performance of our classifier,

we vary its value ranging from 10 to 35 by keeping the context

length fixed. For each different 𝑘 , we then ran the Classifier-I. The
observed results are shown in figure 6(c).

5.5 Performance of Classifier-I on Other
non-B6 Datasets

We used our trained model from Classifier-I to predict frontiers of

7 other non-B6 samples. At first, we used the LCP-filter to identify

the frontier candidates by using algorithm 1. We randomly selected

50000 candidates from each sample and ran Classifier-I. Here we
applied Frontier classifier that does not use overlapping kmer count.

For validation, we obtained the class label by querying the can-
didate in RepeatMasker because we cannot compare it with the

reference. For this experiment, we sub-sampled 50000 candidates as

its expensive to get the repeatMasker’s annotation. If RepeatMasker

identifies a TE in a candidate, then it can be either class(i): Frontier

or class(ii): Full-TE. If the length of a TE segment in a candidate

is less than 50 and greater than 25 then we label them as Frontier,

otherwise, it’s a full-TE. If a candidate does not contain any repeat-

like sequence then we label it as the class(iii): non-TE. The rest

of the reads are considered as a class(iv): others, which includes

non-TE like repeats and their boundaries. Even though our training

data used only frontier candidates from a B6 sample, we achieved

a precision rate > 0.9 for the majority of the other samples with

different strains. The f1 score is also more than 80% except for the

wild strain PWK. The details are listed in table 3.

5.6 Performance of Classifier-II
After identifying the frontiers, we applied several steps to identify

non-reference Novel TE frontiers in a sample. These frontiers were

then classified based on their TE type. Our current model includes

the 4 major TE families found in the mouse reference genome

(LINE/L1, SINE/Alu, SINE/B2, and LTR/ERV). More TE classes can

be added based on the organism if required but the classification

performance tends to degrade if too many subclasses are included.

To analyze the performance of Classifier-II, we randomly selected

1000 frontiers from each sample. Our TE classification Classifier-II
model was trained on examples from the mouse reference genome

as labelled by RepeatMasker. The landscape of TE insertions in the

remaining 7 strains is expected differ from the reference, although

some sharing is also expected. In particular, the three wild-derived

mouse strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) are expected to

differ more significantly from the reference than the four common

laboratory strains (A/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ), as

they likely share more recent common ancestors.

Strain Sample Precision Recall F1 Score

A/J f321 0.833 0.795 0.814

129S1/SvlmJ m157 0.907 0.810 0.855

NOD/ShiLtJ m146 0.923 0.766 0.837

NZO/F111 m146 0.939 0.705 0.805

CAST/EiJ m090 0.921 0.761 0.833

PWK/PhJ f6114 0.855 0.691 0.764

WSB/EiJ f111 0.952 0.800 0.870

Table 3: Performance ofClassifier-I on other non-B6 sample:
average precision (≈ .9) is as high as B6 but the f1-score (≈ .8)
and recall rates (≈ .75) are lower than what we saw on B6.
Note that the test data here are from a completely different
strain than the training data.

In the confusion matrices shown in 8, we compared the result of

our TE-type classifier (Classifier-II) to predictions made by Repeat-

Masker for the high-repeat 45-mer portion of the frontier. Recall

that the HMM used by Repeatmasker is based on TEs found in the

mouse genome reference (mm10). Thus, for the sequenced sam-

ple B6 the predicted labels from RepeatMasker can be considered

ground truth, whereas for other samples they should be considered

as yet another classifier. In the case of B6 we selected a balanced set

of 4 TE types based on RepeatMasker’s classification. For other sam-

ples we selected 1000 frontier sequences at random. The resultant

confusion matrices suggest that our TE-type classifier (Classifier-II)
has high precision (> 98%) in the B6 case, and is highly consistent

(> 93%) with Repeatmasker for other cases. Themost common incon-

sistency is when our classifier calls SINE/B2 where RepeatMasker

predicts an LINE/L1. These inconsistencies are probably caused by

the variable length polyadenylation signal that is common at the 3’

insertion boundary of these two element TYPES.

5.7 Finding Novel Frontiers
We applied our pipeline to 7 to mouse genomes sequenced at 30x

coverage with 150bp reads. We first constructed msBWTs and LCPs

for each. Then using these two data structures, we identified fron-

tier candidates. As before, we considered all subsequences with

45-mer repeats appearing in more than 400 reads (more than 16

times the expected coverage) that when extended by 30 bases appear

as normal coverage (15 reads). Then we ran Classifier-I (without
overlapping kmer count) to predict the true frontiers from these

candidates. On average, each sample generated around 50 million

frontier candidates and less than 10% of these were predicted as a

true frontier. For each predicted true frontier, we then aligned the

30-base context to the mouse reference genome (mm10) to find the

location of TE insertion. We kept only those contexts that mapped

uniquely in the genome. In our dataset, approximately one-third

of the contexts of the predicted true frontiers mapped to a unique

genomic position. We next merged all aligned contexts with con-

sistent 45-mer prefixes within 100 bases of each other. Frequently

there are two nearby contexts that represent the two sides adjacent

Frontier: Finding the Boundaries of Novel Transposable Element Insertions in Genomes Woodstock ’18, June 03–05, 2018, Woodstock, NY

Figure 8: Confusionmatrices showing the result of running our TE classifierClassifier-II on 1000 frontier sequences from sam-
ples representing 8mouse strains.We compare our predicted labels (columns) to those of RepeatMasker (rows). RepeatMasker
annotates TE insertions in the mouse reference genome (mm10) which is based on the mouse strain C57BL/6J for which the
sample B6 is an example. Thus, we considered Repeatmasker as ground truth for B6, a balanced set of the four TE types. For
all other 7 samples we merely compare our predictions with those made by RepeatMasker for consistency. As we can see, the
diagonal values are significantly larger than the others indicating an overall consistency of more than 93%.

to the insertion. We next checked if there was an annotated TE in

the reference near each of the insert locations. If no TEi was present

nearby, we reported those as novel TE insertions. For each sample,

we found around 4000 novel TEis that are not annotated in the

reference genome. Finally, for these novel insertions, we applied

Classifier-II to predict the type of TE.

These analysis suggest that there are a considerable number of

non-reference TE insertions (TEis). Details are shown in table 4.

Overall we found more than 18000 novel TEis which includes 1318

LINE, 457 SINE/ALU, 923 SINE/B2, and 1677 LTR/ERV insertions. As

expected the four laboratory strains (A/J, 129S1/SvImJ, NOD/ShiLtJ,

NZO/HlLtJ) tend to share more TEis with the reference (also based

on a laboratory strain B6) than the three wild-derived mouse strains

(CAST/EiJ, PWK/PhJ, andWSB/EiJ). The degree of shared TEis with

the reference is indicated by the ratio of Novel TEis to the number

of merged positions.

6 RUNTIME
The runtime of our frontier discovery pipeline is dominated by the

first step of finding candidates. This step uses msBWT and corre-

sponding LCP to find all reads with high-count 45 mers that when

extended by 30 bases appear as normal coverage. For a short read

dataset with 30x coverage and 150 bp reads, it took 3 hours to find

all the frontier candidates. The time required for building msBWT

and LCP took about 7 hours. Overall our pipeline was completed in

10 hours. However, we should not consider the construction time

of msBWT and LCP as they are a fixed initial cost. Additionally,

both of these have many uses other than finding repeats. Moreover,

they are useful as a lossless data compression that can be efficiently

queried. And, the msBWT and LCP construction time is comparable

to the sequence alignments used by other algorithms.

7 CONCLUSION
We proposed a novel approach for finding de novo Transposable

Element insertions based on identifying Frontier/split-reads and

using machine learning. Unlike the typical alignment-based ap-

proach, our pipeline does not depend on any known TE template.

Identifying novel TE insertions can be used to detect rare muta-

tions in somatic cells that are often associated with tumorigenesis.

Whereas, identifying segregating TE insertions in the germline has

the potential to uncover new classes of genetic variants.

There are a lot of areas for future improvements to our Frontier-

based TE discovery approach. For example, at present, we can only

search for the repeats that occur more than a given threshold. But

sometimes TE insertions are mutated during retrotranscription and

the mutated version may not have a high count near the insertion

point. Therefore, in the future, we plan to modify our repeat search-

ing algorithm to allow for some mutations from a highly repeated

k-mer found elsewhere in the dataset.

REFERENCES
[1] György Abrusán, Norbert Grundmann, Luc DeMester, and Wojciech Makalowski.

2009. TEclass—a tool for automated classification of unknown eukaryotic trans-

posable elements. Bioinformatics 25, 10 (2009), 1329–1330.
[2] Victoria P Belancio, Dale J Hedges, and Prescott Deininger. 2008. Mammalian

non-LTR retrotransposons: for better or worse, in sickness and in health. Genome
research 18, 3 (2008), 343–358.

[3] Jeffrey L Bennetzen. 2000. Transposable element contributions to plant gene and

genome evolution. Plant molecular biology 42, 1 (2000), 251–269.

[4] Paola Bonizzoni, Gianluca Della Vedova, Yuri Pirola, Marco Previtali, and Raffaella

Rizzi. 2021. Computing the multi-string BWT and LCP array in external memory.

Theoretical Computer Science 862 (2021), 42–58.
[5] Michael Burrows and David Wheeler. 1994. A block-sorting lossless data com-

pression algorithm. In Digital SRC Research Report. Citeseer.
[6] Jinfeng Chen, Travis R Wrightsman, Susan R Wessler, and Jason E Stajich. 2017.

RelocaTE2: a high resolution transposable element insertion site mapping tool

for population resequencing. PeerJ 5 (2017), e2942.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anwica et al.

Strain Sample Frontier True Unique Merged Novel LINE/L1 SINE/Alu SINE/B2 LTR/ERV

Candidates Frontier Context Positions TEis

A/J f321 51526031 3228795 1168218 181912 2200 671 (42) 249 (2) 480 (41) 800 (259)

129S1/SvlmJ m157 46433170 2955226 1055816 165809 2196 621 (40) 265 (2) 519 (35) 791 (242)

NOD/ShiLtJ m146 52153639 3871542 1456247 216913 2938 1030 (104) 393 (6) 680 (81) 835 (274)

NZO/HlLtJ m146 51263358 3187737 1147893 179681 2240 730 (40) 227 (1) 519 (28) 764 (229)

CAST/EiJ m090 44730127 2478107 521986 92515 4240 1419 (74) 595 (4) 922 (53) 1304 (203)

PWK/PhJ f6114 44633988 2477698 516958 92328 4683 1640 (73) 614 (6) 1055 (64) 1374 (216)

WSB/EiJ f111 36597602 2089009 639532 107628 2175 647 (33) 208 (0) 443 (20) 877 (174)

Table 4: Results from running the full Frontier pipeline on 7 common mouse strains. This table shows the number of novel
TEis found in each sample, which is further broken down according to their predicted TE type. The numbers in parentheses
indicate TE insertions detected from both sides (i.e. the unique genomic context both before and after a single TE insertion).
We observed more novel TEis in CAST and PWK as compared to the other samples even though there were fewer merged
positions that match the reference for TEis in these strains. The large number of merged positions in A/J 129S1, NOD, and
NZO in contrast to the relatively smaller number of novel TEis suggests that these common laboratory strains share more
TEis in common with the mouse reference genome.

[7] Jian-Min Chen, Peter D Stenson, David N Cooper, and Claude Férec. 2005. A sys-

tematic analysis of LINE-1 endonuclease-dependent retrotranspositional events

causing human genetic disease. Human genetics 117, 5 (2005), 411–427.
[8] Chong Chu, Rasmus Nielsen, and Yufeng Wu. 2016. REPdenovo: inferring de

novo repeat motifs from short sequence reads. PloS one 11, 3 (2016), e0150719.
[9] Murilo Horacio Pereira da Cruz, Douglas Silva Domingues, Priscila Tiemi Maeda

Saito, Alexandre R Paschoal, and Pedro Henrique Bugatti. 2020. TERL: classi-

fication of transposable elements by convolutional neural networks. bioRxiv
(2020).

[10] Peter Ebert, Peter A Audano, Qihui Zhu, Bernardo Rodriguez-Martin, David

Porubsky, Marc Jan Bonder, Arvis Sulovari, Jana Ebler, Weichen Zhou, Re-

becca Serra Mari, et al. 2021. Haplotype-resolved diverse human genomes and

integrated analysis of structural variation. Science 372, 6537 (2021).
[11] Lavinia Egidi, Felipe A Louza, Giovanni Manzini, and Guilherme P Telles. 2019.

External memory BWT and LCP computation for sequence collections with

applications. Algorithms for Molecular Biology 14, 1 (2019), 1–15.

[12] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. 2004.

An alphabet-friendly FM-index. In International Symposium on String Processing
and Information Retrieval. Springer, 150–160.

[13] Eugene J Gardner, Vincent K Lam, Daniel N Harris, Nelson T Chuang, Emma C

Scott, William S Pittard, Ryan E Mills, Scott E Devine, 1000 Genomes Project

Consortium, et al. 2017. The Mobile Element Locator Tool (MELT): population-

scale mobile element discovery and biology. Genome research (2017), gr–218032.

[14] Claire Hoede, Sandie Arnoux, Mark Moisset, Timothee Chaumier, Olivier In-

izan, Veronique Jamilloux, and Hadi Quesneville. 2014. PASTEC: an automatic

transposable element classification tool. PloS one 9, 5 (2014), e91929.
[15] James Holt and Leonard McMillan. 2014. Constructing Burrows-Wheeler trans-

forms of large string collections via merging. In Proceedings of the 5th ACM
Conference on Bioinformatics, Computational Biology, and Health Informatics.
ACM, 464–471.

[16] Chuan Jiang, Chao Chen, Ziyue Huang, Renyi Liu, and Jerome Verdier. 2015.

ITIS, a bioinformatics tool for accurate identification of transposon insertion

sites using next-generation sequencing data. BMC bioinformatics 16, 1 (2015), 72.
[17] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park.

2001. Linear-time longest-common-prefix computation in suffix arrays and its

applications. In Annual Symposium on Combinatorial Pattern Matching. Springer,
181–192.

[18] Anwica Kashfeen, Harper B Fauni, Timothy A Bell, Fernando Pardo-Manuel de

Villena, and Leonard McMillan. 2019. ELITE: Efficiently Locating Insertions of

Transposable Elements. In Proceedings of the 10th ACM International Conference
on Bioinformatics, Computational Biology and Health Informatics. 183–189.

[19] Thomas M Keane, Kim Wong, and David J Adams. 2012. RetroSeq: transposable

element discovery from next-generation sequencing data. Bioinformatics 29, 3
(2012), 389–390.

[20] Philipp Koch, Matthias Platzer, and Bryan R Downie. 2014. RepARK—de novo

creation of repeat libraries from whole-genome NGS reads. Nucleic acids research
42, 9 (2014), e80–e80.

[21] Eric S Lander, Lauren M Linton, Bruce Birren, Chad Nusbaum, Michael C Zody,

Jennifer Baldwin, Keri Devon, Ken Dewar, Michael Doyle, William FitzHugh,

et al. 2001. 2001. Initial sequencing and analysis of the human genome. Nature
409, 6822 (2001), 860–921.

[22] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. 2009. Ultrafast

and memory-efficient alignment of short DNA sequences to the human genome.

Genome biology 10, 3 (2009), R25.

[23] H Li, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis,

and R Durbin. [n.d.]. 692 (2009). The Sequence Alignment/Map format and

SAMtools. Bioinformatics 25, 16 ([n. d.]), 2078–693.
[24] Guillaume Marçais and Carl Kingsford. 2011. A fast, lock-free approach for

efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 6 (2011),
764–770.

[25] Barbara McClintock. 1984. The significance of responses of the genome to

challenge. (1984).

[26] Aleksandr Morgulis, E Michael Gertz, Alejandro A Schäffer, and Richa Agarwala.

2006. A fast and symmetric DUST implementation to mask low-complexity DNA

sequences. Journal of Computational Biology 13, 5 (2006), 1028–1040.

[27] Koji Muratani, Toshikazu Hada, Yoshihiro Yamamoto, Tadashi Kaneko, Yoshihisa

Shigeto, Toru Ohue, Junichi Furuyama, and Kazuya Higashino. 1991. Inactivation

of the cholinesterase gene by Alu insertion: possible mechanism for human gene

transposition. Proceedings of the National Academy of Sciences 88, 24 (1991),

11315–11319.

[28] Christoffer Nellåker, Thomas M Keane, Binnaz Yalcin, Kim Wong, Avigail Agam,

T Grant Belgard, Jonathan Flint, David J Adams, Wayne N Frankel, and Chris P

Ponting. 2012. The genomic landscape shaped by selection on transposable

elements across 18 mouse strains. Genome biology 13, 6 (2012), 1–21.

[29] Arian FA Smit, Robert Hubley, and P Green. 1996. RepeatMasker.

[30] Tim Stuart, Steven R Eichten, Jonathan Cahn, Yuliya V Karpievitch, Justin O

Borevitz, and Ryan Lister. 2016. Population scale mapping of transposable element

diversity reveals links to gene regulation and epigenomic variation. elife 5 (2016),
e20777.

[31] Aurélie Teissandier, Nicolas Servant, Emmanuel Barillot, and Deborah Bourc’his.

2019. Tools and best practices for retrotransposon analysis using high-throughput

sequencing data. Mobile DNA 10, 1 (2019), 1–12.

[32] Todd J Treangen and Steven L Salzberg. 2012. Repetitive DNA and next-

generation sequencing: computational challenges and solutions. Nature Reviews
Genetics 13, 1 (2012), 36–46.

[33] Jasmina Uzunović, Emily B Josephs, John R Stinchcombe, and Stephen I Wright.

2019. Transposable elements are important contributors to standing variation in

gene expression in Capsella grandiflora. Molecular biology and evolution 36, 8

(2019), 1734–1745.

[34] José AJM van den Hurk, Dorien JR van de Pol, BerndWissinger, Marc A van Driel,

Lies H Hoefsloot, Ilse J de Wijs, L Ingeborgh van den Born, John R Heckenlively,

Han G Brunner, Eberhart Zrenner, et al. 2003. Novel types of mutation in the

choroideremia (CHM) gene: a full-length L1 insertion and an intronic mutation

activating a cryptic exon. Human genetics 113, 3 (2003), 268–275.
[35] José Luis Villanueva-Cañas, Gabriel E Rech, Maria Angeles Rodriguez de Cara,

and Josefa Gonzalez. 2017. Beyond SNPs: how to detect selection on transposable

element insertions. Methods in Ecology and Evolution 8, 6 (2017), 728–737.

[36] Margaret R Wallace, Lone B Andersen, Ann M Saulino, Paula E Gregory,

Thomas W Glover, and Francis S Collins. 1991. A de novo Alu insertion re-

sults in neurofibromatosis type 1. Nature 353, 6347 (1991), 864.
[37] Robert H Waterston and Lior Pachter. 2002. Initial sequencing and comparative

analysis of the mouse genome. Nature 420, 6915 (2002), 520–562.
[38] Jiali Zhuang, Jie Wang, William Theurkauf, and Zhiping Weng. 2014. TEMP:

a computational method for analyzing transposable element polymorphism in

populations. Nucleic acids research 42, 11 (2014), 6826–6838.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Method
	4.1 Identifying Frontier Candidates
	4.2 Identifying True Frontiers
	4.3 Mapping Frontier Context
	4.4 Identifying Frontier's TE type

	5 Experiments
	5.1 Evaluation of Algorithm 1
	5.2 Building Frontier Training Dataset
	5.3 Performance of Classifier-i on B6
	5.4 Effect of different parameters on the Performance of Classifier-i
	5.5 Performance of Classifier-i on Other non-B6 Datasets
	5.6 Performance of Classifier-ii
	5.7 Finding Novel Frontiers

	6 Runtime
	7 Conclusion
	References

