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ABSTRACT The laboratory mouse is the most widely used animal model for biomedical research, due in part to its well-annotated
genome, wealth of genetic resources, and the ability to precisely manipulate its genome. Despite the importance of genetics for mouse
research, genetic quality control (QC) is not standardized, in part due to the lack of cost-effective, informative, and robust platforms.
Genotyping arrays are standard tools for mouse research and remain an attractive alternative even in the era of high-throughput
whole-genome sequencing. Here, we describe the content and performance of a new iteration of the Mouse Universal Genotyping
Array (MUGA), MiniMUGA, an array-based genetic QC platform with over 11,000 probes. In addition to robust discrimination between
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most classical and wild-derived laboratory strains, MiniMUGA was designed to contain features not available in other platforms: (1)
chromosomal sex determination, (2) discrimination between substrains from multiple commercial vendors, (3) diagnostic SNPs for
popular laboratory strains, (4) detection of constructs used in genetically engineered mice, and (5) an easy-to-interpret report
summarizing these results. In-depth annotation of all probes should facilitate custom analyses by individual researchers. To determine
the performance of MiniMUGA, we genotyped 6899 samples from a wide variety of genetic backgrounds. The performance of
MiniMUGA compares favorably with three previous iterations of the MUGA family of arrays, both in discrimination capabilities and
robustness. We have generated publicly available consensus genotypes for 241 inbred strains including classical, wild-derived, and
recombinant inbred lines. Here, we also report the detection of a substantial number of XO and XXY individuals across a variety of
sample types, new markers that expand the utility of reduced complexity crosses to genetic backgrounds other than C57BL/6, and the
robust detection of 17 genetic constructs. We provide preliminary evidence that the array can be used to identify both partial sex
chromosome duplication and mosaicism, and that diagnostic SNPs can be used to determine how long inbred mice have been bred
independently from the relevant main stock. We conclude that MiniMUGA is a valuable platform for genetic QC, and an important
new tool to increase the rigor and reproducibility of mouse research.
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The laboratory mouse is among the most popular and
extensively used models for biomedical research. For

example, in 2018 the word “mouse” appeared in the abstract
of over 82,000 scientific manuscripts available in PubMed.
The laboratory mouse is such an attractive model due to the
existence of hundreds of inbred strains and outbred lines
designed to address specific questions, as well as the ability
to edit the mouse genome; originally by homologous recom-
bination and now with more efficient and simple techniques
such as clustered regularly interspaced short palindromic
repeats (Lanigan et al. 2020). The centrality of genetics in
mouse-enabled research begs the question of how genetic
quality control (QC) is performed in these experiments. At
a minimum, genetic QC should provide reliable information
about the sex, genetic background, and presence of genetic
constructs in a given sample in a robust and cost-effective
manner.

We have a long track record of developing genotyping
arrays for the laboratory mouse, from the Mouse Diversity
Array (MDA, Yang et al. 2009) to the previous versions of the
Mouse Universal Genotyping Array (MUGA) (Morgan and
Welsh 2015). These tools were originally designed for the
genetic characterization of two popular genetic reference
populations, the Collaborative Cross (CC) and the Diversity
Outbred, and then used in experiments involving other
laboratory strains as well as wild mice (Yang et al. 2011;
Collaborative Cross Consortium 2012; Carbonetto et al.
2014; Arends et al. 2016; Didion et al. 2016; Rosshart et al.
2017; Shorter et al. 2017; Srivastava et al. 2017; Veale et al.
2018).

In the following paragraphs, we discuss each of the main
components of genetic QC as defined above. Sex is widely
recognized as a key biological variable. Standard chromo-
somal sex determination in the MDA and MUGA relied on
detection of the Y chromosome. This approach has limita-
tions, most notably the inability to identify sex chromosome
aneuploidies. In mammals, including humans and mice, sex
chromosome abnormalities are relatively frequent (Searle
and Jones 2002; Cheng et al. 2014), and thus the ability to
detect them will substantially improve genetic QC.

The ability to discriminate between genetic backgrounds is
critical for genetic QC, and all previous platformswere able to
accomplish this goal to varying degrees. Array-based discrim-
ination depends on the number of markers, their spatial
distribution, and the ascertainment bias of those markers.
While the MDA and several previous iterations of the MUGA
had tens to hundreds of thousands ofmarkers, the selection of
those markers depended heavily on whole-genome sequenc-
ing (WGS) data from ,20 inbred strains (Yang et al. 2007,
2009, 2011; Keane et al. 2011; Morgan et al. 2015). Thus,
these platforms provided very fine-grained discrimination for
some strains and coarse or happenstance discrimination for
many others. An extreme example of the latter is the very
poor discrimination between substrains. Mouse genetics is
built on the phenotypic differences observed between strains
and, recently, we have come to appreciate that closely related
substrains can be phenotypically divergent due to variants
accumulated by genetic drift (Kumar et al. 2013; Treger
et al. 2019). Drift within an inbred strain can also lead to
phenotypic divergence.

The presence of a genetic construct is designed to make
carriers phenotypically different from noncarriers (Lanigan
et al. 2020). Thus, the ability to detect genetic constructs will
enhance genetic QC. Currently, detection of constructs is
achieved by custom PCR designed for each construct in a
given mouse stock. Because this process is costly and time-
consuming, most researchers only test for the desired
construct(s) used in their experiment. Many mouse stocks
are the product of breeding mice with different constructs
(e.g., flox-flanked knockouts and Cre recombinase are

Copyright © 2020 by the Genetics Society of America
doi: https://doi.org/10.1534/genetics.120.303596
Manuscript received August 11, 2020; accepted for publication October 6, 2020;
published Early Online October 16, 2020.
Available freely online through the author-supported open access option.
Supplemental material available at figshare: https://doi.org/10.25386/genetics.
11971941.
1These authors contributed equally to this work.
2Corresponding author: Department of Genetics, University of North Carolina, CB
#7264, Genetic Medicine Building, Chapel Hill, NC 27599. E-mail: fernando_pardo-
manuel@med.unc.edu

906 J. S. Sigmon et al.

https://doi.org/10.1534/genetics.120.303596
https://doi.org/10.25386/genetics.11971941
https://doi.org/10.25386/genetics.11971941
mailto:fernando_pardo-manuel@med.unc.edu
mailto:fernando_pardo-manuel@med.unc.edu


simultaneously present in many stocks). This cross-breeding
and the common process of sharing genetically modified
stocks between groups can lead to the accumulation of ge-
netic constructs. A genetic QC platform that tests for multiple
commonly used constructs will therefore be highly desirable.
The MDA and the first two iterations of the MUGA arrays
were not designed to detect any constructs (Yang et al.
2009; Morgan et al. 2015). Efforts to extend the use of the
MUGA to detect genetic constructs were met with limited
success in GigaMUGA (Morgan et al. 2015).We conclude that
current genotyping tools are suboptimal for construct detec-
tion. For microarray-based construct detection, the most
valuable assays are those that can detect the most popular
constructs independent of site of insertion and the genetic
background of the sample.

In addition to its value as a genetic QC tool, a well-
designed genotyping array can also be a valuable tool for
experimental research. Two such areas of research are sex
chromosome biology and genetic mapping using reduced-
complexity crosses (RCC; Kumar et al. 2013; Bryant et al.
2020). RCC are predicated on the idea that if a heritable
phenotype is variable between a pair of closely related lab-
oratory substrains, then QTL mapping combined with a
complete catalog of the few thousand variants that differ
among these substrains can lead to the rapid identification
of the candidate causal variants (Kumar et al. 2013; Babbs
et al. 2019). The exact number of variants between a pair of
substrains, or within a set of substrains, varies substantially
but is several orders of magnitude fewer than between
classical strains (Mortazavi et al. 2020; M. T. Ferris, unpub-
lished data). This addresses one of the major limitations of
standard mouse crosses, namely the cost in time and re-
sources to move from QTL to quantitative trait variants
(Scalzo and Yokoyama 2008). The RCC concept has been
successfully demonstrated in crosses between C57BL/6J
and C57BL/6NJ (Kumar et al. 2013; Babbs et al. 2019),
but existing genotyping platforms do not support extension
to other crosses because of the lack of sufficient informative
markers to support robust QTL mapping. Identification of
such markers requires WGS from all parental substrains
used in the RCC. By definition, most of these markers will
be diagnostic for one substrain, thus improving genetic
background identification.

To address these limitations, we created a fourth iteration
of the MUGA family of arrays that we call MiniMUGA. The
central considerations for the design were to reduce genotyp-
ing costs, robustly determine chromosomal sex, providebroad
discrimination between most inbred strains and substrains,
and reliably detect the presence of popular genetic constructs.
We also incorporated diagnostic variants for multiple sub-
strains to expand RCC to crosses between those substrains.
MiniMUGA fulfills all our criteria and facilitates simple, uni-
form, and cost-effective standard genetic QC, as well as
serving the mouse community at large by providing a new
tool for genetic studies.

Materials and Methods

Reference samples

To test the performance of the MiniMUGA array, we geno-
typed 6899 DNA samples from a wide range of genetic
backgrounds, ages, and tissues (SupplementalMaterial, Table
S1). These samples include examples of inbred strains, F1
hybrids, experimental crosses, and cell lines (Table 1). The
array content was designed in two phases, resulting in pre-
liminary and production versions of the array. We genotyped
5604 samples in the preliminary version of the array contain-
ing 10,171 markers. We genotyped 1295 samples in the pro-
duction version of the array. The production version of the
array includes 954 additional markers selected to increase
coverage of diagnostic SNPs for selected substrains
(905 markers targeting 39 substrains) and additional con-
structs (45 markers targeting seven constructs). Samples
were genotyped to determine the marker performance and
information content, and to develop the multiple pipelines
discussed throughout this paper. Overall, 6300 samples were
genotyped once and 225 samples were genotyped two or
more times, resulting in a total of 6525 unique samples
genotyped.

Table S1 provides comprehensive information about each
of these samples including name, type, whether it was
genotyped in the preliminary or production version of the
array, whether it was used in the array calibration process,
and whether the sample was used to determine consensus
genotypes or thresholds for chromosomal sexdetermination.
Table S1 also lists chromosomal sex, basic QC metrics, and
values used to determine the presence of 17 constructs. A
complete description of the information provided inTable S1
is available in the table legend.

DNA stocks for inbred strains were purchased from The
Jackson Laboratory over a decade ago, or provided by the
authors. DNA frommost other sampleswas prepared from tail
clips or spleens using the DNeasy Blood & Tissue Kit (catalog
no. 69506; QIAGEN, Valencia, CA). Approximately 1.5-mg
genomicDNAper samplewas shipped toNeogen Inc. (Lincoln,
NE) for array hybridization and genotype calling.

Microarray platform and genotype calling

MiniMUGA is implemented on the Illumina Infinium XT
platform (Illumina, Inc., San Diego, CA). Invariable oligonu-
cleotide probes 50 bp in length are conjugated to silica beads
that are then addressed to wells on a chip. Sample DNA is
hybridized to the oligonucleotide probes and a single-base-
pair templated extension reaction is performed with fluores-
cently labeled nucleotides (Steemers et al. 2006). The relative
signal intensity from alternate fluorophores at the target nu-
cleotide is processed into a discrete genotype call (AA, AB, or
BB) using the Illumina GenomeStudio genotyping software
(Illumina). Although the two-color Infinium readout is opti-
mized for genotyping biallelic SNPs, both the total and rela-
tive signal intensity can also be informative for copy-number
variation and construct detection. For each marker in the
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preliminary array, we optimized the default clustering algo-
rithm with a training data set of 2698 high-quality samples
representing a wide variety of genetic backgrounds. Simi-
larly, the production content markers were calibrated using
1295 samples (Table S1).

Probe design

Of the 11,125 markers present in the production version
of the array, 10,819 (97.2%) are probes designed for biallelic
SNPs and the remaining 306 markers (2.6%) are probes
designed to test for the presence of genetic constructs (Table
S2). Nucleotides are labeled such that only one silica bead is
required to genotype most SNPs, except the cases of A/T and
C/GSNPs,which require twobeads. Tomaximize information
content, target SNPs were biased toward single-bead SNPs
(mostly transitions). There are 10,721 single-bead assays and
404 two-bead assays. All construct probes are single-bead
assays. The transition:transversion ratio in SNPs (excluding
constructs) is 3:1.

Probe annotation

Probe design and performance of individual assays was used
to annotate the array. Table S2 contains the following in-
formation: (1) marker name, (2) chromosome, (3) position,
(4) strand, (5–6) sequences for one- and two-bead probes,
(7–8) reference and alternate alleles at the SNP, (9) tier, (10)
reference SNP ID# (rsID), (11) diagnostic information, (12)
uniqueness, (13) X chromosome markers used to determine
the presence and number of X chromosomes, (14) Y chromo-
some markers used to determine the presence of a Y chromo-
some, and (15) markers added in the production version. A
complete description of the information provided in Table S2
is available in the table legend.

Chromosomal sex determination

We selected a set of 2348 control samples (1108 males and
1240 females) with known X and Y chromosome number,
as determined through standard anatomical sexing and/or
known reproductive status. In the case of mice with known
and well-defined genetics (inbreds and F1s), this was further
confirmed by homozygous or heterozygous status at chromo-
some X markers. For each sample, we first normalized the
intensity values at each X and Y chromosome marker by di-
viding the intensity (r) by the median intensity at all of the
autosomalmarkers in that sample. These autosome-normalized
intensity values are used in all subsequent sex-determination
calculations.

The next step of chromosomal sex determination was to
identify sex-linked markers that provide an estimate of sex
chromosome number consistent with the anatomical sex and
that have low between-sample noise.We identified 269 X and
72 Y sex-informative markers as those for which the ranges of
median normalized intensity, as defined by their standard
deviations not overlapping between male and female con-
trols (Figure S1). The identity of these markers is provided
in Table S2.

Next, we established chromosomal sex intensity threshold
values. For each sample, we plotted the medians of the
normalized intensity values at the X-informative markers on
the x-axis and the medians of the normalized intensity values
at the Y-informative markers on the y-axis (Figure 1). Based
on this plot we identified two clusters, one containing the
control males and one containing the control females (XY
and XX, respectively). These two clusters contain .99% of
the samples. Two additional clusters represent XO and XXY
aneuploids, and are located at the predicted X and Y areas
based on chromosomally normal males and females. Some
XOand XYY cases are confirmed through genetic analysis (see
the Results). We defined chromosomal sex (XX, XY, XO, and
XXY) thresholds as the midpoint between the relevant clus-
ters. There is a single Y threshold value (0.3) separating sam-
ples with or without a Y chromosome. We identified two
independent X threshold values (0.77 and 0.69) depending
onwhether the sample has a Y chromosome or not (Figure 1).
These threshold values were used to classify the chromo-
somal sex of experimental samples into four groups: XX, XY,
XO, or XXY.

Generation of consensus genotypes

The impetus for creating consensus genotypes for inbred
strains in MiniMUGA is to provide a set of reference genotype
calls for widely used strains.When possible, we included both
sexes and multiple biological and technical replicates of a
given inbred strain to smooth over any errors in genotyping
results, identify problematic markers, and to provide a more
robust set of reference calls for comparison.

For each of 241 inbred and recombinant inbred strains
(Table S3), we genotyped between 1 and 19 replicates (av-
erage 3.2 per strain). Most inbred strains (179) were geno-
typed more than once. For 53 strains (mostly recombinant
inbred lines from the BXD panel) we did not genotype amale,
and thus Y chromosome genotypes are not provided for those
strains. Over one-half of the strains (146) were genotyped
only in the preliminary version of the array, so genotypes at
markers added to the production version of the array are
missing in those strains. See Table S1 for details.

We generated consensus genotype calls at all 10,819
autosomal, X, pseudoautosomal region (note that this region
may vary among strains) (Morgan et al. 2019), and Y chro-
mosome markers (biallelic SNPs). For each strain, at each
marker, we recorded the genotype calls in all of the constit-
uent samples and determined the consistency among these
calls. For strains with more than one sample, if all calls were
consistent, the consensus genotype is shown in upper case (A,
T, C, G, H, or N). We define partially consistent calls as those
with a mix of one or more calls of a single nucleotide (A, T, C,
or G), and one or more H and/or N calls. Partially consistent
calls are shown in lower case, as are calls for strains with a
single constituent sample. Inconsistent calls are those for
which two distinct nucleotides calls are observed. Unless
noted, inconsistent genotypes within a strain are shown as
N in the consensus. Partially diagnostic SNPs (see below) are
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always inconsistent (both allele calls are present in a single
substrain), and the consensus call is the diagnostic allele
shown in lower case. For CC strains, inconsistent consensus
genotypes are shown as H, as these strains are known to be
not fully inbred (Srivastava et al. 2017; Shorter et al. 2019).
For mitochondria and Y chromosome markers, consensus
calls follow the same rules except H calls are treated as N.
Table S4 provides a list of rules for generating all possible
consensus calls. Table S5 provides a listing of the consensus
genotypes.

Informative SNPs between closely related substrains

To increase the specificity of MiniMUGA as a tool for discrim-
inating between closely related inbred strains, we used public
data from several other studies providing genotype or WGS
information (Yang et al. 2009; Keane et al. 2011; Adams et al.
2015; Morgan et al. 2015). Most importantly, we included
SNPs that are segregating between substrains. These SNPs
were identified by WGS of 33 substrains (Table 2). These
genome sequences will be made available as part of an up-
coming publication (M. T. Ferris, R. S. Baric, M. T. Heise,
C. M. Sassetti, and F. Pardo-Manuel de Villena, unpublished
results). Finally, we included 339 variants discriminating be-
tween substrains of C57BL/10 (provided by A. A. Palmer,
Y. Ren, and C. L. St. Pierre). The preliminary version of the
array included 5171 probes present in GigaMUGA (Morgan
et al. 2015). These were included to cover the genome uni-
formly in classical and wild-derived inbred strains, and a few
were also informative between substrains.

Probes for genetically engineered constructs

We designed and included 306 probes targeting commonly
used genetic constructs (257 in the preliminary phase and
49 in the production phase; Table S6). We identified con-
served 51-mers that fulfill the following three conditions: (1)
they are present in construct sequences available from either
Addgene or GenBank, (2) the 59 50-mers did not have
matches in the mouse genome, and (3) the last base pair of
the 51-mer is an A in the forward orientation or a T in the
reverse orientation. The alternative allele is either a C in the
forward orientation or a G in the reverse orientation. This
alternative allele is a requirement for Illumina array design
and does not represent a true SNP. Genotype calls at con-
struct probes are not relevant.

As these probes are only useful in the context of intensity,
and not in genotype calls, we developed a different pipeline to
classify these probes into tiers (Morgan et al. 2015; applied in
the Results to genomic SNPs). Because of the probe design,
we only assessed probes for their ability to have consistent
low raw normalized intensity in the x-axis in samples with
nonmanipulated genomes (585 samples from inbred strains
and 250 F1 hybrids, referred to as negative construct controls
in Table S1) and at least some samples with high raw nor-
malized intensity in our experimental data set. We elimi-
nated 79 probes from the analysis because they failed this
step (probes with purple labels in Figure S2A). We further

eliminated 50 probes from the analysis because the range of
variation in our experimental samples was not sufficiently
distinguishable from the negative controls, or we observed
a unimodal intensity distribution in the experimental samples
(probes with blue labels in Figure S2A). Our experience with
GigaMUGA suggested that a single construct probe was in-
sufficient to robustly classify samples with the presence or
absence of a construct (Morgan et al. 2015). Therefore, we
eliminated 14 probes from the analysis because of low corre-
lation of intensities across our experimental sample set
(probes with red labels in Figure S2, A and B). Figure S2B
shows the clusters based on the correlation of probe intensi-
ties. Finally, we confirmed that clustered probes were target-
ing the same or related constructs based on the Basic Local
Alignment Search Tool (Boratyn et al. 2013). These align-
ments are provided in Figure S3. In total, these 163 probes
mapped to 17 biologically distinct constructs (see Table 3).
For each of these constructs, we identified conservative
threshold values for the presence and absence based on the
sum intensity of the probes assigned to that construct. We
used the distribution of values to identify breaks and set the
thresholds such that we minimized the number of samples
misclassified as positive or negative. Positive controls (when
available) were used to validate our classification schema.

Additional sample quality metrics

Most quality metrics for genotyping arrays are based on ge-
notype calls. However, intensity-based analyses, such as chro-
mosomal sexdetermination, assumequasi-normal distribution
ofmarker intensities in a given sample (Figure S4). In our data
set, some samples had significantly skewed and idiosyncratic
intensity distributions. Among these samples, there were
several erroneously identifiedas sex chromosomeaneuploids.

To identify sampleswithabnormal intensity distributions,
we used 200 random samples with no chromosomal abnor-
malities and confirmed that, in aggregate, they have quasi-
normal intensity distribution (reference distribution) at the
autosomalmarkers of thepreliminary array content.We then
computed a power divergence statistic (pd_stat; equivalent
to Pearson’s chi square goodness of fit statistic) for each
sample, comparing its autosomal intensity distribution to
that of the reference distribution. Figure S5 shows the dis-
tribution of pd_stat values in our entire data set. We se-
lected a pd_stat value of 3230 as the threshold, and in
samples with higher values the reported chromosomal sex
could be incorrect. The pd_stat should be carefully scruti-
nized for samples with reported sex chromosome aneu-
ploidy. The threshold also ensures that in samples from
species other than Mus musculus, chromosomal sex deter-
mination is treated with skepticism.

To determine whether a high pd_stat had an effect on the
accuracy of genotyping callswe selected four pairs of different
F1 mice [(A/JxCAST/EiJ)F1_M15765; (CAST/EiJxA/J)
F1_F002; (CAST/EiJxNZO/HlLtJ)F1_F0019; (CAST/EiJxNZO/
HlLtJ)F1_F022; (NZO/HlLtJxNOD/ShiLtJ)F1_F0042; (NZO/
HlLtJxNOD/ShiLtJ)F1_F0042; (PWK/PhJxNZO/HlLtJ)
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F1_F0019 and (PWK/PhJxNZO/HlLtJ)F1_M0001] that
cover a variety of pd_stat contrasts (high/low, medium/
medium, and low/low). For each pair, we first determined the
pairwise consistency of the genotype calls and then compared
these genotypes to predicted calls for the consensus reference
parental inbred strains. Pairwise comparison consistencies in
the autosomes (excluding N calls) vary between 99.5 and
100%. Similarly, the consistency with predicted genotypes is
very high (99.5–100%). We conclude that the pd_stat is in-
dependent of genotype call quality.

Data availability

Genotype calls andhybridization intensity data (both rawand
processed) for 6899 samples, and consensus genotypes for
241 inbred strains are available for download at the Univer-
sity of North Carolina at Chapel Hill (UNC) Dataverse. These
data are posted at https://dataverse.unc.edu/dataverse/
MiniMUGA. Supplemental material available at figshare:
https://doi.org/10.25386/genetics.11971941.

Results

Sample set, reproducibility, and array annotation

The 599 technical replicates (Table S1, see Materials and
Methods) were used to calculate the reproducibility of the
genotype calls. Overall, 99.6 6 0.4% of SNP genotype calls
were consistent between technical replicates (range 95.9–
100%). The consistency rate was similar for replicates run
in the same and different versions of the array. Samples with
lower consistency rates included samples from more distant
species and subspecies (SPRET/EiJ, SFM, SMZ, MSM/MsJ
and JF1/Ms), lower-quality samples, and cell lines. Inconsis-
tency was typically driven by a small minority of markers and
by “no calls” in one or few of the technical replicates.

We annotated the array based on probe design and per-
formance of individual assays was used to annotate the array
(Table S2). Probes were classified in four tiers based on the
presence of reference, alternate, andH calls in our sample set.
Probes in tier 1 and2 (all three genotype calls present and two
genotype calls present, respectively) were used in most of the
genotype-based analyses. For tier 3 probes, only one genotype
call was present, while for tier 4 all samples had N calls. For
construct markers, this tier classification was not relevant.

Improved chromosomal sex determination reveals sex
chromosome aneuploidy due to strain-dependent
paternal nondisjunction

Typically, genetic determination of sex of a mouse sample has
relied on detecting the presence of a Y chromosome. This
approach does not estimate X chromosome dosage and thus
lacks the ability to identify samples with common types of sex
chromosome aneuploidies. MiniMUGA uses probe intensity
to discriminate between normal chromosomal sexes (XX and
XY) and two types of sex chromosome aneuploidies, XO and
XXY (Table S1). Our methodology (Materials and Methods)

provides a robust framework to discriminate between at
least four types of chromosomal sex (Figure 1). Our set of
6899 samples was composed of 3507 unique females (no Y
chromosome present) and 3018 unique males (Y chromo-
some present).

We initially identified 54 samples as potential XO and XXY.
However, in eight XO females the pattern of heterozygosity
and recombination in the X chromosome (Table S7) demon-
strated that these were, in fact, normal XX females with ab-
normal intensity distributions and pd_stat values above the
threshold (seeMaterials andMethods). Once these eight sam-
ples were removed, 46 samples that had sex chromosome
aneuploidies remained. To determine the rate of aneuploidy
we only considered unique samples (not replicates). This
resulted in 45 aneuploid samples among 6525 total unique
samples, an overall 0.7% rate. This rate was driven by a
highly significant excess (7X, x2 = 62.9384; P , 0.00001)
of sex chromosome aneuploids among the cell lines. Notably,
all these aneuploids were XO. Among live mice there were
36 unique aneuploids (a rate of 0.55%). This rate was similar
to but higher than that previously reported in both mice and
in humans (Searle and Jones 2002; Chesler et al. 2016; Le
Gall et al. 2017). In this data set, unique XO females were
observed at significantly higher frequency than unique XXY
males (P=0.02; 25 XO females and 11 XXYmales) (Table 1).

For 22 of the 45 unique samples with sex chromosome
aneuploidies, the parents were known and had informative
markers in the X chromosome. This information allowed us to
potentially determine the parental origin of the missing (in
XO) or the extra (in XXY) X chromosome based on the paren-
tal haplotype inherited and the presence of recombination in
the X chromosome (Figure 2 and Table S7). Overall, the
parental origin can be determined unambiguously in 21 of
these samples, and in all but one sample (95%) the aneu-
ploidy is due to sex chromosome nondisjunction in the pater-
nal germ line (Figure 2). Note that this applies to both XO and
XXY samples. Given the paternal origin of most sex chromo-
some aneuploidies, we investigated whether the type of sire
had an effect on this phenomenon. We observed a signifi-
cantly (P , 0.00001) higher rate of aneuploids in the prog-
eny of (CC029/Unc 3 CC030/GeniUnc) F1 hybrid males
compared with all other types of sires. Out of 180 progeny
of this cross, 5% of genotyped samples were aneuploids and
both XO and XXY were observed (three XO and six XXYmice,
respectively). There was also some evidence of a higher rate
of sex chromosome aneuploids in progeny of sires with
CC011/Unc background (five XO females, Table S7). We
conclude that sex chromosome aneuploidy is relatively com-
mon in laboratory mice, originates predominantly in the pa-
ternal germ line, and depends on the sire genotype. In some
backgrounds, aneuploidy rate is an order of magnitude
higher than in the general population.

Detection of Y chromosome mosaicism

There were eight samples (two classified as XX, three as XXY,
and three as XO) with abnormal chromosome Y intensities
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(either too low or too high) and with low number of chromo-
some Y genotype calls [between 6 and 56 calls compared
with 62.99 (mean)6 1.3 (SD) across all males]. These eight
samples are standard laboratory mice and are shown in gray
in Figure 1. The intensity and genotypes strongly suggest the
presence of a Y chromosome that can be explained either by
mosaicism or an incomplete Y chromosome. We performed
several additional analyses to discriminate between these
two explanations.

As a test case, we selected the tail-derived sample TL9348
(Tables S1 and S8) because it was expected to be an F1 hybrid
male derived from a C57BL/6J and 129X1/SvJ outcross
(Figure 3A), and chromosomal sex was not questionable
based on its pd_stat (137). Based on chromosome intensity,
this sample was classified as an XXY male with low chromo-
some Y intensity (Figure 3B). Inspection of the genotype calls
on chromosome X revealed a significant excess of N calls
compared with the autosomes (P, 0.00001, Table S8). Fur-
thermore, the H calls on the X chromosome in this sample
only occurred at SNPs where C57BL/6J and 129X1/SvJ have
different alleles, but these H calls occur only at a fraction of
expected sites. These H calls are present over the entire X
chromosome. The fact that sample TL9348 has approxi-
mately one half of the Y chromosome intensity of XY or XXY
males, and that there is evidence of heterozygosity on the X
chromosome, suggests that the mosaicism is due to the loss of
both the Y chromosome and one of the two X chromosomes in
a fraction of cells. To test this hypothesis, we plotted the in-
tensity of informative X chromosome markers for three types
of controls—C57BL/6J, 129X1/SvJ, and F1 hybrid females—
derived from those two inbred strains, as well as for the
suspected mosaic sample TL9348 (Figure 3C). For sample
TL9348, the vast majority of the informative markers were
clustered between the C57BL/6J and the F1 hybrid geno-
types (Figure 3C). This pattern explains the observed mix
of N calls, heterozygous calls, and C57BL/6J calls in sample
TL9348 and confirms its mosaic nature. It further demon-
strates that the X chromosome lost is the one from 129X1/
SvJ. Based on the positions of the intensities for the Y and X
chromosome makers in Figure 3, A and B, respectively, we

concluded that slightly less cells were XXY than XO (Figure 3,
C and D). Considered together, these results indicate that the
embryo started as an XXY due to paternal nondisjunction of
the sex chromosomes and that mosaicism occurred in early
development, a common observation in embryo mosaicism in
humans (Johnson et al. 2010; Fragouli et al. 2011; McCoy
2017).

Among the remaining seven potential mosaics, one was a
cell line and thus mosaicism of the sex chromosomes was not
unexpected. For the other six samples we performed a similar
analysis as the one described above. In all cases, the Y chro-
mosome calls were consistent with those expected from their
sires. This is consistent with Y chromosome mosaicism and
not with sample contamination. However, only the two sam-
ples with 50 or more genotype calls on the Y chromosome
have strong support for such a conclusion. In the Discussion
we expand this analysis and provide some guidance for users
of the array.

Strain-specific chromosome Y duplications

Among XYmales there was a distinct cluster of 64 male sam-
ples with higher normalized median Y chromosome intensity
(Figure 1). These samples include five inbred C3H/HeJ, two
F1 hybrid males with a C3H/HeJ chromosome Y (Figure 4A),
and 52 males derived from a C3H/HeJ by C3H/HeNTac F2
intercross. The plot of the normalized Y chromosome inten-
sities in these males and 81 additional males with Y chromo-
somes derived from other C3H/He substrains (Figure 4A)
revealed a clear separation between males carrying a Y chro-
mosome from C3H/HeJ and males carrying C3H/HeNCrl,
C3H/HeNHsd, C3H/HeNRj, C3H/HeNTac, and C3H/HeOuJ
Y chromosomes. Males with the high-intensity Y chromosome
also include two transgenic strains from The Jackson Labo-
ratory: B6C3-Tg(APPswe, PSEN1dE9)85Dbo/Mmjax and B6;
C3-Tg(Prnp-SNCA*A53T)83Vle/J. Both strains were devel-
oped and/or maintained on a B6C3H background (JAX
Stocks 34829-JAX and 004479, respectively).

To determine the origin of the higher median intensity in
males with a C3H/HeJ Y chromosome, we plotted the nor-
malized intensities at 59 MiniMUGA markers located on the

Table 1 Sample set

Content Chromosomal sex Inbred F1 CC Cross Unclassified Cell lines Total

Preliminary XX 138 131 305 1383 817 87 2861
XY 265 41 181 1236 907 74 2704
XO 0 1 3 11 8 9 32
XXY 0 1 1 2 3 0 7

Subtotal 5604
Production XX 41 59 40 580 21 4 745

XY 153 13 7 248 112 10 543
XO 0 1 0 2 0 0 3
XXY 0 0 0 4 0 0 4

Subtotal 1295
Total 597 247 537 3466 1868 184 6899

The table provides the number of samples genotyped in the preliminary and production version of the array classified according their chromosomal sex and type. CC,
collaborative cross; Cross, experimental back- and intercrosses; unclassified, samples provided by the coauthors that may be of any type.
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short arm of chromosome Y and the four most proximal
markers on the long arm of that chromosome (Figure 4B).
Inspection of this figure indicates that 54 consecutive
markers have distinctly higher intensities in C3H/HeJ males
and are flanked by markers with intensities that are undis-
tinguishable frommales with other C3H/He Y chromosomes.
These markers define a 2.9-Mb region located on the short

arm of the Y chromosome containing seven known
genes—Eif2s3y, Uty, Ddx3y, Usp9y, Zfy2, Sry, and Rbmy—
and 12 gene models (Figure 4B). We conclude that C3H/
He substrain differences are due to an intrachromosomal du-
plication that arose and was fixed in the C3H/HeJ lineage
after the isolation of that substrain in 1952 (Akeson et al.
2006). There are five additional non-C3H/He samples with

Figure 1 Chromosomal sex determination in 6899 samples. Each circle and cross represent one genotyped sample. The x-axis value is the autosome-
normalized median sample intensity at 269 sex-informative X chromosome markers, and the y-axis value is the autosome-normalized median sample
intensity at 72 sex-informative Y chromosome markers. The dot color denotes the assigned chromosomal sex: XX, red; XY, blue; XO, green; and XXY,
purple. Potential mosaic samples are shown in gray and known errors in yellow. Samples with pd_stat lower than the threshold are shown as circles and
samples with high pd_stat are shown as crosses.
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Table 2 Sequenced inbred mouse strains used to select the content of the genotyping array.

Background Strain group Diagnostic type Full Partial Reference

129P2/OlaHsd 129P Substrain 25 0 Keane et al. (2011); Doran et al. (2016)
129P3/J 129P Substrain 54 0 M. T. Ferris et al., unpublished results
129S1/SvImJ 129S Substrain 82 13 Keane et al. (2011); Doran et al. (2016)
129S2/SvHsd 129S Substrain 7 1 M. T. Ferris et al., unpublished results
129S2/SvPasOrlRj 129S Substrain 36 0 M. T. Ferris et al., unpublished results
129S4/SvJaeJ 129S Substrain 45 0 M. T. Ferris et al., unpublished results
129S5/SvEvBrd 129S Substrain 12 0 Keane et al. (2011); Doran et al. (2016)
129S6/SvEvTac 129S Substrain 41 0 M. T. Ferris et al., unpublished results
129T2/SvEmsJ 129T Substrain 38 0 M. T. Ferris et al., unpublished results
129X1/SvJ 129X Substrain 39 0 M. T. Ferris et al., unpublished results
A/J A Substrain 58 7 Keane et al. (2011); Doran et al. (2016)
A/JCr A Substrain 53 0 M. T. Ferris et al., unpublished results
A/JOlaHsd A Substrain 38 0 M. T. Ferris et al., unpublished results
BALB/cAnNCrl BALB/c Substrain 36 2 M. T. Ferris et al., unpublished results
BALB/cAnNHsd BALB/c Substrain 109 4 M. T. Ferris et al., unpublished results
BALB/cByJ BALB/c Substrain 3 4 M. T. Ferris et al., unpublished results
BALB/cByJRj BALB/c Substrain 19 0 M. T. Ferris et al., unpublished results
BALB/cJ BALB/c Substrain 103 3 Keane et al. (2011); Doran et al. (2016)
BALB/cJBomTac BALB/c Substrain 47 0 M. T. Ferris et al., unpublished results
C3H/HeJ C3H/He Substrain 166 2 Keane et al. (2011); Doran et al. (2016)
C3H/HeNCrl C3H/He Substrain 39 0 M. T. Ferris et al., unpublished results
C3H/HeNHsd C3H/He Substrain 39 1 M. T. Ferris et al., unpublished results
C3H/HeNRj C3H/He Substrain 42 0 M. T. Ferris et al., unpublished results
C3H/HeNTac C3H/He Substrain 45 14 M. T. Ferris et al., unpublished results
C57BL/6J C57BL/6 Substrain 136 20 Sarsani et al. (2019)
C57BL/6JBomTac C57BL/6 Substrain 41 2 M. T. Ferris et al., unpublished results
C57BL/6JOlaHsd C57BL/6 Substrain 43 0 M. T. Ferris et al., unpublished results
C57BL/6NJ C57BL/6 Substrain 37 7 Keane et al. (2011); Doran et al. (2016)
C57BL/6NRj C57BL/6 Substrain 20 0 M. T. Ferris et al., unpublished results
B6N-Tyr , c-Brd./BrdCrCrl C57BL/6 Substrain 21 10 M. T. Ferris et al., unpublished results
DBA/1J DBA/1 Substrain 70 0 Keane et al. (2011); Doran et al. (2016)
DBA/1LacJ DBA/1 Substrain 77 2 M. T. Ferris et al., unpublished results
DBA/1OlaHsd DBA/2 Substrain 32 0 M. T. Ferris et al., unpublished results
DBA/2J DBA/2 Substrain 112 0 Keane et al. (2011); Doran et al. (2016)
DBA/2JOlaHsd DBA/2 Substrain 39 0 M. T. Ferris et al., unpublished results
DBA/2JRj DBA/2 Substrain 30 0 M. T. Ferris et al., unpublished results
DBA/2NCrl DBA/2 Substrain 85 14 M. T. Ferris et al., unpublished results
DBA/2NTac DBA/2 Substrain 36 10 M. T. Ferris et al., unpublished results
FVB/NCrl FVB Substrain 47 0 M. T. Ferris et al., unpublished results
FVB/NHsd FVB Substrain 39 1 M. T. Ferris et al., unpublished results
FVB/NJ FVB Substrain 72 7 Keane et al. (2011); Doran et al. (2016)
FVB/NRj FVB Substrain 47 0 M. T. Ferris et al., unpublished results
FVB/NTac FVB Substrain 37 0 M. T. Ferris et al., unpublished results
NOD/MrkTac NOD Substrain 33 0 M. T. Ferris et al., unpublished results
NOD/ShiLtJ NOD Substrain 51 3 Keane et al. (2011); Doran et al. (2016)
Subtotal 2281 127
129S 129S Strain group 17 0
A A Strain group 57 0
BALB/c BALB/c Strain group 125 0
C3H/He C3H/He Strain group 45 0
C57BL/10 C57BL/10 Strain group 291 0 Mortazavi et al. 2020
C57BL/6 C57BL/6 Strain group 19 0
DBA/1 DBA/1 Strain group 5 0
DBA/2 DBA/2 Strain group 62 0
FVB/N FVB/N Strain group 2 0
NZO NZO Strain group 12 0 Keane et al. (2011); Doran et al. (2016)
Subtotal 635 0
Total 2916 127

The table provides the strain name and group, the number and type for both fully and partial diagnostic SNPs, and the source of the whole-genome sequencing data.
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high normalized median chromosome Y intensity, four tech-
nical replicates from a single DBA/1OlaHsdmale and a single
Axl2/2 congenic mouse on a C57BL/6 background (Figure
4A). Each case represents an independent (different haplo-
type and different boundaries, Figure S6) and very recent
duplication of the Y chromosome. These duplications were
segregating within a closed colony. Given that we identified
three independent large segmental duplications in the short
arm of the Y chromosome among 3018 unique males (Table
1), this leads to a crude mutation rate estimate of 1/1000.
This mutation rate is slightly lower than some segmental
duplications in the mouse (Egan et al. 2007), higher than
the mutation rate in microsatellites (Dallas 1992), and con-
sistent with high levels of structural variation in the short arm
of the Y chromosome in wild mice (Morgan and Pardo-
Manuel de Villena 2017).

An effective tool for genetic QC in laboratory
inbred strains

To determine the performance of MiniMUGA among inbred
strains we genotyped 779 samples representing 241 inbred
strains including 86 classical inbred strains, 34 wild-derived
inbred strains, 49 BXD recombinant inbred lines, and 72 CC
strains (Table S3). We created consensus genotypes for each
inbred strain using both biological and technical replicates
(see the Materials and Methods). The use of replicates
strengthens genetic analyses as they provide a simple but
robust method to determine the performance of each SNP
in each strain (see the Discussion), as well as determining
the dates when diagnostic alleles arise and potentially be-
came fixed (see Diagnostic SNPs as a tool for genetic QC and
strain dating). We note that for the CC strains, which are
incompletely inbred (Srivastava et al. 2017; Shorter et al.

2019), our consensus calls should be treated with caution
and viewed as preliminary. This is particularly true given that
they were based on a small number of individuals sampled
from the UNC Systems Genetics Core Facility colony (Morgan
et al. 2015, http://csbio.unc.edu/CCstatus/index.py) be-
tween 2016 and 2017 (Shorter et al. 2019). Future sampling
of a wider range of individuals from CC strains throughout
the history of the CC colony will result in more accurate
consensus genotypes for these strains.

Using the consensus genotypeswe determined the number
of informativemarkers for pairwise combinations of all inbred
strains (excluding BXD and CC). Figure 5 summarizes the
results for 83 classical inbred strains. Over 90% of compari-
sons have$1280 informative autosomal markers and all but
0.52% of pairwise comparisons have .40 informative auto-
somal markers (2.1 markers per autosome). These statistics
are exceptional given the small number of markers in the
array, and considering the number of diagnostic markers in-
cluded and a substantial number of construct markers. Al-
though our focus is on classical inbred strains, we extended
the analysis to include 37 wild-derived strains. For all
2924 combinations of classical and wild-derived strains, the
informativeness is high (mean = 3224, minimum = 1649,
and maximum= 3827, data not shown). In marked contrast,
combinations between wild-derived strains have a much
wider range of informative SNPs (from 93 to 3410, data
not shown) due to a fraction of combinations with few to a
moderate number of informative SNPs. The pairs of strains
with the lowest number of informative SNPs include pairs of
strains from a taxa other than M. musculus (for example
SPRET/EiJ, SMZ, and XBS) and pairs of strains that are
known to have close phylogenetic relationships (TIRANO/
EiJ and ZALENDE/EiJ; and PWD and PWK/PhJ) (Yang

Table 3 Validated constructs

Name Abreviation Number of probes Number of distinct probes

“Greenish” Fluorescent Protein (EGFP, EYFP, and ECFP) g_FP 19 19
SV40 large T antigen SV40 18 18
Cre recombinase Cre 16 12
Tetracycline repressor protein tTA 14 14
Diptheria toxin DTA 11 11
Human CMV enhancer version b hCMV_b 10 7
Luciferase and firefly luciferase Luc 10 10
Chloramphenicol acetyltransferase chloR 9 9
Bovine growth hormone poly A signal sequence bpA 8 4
iCre recombinase iCre 8 8
Reverse improved tetracycline-controlled transactivator rtTA 8 4
CRISPR associated protein 9 cas9 7 7
Blasticidin resistance BlastR 6 4
Internal Ribosome Entry Site IRES 6 6
hCMV enhancer version a hCMV_a 5 4
“Reddish” fluorescent protein (tdTomato, mCherry) r_FP 6 6
Herpesvirus TK promoter hTK_pr 2 2
Total 163 145

The table lists the name, abbreviation shown in the report and the number of total and distinct probes for 17 constructs validated in the data set reported here. EGFP,
enhanced green fluorescent protein; EYFP, enhanced yellow fluorescent protein; ECFP, enhanced cyan fluorescent protein; CMV, cytomegalovirus; hCMV, human
cytomegalovirus; SV40, simian virus 40; TK, thymidine kinase.
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et al. 2011). We conclude that MiniMUGA improves cost-
effective genotyping for dozens of standard laboratory strains
and experimental crosses derived from them.

Mitochondria

MiniMUGA has 88 markers that track the mitochondrial
genome, 82ofwhich segregate in our set of 241 inbred strains.
Based on these 82markers, the inbred strains can be classified
into 22 different haplogroups, 19 of which discriminate be-
tween M. musculus strains (Figure 6A). Fifteen haplogroups
representM. m. domesticus (groups 1 to 15 in Figure 6A) two
haplogroups represent M. m. musculus (16 and 17), and two
M. m. castaneus (18 and 19). Three haplogroups represent
different species such as M. spretus and M. macedonicus.

In M. musculus, nine haplogroups are present in multiple
inbred strains while 10 are found in a single inbred strain.
The most common haplogroup is present in 158 inbred
strains (including 49 BXD and 26 CC strains). This hap-
logroup is found in many classical inbred strains including
C57BL6/J, BALB/cJ, A/J, C3H/HeJ, DBA/1J, DBA/2J, and
FVB/NJ. Unique haplogroups represent an interesting mix
of wild-derived strains (LEWES/EiJ, CALB/Rk, WMP/Pas,
SF/CamEiJ, TIRANO/EiJ, ZALENDE/EiJ, and CIM) and
DBA/2 substrains (DBA/2JOlaHsd and DBA/2NCrl). CC
strains fall into six common haplogroups, one shared by three
CC founders (A/J, C57BL/6J, and NOD/ShiLtJ) and five
haplogroups present in a single CC founder: PWK/PhJ,

129S1/SvImJ, CAST/EiJ, NZO/HlLtJ, and WSB/EiJ.
Interestingly, SMZ, a wild-derived inbred strain ofM. spretus
origin, has a mitochondrial haplogroup that unambiguously
clusters with M. m. domesticus (Figure 6A) demonstrating
a case of interspecific introgression (Didion and Pardo-
Manuel de Villena 2013).

Chromosome Y

MiniMUGA has 75 markers that track the Y chromosome,
57 of which segregate in our set of 189 inbred strains with
at least one male genotyped. Based on these 57 markers, the
inbred strains can be classified into 18 different haplogroups,
16 of which are M. musculus (Figure 6B). Only four hap-
logroups representM. m. domesticus, two haplogroups repre-
sent M. m. castaneus, and 11 represent M. m. musculus. M.
spretus and M. macedonicus are represented by a single hap-
logroup each. In M. musculus, all but one haplogroup (CIM)
are present in multiple inbred strains. No single haplogroup
dominates in our collection of inbred strains (the most com-
mon is present in 38 inbred strains). Interestingly, C57BL/6
substrains fall into three distinct haplogroups. The ancestral
haplogroup is found in C57BL/6ByJ, C57BL/6NCrl, C57BL/
6NHsd, C57BL/6NJ, C57BL/6NR,j and B6N-Tyr , c-Brd./
BrdCrCrl. This haplogroup is present in other classical inbred
strains such as BALB/c, C57BL/10, C57BLKS/J, C57L/J, and
C58/J. The second haplogroup is present in C57BL/
6JBomTac, C57BL/6JEiJ, and C57BL/6JOlaHsd. Finally,

Figure 2 Sex chromosome aneuploidy is due to paternal nondisjunction. The figure shows the parental sex chromosome and mitochondrial comple-
ment of the dam and sire for two types of crosses. Only the sex chromosomes and the mitochondria are shown. The X chromosomes are shown as long
acrocentric, the Y chromosomes as shorter submetacentric, and the mitochondria as circles. The figure also shows the inferred parental origin of the sex
chromosome aneuploidy and the actual number of cases observed in our data set. The sex chromosome configuration of standard types of sex
chromosome aneuploidy in the progeny in each type of cross are shown with the inferred parental origin of the X chromosomes.
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C57BL/6J has its own private derived haplogroup shared
with 10 CC strains. Each one of the eight founder strains of
the CC (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/
HlLtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) has its own distinct
haplogroup.

Diagnostic SNPs as a tool for genetic QC and
sample dating

Wedefine SNPs as diagnostic when theminor allele is present
only in a single substrain or in a set of closely related sub-
strains. The identification of these SNPs for inclusion in the
array is based onWGS of 12 publicly available strains (Keane
et al. 2011; Adams et al. 2015), 33 substrains sequenced by
us, and SNP data for the C57BL/10 strain group (Table 2).
Almost 30% of the SNPs (3045) inMiniMUGA are diagnostic.
Although diagnostic SNPs have low information content (i.e.,
most samples in a large set of genetically diverse mice will be
homozygous for the major allele) they fulfill two critical ob-
jectives. First, they increase the specificity of the MiniMUGA
array to identify the genetic background present in a sample.
In addition, they are essential to extend the power of genetic
mapping in RCC beyond the C57BL/6J-C57BL/6NJ paradigm
(Kumar et al. 2013; Treger et al. 2019).

The 3045 diagnostic SNPs can be divided into two classes
based on whether they are diagnostic for a specific substrain
(i.e., BALB/cJBomTac or C3H/HeJ) or two or more sub-
strains within a strain group (i.e., BALB/c or C3H/He). There
are 2408 SNPs that are diagnostic for one of 45 substrains
and 637 SNPs diagnostic for one of 10 strain groups (Table
2). A second classification divides diagnostic SNPs into fully
diagnostic (2910) and partially diagnostic SNPs (129). The
difference between these two classes is based on whether
the diagnostic allele was fixed or was still segregating in the
samples used to determine the consensus genotypes of
45 classical inbred strains.

All diagnostic SNPs originated as partially diagnostic
SNPs and they highlight the often-overlooked fact that
mutations arise in all stocks and some become fixed despite
the best efforts to reduce their frequency and impact (Sarsani
et al. 2019). Note that the classification of a SNP as partially
diagnostic depends on the samples used for the consensus
calls.

It is theoretically possible to date when diagnostic SNPs
arose and whether and when they became fixed in the main
stock of a substrain. This requires genotyping of cohorts of
mice separated from the main stock at known dates. The

Figure 3 Complex sex chromosome aneuploidy and mosaicism in an F1 male. (A) The panel shows the chromosomal sex and mitochondria complement
of the parents and F1 individual. Blue denotes C57BL/6J and red denotes 129X1/SvJ. (B) This panel is a reprint of Figure 1 and was used to classify the F1
male, shown as a yellow circle, as an XXY based on the x- and y-axis intensities (two X chromosomes and a Y chromosome present). This panel also
provides evidence of mosaicism for the presence and absence of the Y chromosome (based on the low Y chromosome intensity). (C) This panel provides
evidence of mosaicism for the X chromosome and identifies the paternal origin (129X1/SvJ) of the chromosome lost in some cells. The plot presents the
intensities of the two alternate alleles for 173 X chromosome markers that are informative between the two parents. Four individuals are shown: a C57BL/
6J female in blue, a 129X1/SvJ male in red, a (C57BL/6Jx129X1/SvJ)F1 female in gray, and the F1 male case in yellow. The shapes denote the type of call
made by the Illumina software: circles are homozygous A, T, C, or G calls; triangles are H calls; and squares are N calls. (D) This panel shows the proposed
sex chromosome complement of the two types of cells present in this F1 male case. This solution explains the observations from previous three panels.
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confidence of the inferences will depend on the size of those
cohorts. Those cohorts can be historical samples or extant
inbred strains derived at known dates from one or more
substrains, such as panels of recombinant inbred lines (RILs),
congenics, and consomics.

Wehave twosuchpanels inour sample set: theBXDand the
CC RIL. In the former, we determined whether diagnostic
alleles forC57BL/6JandDBA/2Jwerepresent in49BXDRILs.
These RIL were generated in three different epochs: 22 of the
genotyped BXD lines belong to epoch I (Taylor et al. 1973),
four belong to epoch II (Taylor et al. 1999), and 23 belong
to epoch III (Peirce et al. 2004). In the CC population we
determined whether diagnostic SNPs for C57BL/6J, A/J,
129S1/SvImJ, and NOD/ShiLtJ were present in 72 CC RILs.
CC strains were generated in two waves and at three inde-
pendent sites from inbred mice originally obtained from The
Jackson Laboratory in 2004 and 2007 (Collaborative Cross
Consortium 2012). For each SNP, we determined in which
relevant cohort the diagnostic allele was first observed, and if

and when it became fixed. This analysis depended on the
number of cohorts relevant for a given substrain and the
number of samples per cohort. Note that the analysis for a
given substrain may integrate multiple cohorts from different
populations as long as the year of origin is known. For the five
substrains analyzed here, there is considerable variation in
the number of cohorts and samples (Table 4). Note that only
diagnostic SNPs included in the preliminary phase were used
in this analysis because most CC and BXD samples were only
genotyped with that version of the array. Also note that the
number of independent samples used to establish the consen-
sus is critical to gauge the strength of support for date of
fixation of diagnostic alleles in that cohort (Tables S1, S4,
and S5). Finally, in the analyses involving the consensus co-
horts, we excluded 33 samples because they represent DNA
acquired from The Jackson Laboratory .10 years ago.

C57BL/6J is the only shared parental strain in the BXD and
CC panels, it is also the most popular inbred strain for exper-
imental biologists, and it is the basis for the mouse reference

Figure 4 Segmental chromosome Y duplications in laboratory strains. (A) Normalized median Y chromosome intensity in selected samples with C3H/He,
DBA/1, and C57BL/6 Y chromosomes. Within the C3H/He group, samples with a C3H/HeJ Y chromosome are shown in orange while samples with any
other C3H/He Y chromosome are shown in blue. For DBA/1, there are multiple technical replicates of a single sample with abnormally high intensity
shown in orange. For C57BL/6, there is only one sample with abnormally high intensity. The shape of the point reflects the type of mouse. (B) Range of
normalized intensity distributions located at 63 SNPs on the short arm and the beginning of the long arm of Y chromosome in the C3H/He samples
shown in (A). The range of intensities (mean 6 SD) in samples with a C3H/HeJ Y chromosome are shown in orange while samples with any other types
of C3H/He Y chromosomes are shown in blue. At the top of the panel, the potential duplication is shown in red, transition regions with uncertain copy
number are shown in pink, and normal copy numbers are shown in black. The bottom of the panel shows the location of the MiniMUGA markers and
genes. MUGA, Mouse Universal Genotyping Array.
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genome. Therefore, we selected C57BL/6J as an example for
the procedure and utility for dating diagnostic alleles. The
156C57BL/6Jdiagnosticmarkerswere classifiedbasedon the
earliest observation and apparent fixation in Table 5. Notably,
141 SNPs were distributed in 8 of the 15 possible birth/

fixation pairwise configurations (Table 5). The remaining
15 SNPs were segregating in the most recent cohort, with
one half of them segregating since 2004. These SNPs proba-
bly represent variants present in the original pair used in the
genetic integrity program at The Jackson Laboratory (Sarsani

Figure 5 Number of informative SNP calls in pairwise comparisons among classical inbred strains. Strains are ordered by similarity and colors represent
the range of number of informative SNPs based on the consensus genotypes. Only homozygous base calls, at tier 1 and 2 markers, on the autosomes, X,
and pseudoautosomal region are included.
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Figure 6 Haplotype diversities. Haplotype diversities of the mitochondria (A) and chromosome Y (B). The trees are built based on the variation present in
MiniMUGA and may not represent the real phylogenetic relationships. Colors denote the subspecies-specific origin of the haplotype in question: shades
of blue represent M. m. domesticus haplotypes; shades of red represent M. m. musculus haplotypes; and shades of green represent M. m. castaneus
haplotypes. The arrow in panel (A) identifies a M. spretus strain with a M. m. domesticus mitochondria haplotype. MUGA, Mouse Universal Genotyping
Array.
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et al. 2019). The dates of origin and fixation for C57BL/6J,
A/J, 129S1/SvImJ, NOD/ShiLtJ, and DBA/2J diagnostic
SNPs are provided in Table S2.

The birth and fixation of diagnostic alleles can be used to
determine the origin and breeding history of a given sample of
the appropriate background, and thus estimate the expected
level of drift (see Discussion). The presence of segregating
variants for C57BL/6J, A/J, 129S1/SvImJ, and NOD/ShiLtJ
at the initiation of the CC project will result in CC strains that
share identical haplotypes but may be functionally different
due to one of those variants, as has been observed for gene
deletion in the BXD panel (Anderson et al. 2002; Mulligan
et al. 2012).

To test whether it is possible to use the diagnostic SNPs
with known dates of origin and fixation (Table S2) to de-
termine the breeding history of a given sample or stock, we
selected the 156 C57BL/6J diagnostic SNPs as a test case. The
key step in this analysis is to identify all SNPs in the sample that
have the ancestral allele at fixed diagnostic SNPs. These SNPs
identify genomic regions in that sample that have not been

refreshed sincefixationof theSNPs.Conversely, SNPswith the
derived (diagnostic) allele identify regions in the sample that
have been in contact with the main stock since the date of
origin of that derived allele. Figure 7 shows the result of this
analysis in three samples with different patterns. Figure 7A
shows a knockout mouse from a line created prior to epoch III
of the BXD panel and bred independently from the C57BL/6J
stock since at least 2004. The former conclusion is based on
the fact that we detect the ancestral allele at 21 SNPs that
were fixed in the C57BL/6J stock prior to epoch III (Table 5).
The latter is based on the observation of ancestral alleles at
36 SNPs that were fixed by 2004 (Table 5) and that these
markers are distributed across 14 chromosomes. Figure 7B
shows a transgenic mouse from a line created prior to the
initiation of the CC (2004) and bred independently from
the C57BL/6J stock since them. Both conclusions are based
on the fact that there are zero ancestral alleles at any of 75 di-
agnostic SNPs fixed by epoch III (Table 5), the detection of
the ancestral allele at 18 SNPs that were fixed prior to the
CC (Table 5), and that these markers are distributed across

Table 4 Dating the origin and fixation of diagnostic SNPs in five mouse inbred strains

Substrain Cohort Year Number of samples Range of alleles sampled

Diagnostic allele

Absent Segregating Fixed

C57BL/6J BXD E1 1971 22 11 156 0 0
BXD E2 1996 4 0–4 84 72 0
BXD E3 2001–2009 24 (23) 11.5 50 31 75
CC 2004–2007 483 (72) 4–18 8 30 118

Consensusa 2010–2016 15 (1) 15 0 20 136
DBA/2J BXD E1 1971 22 11 105 7 0

BXD E2 1996 4 0–4 37 62 13
BXD E3 2001–2009 24 (23) 11.5 24 75 13

Consensusa 2010–2016 3 (1) 3 0 0 112
A/J CC 2004–2007 483 (72) 2–22 2 11 47

Consensusa 2010–2016 10 (1) 10 0 5 55
129S1/SvImJ CC 2004–2007 483 (72) 3–42 1 6 81

Consensusa 2010–2016 10 (1) 10 0 4 84
NOD/ShiLtJ CC 2004–2007 483 (72) 4–43 1 2 34

Consensusa 2010–2016 8 (1) 8 0 1 36

This table lists the name of the substrain, the cohorts used for dating the diagnostic SNPs, the approximate year(s) when these cohorts were derived from the main stock, the
number of samples genotyped, and the range of alleles sampled. When the number of samples does not match the number of strains, the number of strains is shown in
parentheses. Diagnostic alleles are classified as absent, segregating, and fixed for each substrain and cohort, and the table provides the total number in each category.
a In this analysis, we excluded samples purchased from The Jackson Laboratory (the sample names include the suffix jaxDNA) over a decade ago in the consensus cohorts.
Details are provided in the text. CC, Collaborative Cross; BXD, recombinant inbred BXD panel

Table 5 Full dating of diagnostic alleles for the C57BL/6J substrain

Apparent fixation

Not fixedBXD E1 BXD E2 BXD E3 CC Consensusa

Earliest observation BXD E1 0 0 0 0 0 0
BXD E2 NA 0 67 1 4 0
BXD E3 NA NA 8 18 8 0
CC NA NA NA 24 4 14

Consensusa NA NA NA NA 2 6

The table classifies 156 diagnostic SNPs into one of 20 categories based on the earliest observation (origin) and apparent date of fixation based on whether the diagnostic
allele is observed in BXD and CC strains with the C57BL/6J haplotype at each loci. Temporally impossible cells are shown as NA. BXD, Recombinant inbred BXD panel;
CC, collaborative cross.
a In this analysis, we excluded samples purchased from The Jackson Laboratory (the sample names include the suffix jaxDNA) over a decade ago in the consensus cohorts.
Details are provided in the text.
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13 chromosomes. Finally, Figure 7C shows a wild-type
C57BL/6J mouse derived from the JAX colony after 2004.
This conclusion is based on the lack of ancestral alleles at
any of 124 fixed diagnostic SNPs and the presence of a de-
rived allele at three SNPs that arose after the CC (Table 5).
Notably, these conclusions are consistent with the expecta-
tions of the contributors of these samples.

Expansion of reduced complexity crosses to a large
number of substrains

We define RCC as crosses between substrains derived from a
single inbred strain that differed only at mutations that arose
after they were isolated and bred independently from a

common stock. We tested the ability of MiniMUGA to effi-
ciently cover the genome in 78 different RCC between sub-
strains for which we had consensus genotypes, WGS, and for
which live mice were available from commercial vendors (see
Table 2). We focused our analysis on this group given that
WGS of both substrains is required for rapid identification of
causative variant(s) (Kumar et al. 2013; Treger et al. 2019).
We used the distance to the nearest informative marker to
estimate how well MiniMUGA covers the genome in a given
RCC cross. Figure 8 and Table S9 summarize these data, and
demonstrate that for 62 RCC (82%) all of the genome is
covered by a linked marker and in 14 RCC (18%) between
95 and 99.5% of the genome is covered by a linked marker.

Figure 7 Sample dating and breeding history of
mice with C57BL/6J background. Red bars denote
the ancestral allele for diagnostic SNPs fixed by E3 in
the BXD panel. Pink bars denote ancestral alleles for
diagnostic SNPs fixed by the start of the CC. Light
blue bars denote diagnostic alleles at diagnostic
SNPs fixed by E3. Blue bars denote diagnostic alleles
at diagnostic SNPs fixed by the start of CC. Gray
bars denote ancestral alleles at post-CC diagnostic
SNPs. Black bars denote diagnostic alleles at
post-CC diagnostic SNPs. Split bars denote hetero-
zygosity. (A) Inbred Baff2/2 male in C57BL/6J back-
ground. (B) Inbred transgenic and IFNgR1 female in
C57BL/6J background. (C) Inbred C57BL/6J male.
Diagnostic allele always represent the derived allele,
and the nondiagnostic allele is always the ancestral
allele. CC, collaborative cross; BXD, Recombinant
inbred BXD panel; E, epoch.
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Only in two RCC (3%) is there a significant fraction of the
genome that is not covered by a linked marker. These two
crosses are B6N-Tyr, c-Brd./BrdCrCrl by C57BL/6JOlaHsd
and BALB/cByJ by BALB/cByJRj with 8 and 14% of the ge-
nome not covered, respectively. An alternative test is the
number of RCC for which 95% of the genome is covered by
informative markers at 20-cM (56 RCC or 72%) and 40-cM
(72 RCC or 92%) intervals. We conclude that MiniMUGA
provides a cost-effective tool to extend RCC to substrains
from the 129P, 129S, A, BALB/c, C57BL/6, C3H, DBA/1,
DBA/2, FVB, and NOD strain groups.

Robust detection of common genetic constructs

Given the broad usage of genetic editing technologies, a key
design criterion of MiniMUGA was the ability to detect fre-
quently used genetic constructs. Utilizing our pipeline (see
Materials and Methods), we positively identified samples con-
taining 17 construct types (Figure 9). Importantly, for eight of
these constructs, our sample set also included positive con-
trols. These positive controls showed robust detection of their
relevant constructs. We detected further positive samples in
our set for these eight constructs, as well as nine additional
constructs without positive controls. The latter set of samples
belonged to sample classes where constructs were plausible
(e.g., not wild-derived or CC samples), and there was high
concordance for intensities among the multiple probes of a
single construct (Figure S2B intensity correlation).

Across these 17 constructs, we observed that our ability to
discriminate between negative and positive samples was
strongly correlated with the number of independent probes
for that construct (Figure 9 and Figure S2B). As signal in-
tensity is constrained by the dynamic range, our ability to
definitively call the presence of low-probe number constructs
is more uncertain. This uncertainty is especially relevant
where a construct within a sample is genetically divergent
from the sequences used to design a given probe/probe set.
Given our ability to positively identify construct classes with
as few as two probes, it is likely that even for constructs which
have divergent sequences from our designed sequences, or
are targeting a more distantly related construct type, our
pipeline will flag samples. However, users are highly encour-
aged to consult the probe sequences (Figure S3) when they
expect a given sample to contain a construct, but do not see
support in the array itself. Conversely, if a construct with
many independent probes is determined to be present, that
call is more reliable, even if a sample is not expected to con-
tain that construct.

We additionally observed that for some constructs, there
was between-sample variation in the overall intensity of the
signal associatedwithagiven construct [see internal ribosome
entry site (IRES), Figure 9)]. For IRES, the between-sample
variation was likely to be due a higher copy number of the
construct in five individual samples because of consistent
higher intensity across all probes (Figure S2A). Copy-number

Figure 8 Percent of the genome covered by MiniMUGA in RCC. Each of the 78 RCC is shown as a circle in ascending order. The order is independent
for each one of the six analyses. Coverage was based on the linkage distance to the nearest informative marker in given RCC. MUGA, Mouse Universal
Genotyping Array; RCC, reduced-complexity crosses.
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variation in transgene insertions is a common phenomenon
(see “Development” documentation on JAX Stock 034860,
McCray et al. 2007), and such copy-number variation

segregating within a given colony/line can lead to noise
and a lack of reproducibility in given experiments. Alterna-
tively, between-sample variation might be explained by

Figure 9 Detection of genetic constructs validated in MiniMUGA. For each construct, samples are shown as dots and classified as negative controls
(left), experimental (center), and positive controls (right). The dot color denotes whether the sample is determined to be negative (blue), positive (red), or
questionable (gray) for the respective construct. For each construct, the gray horizontal lines represent data-driven ad hoc thresholds discriminating
between presence and absence. Note for each construct, the y-axis scale is different. MUGA, Mouse Universal Genotyping Array; g_FP; ‘greenish’
fluorescent protein; SV40; SV40 large T antigen; Cre, Cre recombinase; tTA, tetracycline repressor protein;; DTA, Diptheria toxin; hCMV_b, Human CMV
enhancer version b; Luc, Luciferase and firefly luciferase; chloR, Chloramphenicol acetyltransferase; bpA, Bovine growth hormone poly A signal
sequence; iCre, iCre recombinanse; rtTA, Reverse improved tetracycline-controlled transactivator; cas9, CRISPR associated protein 9; BlastR, Blasticidin
resistance; IRES, Internal Ribosome Entry Site; hCMV_a, hCMV enhancer version a; r_FP, ‘reddish’ fluorescent protein; hTK_pr, Herpesvirus TK promoter.
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Figure 10 Background Analysis Report for the sample named MMRRC_UNC_F38673, from the line named B6.Cg-Cdkn2atm3.1Nesh Tyrc22J Hrhr/Mmnc.
The genotype of this sample is of excellent quality. It is a close to inbred female that is a congenic with C57BL/6J as a primary background, and with
multiple regions of a 129S secondary background. This sample is positive for the luciferase and firefly luciferase construct, and negative for 16 other
constructs. g_FP; ‘greenish’ fluorescent protein; SV40; SV40 large T antigen; Cre, Cre recombinase; tTA, tetracycline repressor protein;; DTA, Diptheria
toxin; hCMV_b, Human CMV enhancer version b; Luc, Luciferase and firefly luciferase; chloR, Chloramphenicol acetyltransferase; bpA, Bovine growth
hormone poly A signal sequence; iCre, iCre recombinanse; rtTA, Reverse improved tetracycline-controlled transactivator; cas9, CRISPR associated protein
9; BlastR, Blasticidin resistance; IRES, Internal Ribosome Entry Site; hCMV_a, hCMV enhancer version a; r_FP, ‘reddish’ fluorescent protein; hTK_pr,
Herpesvirus TK promoter; PAR. pseudoautosomal region
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between-probe variation for a construct as discussed above.
Individuals are encouraged to examine the summed intensity
levels for positive constructs for their strains/samples, to con-
firm that within a relevant sample group, these levels are
roughly equal.

An easy-to-interpret report summarizes the genetic QC
for every sample

TheMiniMUGABackgroundAnalysis Report (Figure 10) aims
to provide users with essential sample information derived
from the genotyping array for every sample genotyped. The
report is designed to provide overall sample QC, as well as
genetic background information for classical inbred mouse
strains, and congenic and transgenic mice. For samples out-
side of this scope, the report may be incomplete and/or pro-
vide misleading conclusions. Details of the thresholds and
algorithms for each section of the report are provided in
the Materials and Methods section.

In addition to chromosomal sex and the presence of con-
structs, the report provides a quantitative and qualitative
score for genotyping quality. Based on the number of N calls
per sample of our sample set, we classified samples in one of
four categories: samples with excellent quality (0–91 N calls,
represents 96.8% of samples), samples with good quality (be-
tween 92 and 234 N calls, 2% of samples), samples with
questionable quality (between 235 and 446 N calls, 0.9% of
samples), and samples with poor quality (.447 N calls, 0.3%
of samples). Only tier 1 and 2 markers were used in this
analysis (see Materials and Methods).

Regarding inbreeding status, the report assigns every sam-
ple to one of three categories: Inbred (,61 H calls), close to
inbred (between 61 and 280 H calls), and outbred (.280 H
calls). These thresholds are based on the number of H calls
observed in the autosomes of 172 samples of classical inbred
strains and predicted heterozygosity in 3655 in silico F1 hy-
brid mice (Figure S7).

For genetic background detection, the report provides two
complementary analyses. The first infers the primary and
secondary backgrounds of samples that pass genotype qual-
ity and inbreeding thresholds based on the totality of their
genotypes (excluding the Y chromosome, mitochondria
markers, and construct probes). The second returns the ge-
netic backgrounds detected in a sample based on the pres-
ence of the diagnostic allele at diagnostic SNPs (see section
on Diagnostic SNPs as a tool for genetic QC and strain dating).

For the primary background analysis, the sample’s geno-
type is compared to a set of 120 classical and wild-derived
inbred reference strains (Table S3) to identify the strain that
best explains the sample genotypes. If multiple substrains
from the same strain group have been detected via diagnostic
alleles, or if there is an overrepresentation of a particular
diagnostic strain in the unexplained markers, the algorithm
generates a composite strain consensus that incorporates
all substrains in that strain group and uses it in the pri-
mary background analysis. The strain or combination of sub-
strains that best matches the sample is called the primary

background for the sample. The report provides the number
of homozygous calls that are consistent or inconsistent with
the primary background, as well as the number of heterozy-
gous calls in the sample. The primary background is always
returned for samples in which the primary background ex-
plains at least 99.8% of the sample genotype calls.

Once the primary background is identified, the algorithm
tests whether $75% of the markers inconsistent with the
primary strain background and heterozygous markers are
spatially clustered. If they are not (,75% of markers spa-
tially clustered) the algorithm will not try to identify a sec-
ondary background. If $75% of the unexplained markers
are clustered, all reference strains that equally explain the
unexplained calls are identified as potential secondary
background(s). If the combination of primary and second-
ary backgrounds explains $99.8% of the calls, the primary
and secondary backgrounds are reported. If this combina-
tion explains ,99.8%, then no genetic background is
returned.

For samples where a primary and secondary background is
reported, the algorithm determines whether the remaining
unexplained markers are spatially clustered. If they are, the
summary states that clustering of unexplained markers may
indicate the presence of an additional genetic background.
The limitations of this greedy approach to identification of the
primary and secondary backgrounds are addressed in the
Discussion section.

Note that this report is generated programmatically using
an available set of reference inbred strains (Table S3). If the
reported results are inconsistentwithexpectations,usersneed
toconsider furtheranalysesbefore reachingafinal conclusion.
All estimatesandclaims in the reportareheavilydependenton
the quality of the sample and genotyping results. Less than
excellent genotyping qualitymay increase the likelihood of an
incorrect background determination. Genotyping noise can
lead to incorrect reporting andmaybe particularlymisleading
in samples from standard commercial inbred strains. Fully
inbred strains routinely have a small percentage of spurious H
calls. These do not represent true heterozygosity (see consen-
sus of inbred strains).

Discussion

MiniMUGA as a tool for QC

Among the many new capabilities of the MiniMUGA array
compared with its predecessors is the Background Analysis
Report provided with each genotyped sample. Although ex-
pert users can, and undoubtedly will, refine existing and
develop new analyses pipelines, all users benefit from a
common baseline developed after the analyses of thousands
of samples. The size, annotation, and variety of our sample set
provides a firm foundation for our conclusions.

We urge users to pay particular attention to genotype
quality, reported heterozygosity, and unexpected conclusions
(i.e., sex, backgrounds, and constructs detected). Genotype
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quality depends on the sample quality, quantity, and purity,
and on the actual genotyping process. Poor genotype quality
can also be the byproduct of off-target variants in the probes
used for genotyping and, thus, wild mouse samples and mice
from related taxa are expected to have lower apparent quality
(Didion et al. 2012). Samples with poor quality will not be
run through the full report pipeline. Samples with question-
able quality may lead to incorrect conclusions. For samples of
any quality the total number of N calls should be carefully
considered if unexpected results are reported. It is also im-
portant to consider a sample’s probe intensity distribution
value as represented by pd_stat when evaluating the credi-
bility of its reported chromosomal sex. The reported chromo-
somal sex of samples with high pd_stat (.3230) should be
questioned (see Figure S5).

Reported heterozygosity is sensitive to genotyping quality.
A lower-quality sample will typically include more spurious
heterozygous calls than an excellent-quality sample of the
same strain. This leads to an incorrect estimate of the level of
inbreeding in a given sample and can be particularly mis-
leading in a fully inbred mouse of a single background. The
thresholds used to classify samples as inbred, close to inbred,
and outbred are somewhat arbitrary and reflect the biases in
SNP selection (overrepresentation of diagnostic SNPs for
selected substrains) and the highly variable range of diversity
observed in F1 mice. We used the observed number of H calls
in known inbred samples and the predicted number of H calls
among a large and varied set of potential F1 hybrids to set our
thresholds, but users should consider the level of heterozy-
gosity expected in a specific experiment (Figure S7). For
example, mice generated in RCC between related substrains
may have a very small number of H calls and thus will be
misclassified as more inbred than they really are. The report
combines sample quality and heterozygosity in a single figure
for quick visual inspection (Figure 10). Note that the x- and
y-axes are compressed in the high-value range to ensure that
all samples, even those with very poor quality and/or high
heterozygosity, are shown. The precise location of a sample in
the plot should help customers contextualize their sample’s
quality and inbreeding when evaluating their results.

For users genotyping a large number of samples in a given
batch (for example, several 96-well-plates),we found it useful
to include a plate-specific control at an unambiguous location
(we used the B3 well). Ideally, these controls should have
knowngenotypes, excellent quality, and be easy to distinguish
from all other samples in the batch. Plating errors or un-
accounted transpositions occurring during the genotyping
process are rare but problematic. Adding one sample per plate
is a reasonable price to pay to quickly identify these issues.

We anticipate that most users will use the Background
Analysis Report to determine the genetic background(s) pre-
sent in a sample as well as their respective contributions. The
identification of the correct primary and secondary back-
ground is completely dependent on the preexisting set of
reference strains (Table S3). If a genotyped sample is derived
from a strain that is not part of this reference set, the reported

results may be misleading or completely incorrect. Users
should consult the list of reference backgrounds (Table S3).
We expect the number of reference backgrounds to increase
over time, reducing the frequency and impact of this problem.
However, the current background detection pipeline is not
appropriate for RILs such as the BXD and CC populations. By
their very nature, these RILs have mosaic genomes derived
from two or more inbred strains included in our panel, and
thus thebackgroundanalysiswill detectmore than two inbred
backgrounds for CC strains, or declare one of the parental
strains as primary or secondary background for the BXD
strains. Users interested in confirming or determining the
identity of RILs can use our consensus genotypes to do so.

An important caveat of the current primary and secondary
background analysis is that the approach is greedy, and all
variants except those with H and N calls in the consensus are
considered. Because only a fraction of the SNPs are informa-
tive between a given pair of strains (always less than one half,
see Figure 5 and Figure S7), the algorithm always overesti-
mates the contribution of the primary background and un-
derestimates the contribution of the secondary background
(Figure 10). In congenic strains, the true contribution of the
strain identified as the secondary background is approxi-
mately 2.6 times higher than shown in the report (Figure
S9). This appears to be true independent of the strains iden-
tified as primary and secondary backgrounds and their pro-
portions. If the exact contribution of either background is
critical for the research question, the user should reanalyze
the data using only SNPs that discriminate between the two
backgrounds.

Asecondcaveat is that thecurrentpipelinedoesnot include
the mitochondria and Y chromosomes. This shortcoming will
be addressed in a future update of the Background Analysis
Report.

A final caveat is that in most cases where more than two
inbredstrains areneeded toexplain thegenotypesofa sample,
the report does not identify any of them. In our experience,
when three of more backgrounds are present, a greedy search
is not effective and often leads to incorrect results. Therefore,
if the user has prior knowledge of at least some of the
backgrounds involved, they should conduct an iterative hier-
archical search thatwill typically yield thecorrect solution,but
care needs to be taken at each step.

The private variants that underlie the RCC concept are the
diagnostic variants used in background determination and
sample dating. Diagnostic SNPs have little information con-
tent but high specificity. The presence of diagnostic alleles in a
sample is strong evidence that that specific substrain (or a
closely related substrain absent from our set) contributed to
thegenetic backgroundof that sample.However, becauseonly
a small fraction of diagnostic SNPs have been observed in all
three genotypes acrossmultiple samples, their performance is
not well established, in particular for heterozygous calls. To
avoid errors, we required diagnostic alleles at three different
SNPs in a given sample before a genetic background was
declared in the Background Analysis Report. All diagnostic
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SNPs began their history as partially diagnostic (segregating
in an inbred strain or substrain population).

The examples for dating stocks as shown in the Results
section were fairly simple, but more complex and more in-
teresting patterns are plentiful in our data set. For example,
four samples from a congenic inbred stock showed evidence
of both an old stock and new refreshing of the genome in
recent years (Figure S10). Specifically, the presence of ances-
tral alleles at many diagnostic SNPs fixed prior to epoch III
and the start of the CC speaks of a mouse line generated and
bred independently for many years. On the other hand, het-
erozygosity at some of these markers as well as the presence
of diagnostic alleles that are still segregating (Table 5) indi-
cates that this line was refreshed by backcrossing to C57BL/
6J in recent years. Both conclusions are consistent with our
expectations as this stock was imported by Mark Heise at
UNC in 2014 and backcrossed once or a few times to JAX
mice before being maintained by brother–sister mating. In
addition to improving the genetic QC, we believe that this
type of analysis may provide researchers with critical infor-
mation to guide both experimental design and data analysis.
Also important is the ability to estimate the amount of drift
that will occur and thus the amount of genetic variation pre-
sent in that line but absent in the main stock. We expect that
widespread use of MiniMUGA and the continued and rapid
annotation of diagnostic SNPs (Table 4), not only for C57BL/
6J but for all inbred substrains, offers an opportunity to
significantly improve the rigor and reproducibility of mouse
research.

Mouse cell lines can be subject to the same genetic QC as
mice. We have shown the ability to detect sex chromosome
aneuploidy in cell lines (Figure 1). Diagnostic SNPs can be
used to date cell lines in similar fashion to live mice with the
added simplicity that cell lines are less susceptible to drift.
Finally, the Background Analysis Report pipeline can be used
to effectively identify the origin of cell lines. Examples are
provided in Figure S8. The importance of genetic QC in cell
lines will grow in the future given the increased emphasis on
cell-based research. We have previously reported that the
number of N calls on other genotyping platforms is higher
for cell lines than for biopsies (Didion et al. 2014). The evi-
dence of such phenomena in our data set is inconclusive.

Genetic constructs have been a staple of genome editing
technologies since the 1980s. In addition to desired genetic
modifications, constructs will often include a variety of other
necessary features (e.g., selection markers and constitutive
promoters). The array can be used to validate the presence
of constructs expected to be present and/or to identify the
presence of unexpected constructs.

Our construct probe design was focused on targeting
conserved features of various genetic engineering and/or
in vitro constructs commonly used in mammalian genetics.
We can split these conserved probe sets into two main clas-
ses: those for which we were able to detect positive sam-
ples in our data set, and those for which we were not
able to detect any consistently positive samples. Given

the between-probe variation in a given sample, interested
users can examine the individual probe intensities to refine
the analysis (e.g., the cyan, green, and yellow fluorescent
protein probe sets).

Finally, we designed probes for 14 constructs (123 probes)
for which we were unable to call presence or absence in our
pipeline. This may be due to lack of positive samples in our
data set, not enough probes with positive signal for a given
construct, or probes that failed. If auser knows that a construct
is present in their data set, they are encouraged to recreate
our pipeline for calling presence or absence of the relevant
construct.

MiniMUGA as a tool for discovery

MiniMUGA was designed to support the research mission of
geneticists, but the range of applications will depend on the
ingenuity of its users. In the Results sections, we explored
three areas in which MiniMUGA has the potential to enhance
existing resources and tools.

The first of these areas was sex chromosome biology.
MiniMUGA is able to robustlydetermine four sex chromosome
configurations (Figure 1) and thus facilitate estimation of the
incidence and prevalence of sex chromosome aneuploidy in
the mouse. The variation of aneuploidy rates depending on
the sire background provides a promising avenue to study the
genetics of sex chromosome missegregation. In addition,
identification of aneuploid mice can become routine in exper-
imental cohorts and crosses. This is also important in colony
management, as XO and XXYmice are likely to be infertile or
have reduced fertility (Heard and Turner 2011).

This type of analysis can also identify sex chromosome
mosaicism (Johnson et al. 2010; Fragouli et al. 2011; McCoy
2017) and large structural variants involving the sex chro-
mosomes. In the Results section, we have shown that mosaics
are outliers with respect to the four defined clusters observed
in the intensity-based chromosome sex determination plot
(Figure 1). Specifically, they have abnormal Y chromosome
intensities. These mosaics may also have an abnormally high
ratio of N calls in the X chromosome compared with the
autosomes and chromosome X marker intensity distribu-
tions biased toward one parent (Figure 3). This last analy-
sis is only possible in the presence of heterozygosity on the
X chromosome.

Further evidence of the value of the MiniMUGA array for
the characterization of the sex chromosomes is the identifi-
cation of a 6-Mb de novo duplication of the distal chromosome
X (Figure S11) in a single F2male. The size of this duplication
is not large enough to affect chromosomal sex determination
and its discovery was due to the presence of 10 heterozygous
calls clustered on distal X. These heterozygous calls occur at
informative markers between the two parental CC strains of
the F2 cross and are embedded in a region of 26 consecutive
markers with higher-than-expected intensity (Figure S11).
Interestingly, the parental CC strains (CC029/Unc and
CC030/GeniUnc) are the same for which a 103 increase in
sex chromosome aneuploidy is observed. We concluded that
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this F2 male had a well-defined duplication of the distal X
chromosome. These vignettes provide a potential blueprint
that can be extended to other chromosomes and structural
variants. It also highlights the importance of having a large
set of well-defined genotyped controls, against which to com-
pare a given sample.

A second area of potential research is the expansion of the
RCC paradigm beyond the narrow confines of C57BL/6 sub-
strains (Kumar et al. 2013; Babbs et al. 2019; Treger et al.
2019). A successful RCC requires complete knowledge of the
sequence variants shared and private to the set of substrains
that will be used in the mapping experiments. These private
variants are needed to infer causation but also in the initial
step of genetic mapping. We acknowledge that the develop-
ment of MiniMUGA was made possible by the efforts of the
community to sequence an increasing number of inbred
strains. The expansion of RCC to 129S, A, BALB/c, C57BL/
6, C3H, DBA/1, DBA/2, FVB, and NOD substrains should in-
crease the total number of accessible private mutations by at
least one order of magnitude as compared with RCC involv-
ing C57BL/6N and C57BL/6J. Therefore, we should expect a
similar increase in the number of causative genetic variants.
We note that even as substrains continue to accumulate pri-
vate variants in an unpredictable manner, MiniMUGA will
retain its value for genetic mapping, but future WGS will be
required to identify those variants.

Genotyping arrays are a powerful, standardized platform
with which to characterize the genomic composition of sets of
samples. Here, we have described a new mouse genotyping
array, MiniMUGA. We have illustrated how the design and
performance of MiniMUGA provides a more robust platform
for genetic QC (at the sex-chromosome, mouse substrain
identity, and genetic construct levels) relative to our previ-
ously designed arrays. We have also illustrated examples of
howthis arraycanbeused fornewgeneticdiscovery, including
sex chromosome abnormalities, genomic duplications, and
also in the expansion of genetic mapping approaches. This
array and these associated data highlight the utility of genetic
QC for more robust and reproducible science in the mouse,
and they are already being widely used by the research
community (Smith et al. 2019; Gu et al. 2020; Yu et al. 2020).
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