
CHAPTER 1: BACKGROUND

In this chapter, I review work related to the main aspects of this research. I also provide a mathematical

background of modal sound synthesis.

1.1 Sound Synthesis

Sound synthesis techniques recreate natural sounds for virtual environments. Sounds are dynamic and can

be created by a variety of sound sources. Different types of sound sources produce different types of sounds,

so different models are needed. Examples of sound sources that have been modeled are liquids (Langlois

et al., 2016; Moss et al., 2010), paper (Schreck et al., 2016), and fire (Chadwick and James, 2011).

In this dissertation, the focus is on sounds created by rigid objects. Strings and drums can be simulated

through physical models such as the Karplus-Strong algorithm (Karplus and Strong, 1983) and digital

waveguide synthesis (Smith, 1992). Simple objects with known analytical vibration patterns can be simu-

lated through additive synthesis, where individual sine waves are added together to create more complex

sounds (van den Doel and Pai, 1996). Arbitrary rigid objects use the same additive synthesis method, but

to determine their frequencies of vibration, or modes of vibration, discretized models of the objects need

to be analyzed first (Morrison and Adrien, 1993; O’Brien et al., 2002). This is referred to as modal sound

synthesis, consisting of a precomputation step called “modal analysis” and a runtime synthesis step called

“modal synthesis”. We now review the details of this method and explain the need for accurate damping

parameters.

1.1.1 Modal Analysis

When a rigid object is struck, it vibrates in response, though these vibrations may be imperceptible to

the eye. As the surface of the object vibrates and deforms, the surrounding air is rapidly compressed and

expanded, creating pressure waves which propagate through the environment. Our ears perceive the variation

in air pressure as sound. The standard range of human hearing covers sound waves between 20 Hz and 20
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kHz. In modal analysis, the shape and material parameters of the object are analyzed to decompose the

vibrations into a set of modes of vibration. Each mode of vibration describes one independent component of

the overall vibration as the object oscillates sinusoidally over time. Each object has a different set of modes

depending on the object’s shape and material. Vibrations from an impact can roughly be represented as a

linear combination of normal modes with different amplitudes, frequencies, and phases.

Modal analysis is often performed numerically, where the object is represented using a discretized model

such as a FEM mesh or spring-mass thin-shell system. Regardless of the choice of discretization, we can

consider the dynamics of the system as it vibrates using a system of equations:

Mr̈ + Cṙ + Kr = f (1.1)

Here, r is a vector of vertex displacements, where a vector of all zeros represents the object at rest. Since we

usually work with three-dimensional objects, an object with n discrete elements would have a r ∈ R3n. f is

the vector of forces applied to each element, inducing vibrations. M is the mass matrix, which describes

the distribution of mass throughout the object. C is the viscous damping matrix, which describes how the

velocity of the elements ṙ decays over time. K is the stiffness matrix, in which the connectivity of the

elements is defined. Given these matrices, we can properly simulate the vibration of the object in response

to an impulse. M and K can be constructed through knowledge of the shape of the object and its material

parameters, notably its density, Poisson’s ratio, and Young’s modulus. The damping matrix C, is not as

simple to construct.

Modal analysis examines the eigenvalues and eigenvectors of the system in free vibration, that is, with

f = 0 after some initial impulse has been applied. Temporarily ignoring damping, we can set up a generalized

eigenvalue problem of the form:

Kv = λMv (1.2)

Finding this eigendecomposition and combining the eigenvectors into a matrix Φ allows the matrices M and

K to be diagonalized. Specifically, the eigenvectors are mass-normalized such that:

ΦTMΦ = I and ΦTKΦ = Ω2 (1.3)

2



The matrix Φ can be intuitively described as a matrix that transforms between object space and mode space:

each column of Φ contains the shape of a normal mode, while ΦT f converts forces on elements to normal

mode amplitudes. The natural undamped frequencies of the system are contained in the diagonal matrix Ω,

while their squares in Ω2 are the eigenvalues of the system. We can continue the decoupling by considering

the system in mode space z = ΦT r:

ΦTMΦz̈ + ΦTCΦż + ΦTKΦz = ΦTf (1.4)

z̈ + ΦTCΦż + Ω2z = ΦTf (1.5)

Equation (1.5) now runs into problems with the damping matrix C. While Φ diagonalizes M and K, if

it does not diagonalize C then the system does not properly decouple and the resulting modes are not linearly

independent. The linearly dependent modes are called complex modes, and accurately modeling them is

much more difficult compared to the linearly independent normal modes (Imregun and Ewins, 1995). We

must now consider methods for modeling damping behavior and constructing appropriate C matrices.

1.1.2 Damping Modeling

Damping has long been a concern in analysis of vibrations of buildings and other structures (Nashif et al.,

1985; Adhikari and Woodhouse, 2001). There are a number of ways to model material-based damping to

varying degrees of accuracy (Woodhouse, 1998; Slater et al., 1993), and standard tests have been designed to

consistently measure damping in materials (E756, 2017). Complex models are often required to produce

accurate fits to observed damping behavior (Adhikari, 2001).

To construct appropriate C matrices, for sound synthesis purposes we restrict ourselves to classical

damping with only normal modes, which means all of our damping matrices must be diagonalizable by Φ.

Various damping models have been developed that guarantee only normal modes (Caughey, 1960). These

damping models typically have real-valued parameters that vary between materials. In this dissertation, αj is

used to represent these damping parameters. However, be aware that each damping model has a different

definition of αj .

The most popular model is Rayleigh damping (Rayleigh, 1896), in which the damping is a linear

combination of mass and stiffness:

C = α1M + α2K (1.6)
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α1 and α2 are the real-valued parameters in this Rayleigh damping model. Rayleigh damping has been, to

the best of our knowledge, the only damping model used for sound synthesis in computer graphics.

Caughey and O’Kelly proposed a more general model, now known as Caughey damping or a Caughey

series (Caughey and O’Kelly, 1965), which they proved to be a necessary and sufficient condition for normal

modes:

C = M

n−1∑
j=0

αj(M
−1K)

j (1.7)

All αj are real-valued parameters for Caughey damping models. In practice, the series could truncated after a

few terms.

For a given damping model, the real-valued parameters αj are the damping parameters which define

the damping of each mode. By varying these values, the same object can be made to sound like a wide

range of materials. Damping parameters have been shown to be perceptually geometry-invariant for a wide

range of geometries under the Rayleigh damping model (Ren et al., 2013a); it is reasonable to assume this

holds for other damping models as well. Thus, if damping parameters can be estimated for a metal bowl,

synthesizing sound for a solid cube with those parameters will produce a metallic sound. However, the

geometry-invariance assumption has only been thoroughly tested on thick, very rigid objects (Ren et al.,

2013a), and the assumption may fail for thin-shelled objects (Chadwick et al., 2009), less rigid objects,

objects with loosely-coupled points of self-collision, or objects demonstrating nonlinear vibrational behavior.

1.1.3 Modal Synthesis

With these damping models, we have a damping matrix guaranteed to be diagonalizable by Φ. With the

system diagonalized, the free-vibration form is now decoupled into independent second order differential

equations:

z̈i + ciżi + ω2
inzi = 0 (1.8)

ci is an entry in the diagonalized damping matrix corresponding to the i’th mode of vibration, and is discussed

in more detail in Section 1.1.4. These equations each have known analytical solutions as damped sinusoids:

zi(t) = aie
−dit cos(ωidt) (1.9)
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ai is the amplitude of the sinusoid, while the damping coefficient di = ci/2 defines the rate at which the

amplitude decreases. ωin in Equation (1.8) is the natural undamped frequency of oscillation, but in the

presence of damping we use the damped frequency ωid:

ωid =
√
ω2
in − d2i (1.10)

1.1.4 Obtaining Damping Coefficients

In practice, we do not actually want to perform the matrix operations in the damping models. Through

heavy use of Equation (1.3), we can find analytical solutions for how C is diagonalized and compute ci in

terms of the corresponding eigenvalue ω2
in. The solution for Rayleigh damping is common in modal sound

synthesis work:

ΦTCΦ = ΦTα1MΦ + ΦTα2KΦ

= α1I + α2Ω
2

ci = α1 + α2ω
2
in (1.11)

Caughey damping is slightly more involved, but leads to a fairly intuitive solution:

ΦTCΦ = ΦTM
n−1∑
j=0

αj(M
−1K)

j
Φ

= Φ−1
n−1∑
j=0

αj(ΦΩ2Φ−1)
j
Φ

=

n−1∑
j=0

αjΩ
2j

ci =

n−1∑
j=0

αjω
2
in

j (1.12)

Using these solutions, the damping rates for each mode of vibration can be determined.

1.1.5 Real-Time Synthesis

For real-time synthesis, a preprocessing step is first performed for a given object and material. In this

step, the eigendecomposition is performed and the resulting ΦT and each mode’s di and ωid are saved.
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At runtime, an applied force f is transformed to mode space by ΦT, and the resulting vector contains the

amplitudes with which to excite each mode. The resulting damped sinusoids can be combined and sampled at

44.1 kHz to produce the sound itself. Tools for performing additive synthesis and modal sound synthesis are

plentiful; examples include the Synthesis ToolKit (Cook and Scavone, 1999) and the Faust programming

language (Michon et al., 2017; Michon and Smith, 2011).

For interactive applications, as a user performs actions to create sounds, sound synthesis algorithms must

run fast enough to generate sound in real time. The computation requirements at runtime are proportional to

the complexity of the analyzed input shape, making some objects’ sounds too slow for real-time applications

without optimizations. Vibration modes can be culled based on psychoacoustic principles, for example,

humans cannot tell the difference between two frequencies very close to one another, so those modes can

be combined into one (Raghuvanshi and Lin, 2006). If an object has any geometric symmetries, these can

be exploited to reduce memory usage and caching requirements (Langlois et al., 2014). Synthesis can be

done in frequency space to further improve performance (Bonneel et al., 2008). When performing real-time

synthesis, vectorization (van Walstijn and Mehes, 2017) and parallelism on CPUs (Bilbao et al., 2013) and

GPGPUs (Webb, 2014) are effective, as each mode of vibration can be synthesized independently.

1.1.6 Additional Factors

Modal sound synthesis roughly simulates the sounds produced by rigid, vibrating objects, but in the

real world more factors influence the final sound we hear; four such examples are acoustic radiance, sound

propagation effects, contacts with other objects, and acceleration sound.

Acoustic radiance is the efficiency of propagation for each mode: depending on the shape of an object

some modes radiate in different directions with different strengths (James et al., 2006; Li et al., 2015). More

generally, any sound source can be directional, requiring additional simulation considerations (Mehra et al.,

2014). Once the vibrations transfer to the surrounding air, sound waves bounce around the environment

before reaching a listener’s ears.

Sound propagation refers to this propagation of sound waves through air. Propagation can be simulated

most realistically with wave-based simulation (Raghuvanshi et al., 2009), though for use them in interactive

applications these methods have heavy precomputation and storage requirements (Mehra et al., 2015, 2013;

Raghuvanshi et al., 2016, 2010). Geometric methods for sound propagation are less accurate for low

frequencies, but faster to compute for interactive applications (Savioja and Svensson, 2015; Chandak et al.,
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2008; Schissler and Manocha, 2016, 2011), as long as diffraction can be properly simulated (Tsingos et al.,

2001; Svensson et al., 1999; Rungta et al., 2018). Hybrid methods use geometric propagation for higher

frequencies and wave-based methods for low frequencies heavily affected by wave effects (Hampel et al.,

2008; Southern et al., 2011; Yeh et al., 2013). Some work has achieved tight coupling between sound

synthesis and propagation (Rungta et al., 2016; Wang et al., 2018).

Contacts with other objects are common as objects rarely float in midair. These contacts with other

objects modify the produced sound and can be accounted for with contact models (O’Brien et al., 2002;

Zheng and James, 2011). Interactions between a sounding object and a striking tool can be modeled to better

simulate the attack of the sound (Avanzini and Rocchesso, 2001; Bilbao et al., 2015). Contact modeling can

be exploited to create real objects that vibrate only at desired frequencies. An object can be placed on foam

blocks, specifically positioned to damp out the undesired frequencies while leaving the desired frequencies

alone (Bharaj et al., 2015).

Continuous interactions between objects, such as sliding and scraping, require additional effort. Fractal

noise is a common way of representing the small impacts generated during rolling and scraping (Doel et al.,

2001). Ren et al. presented a framework for synthesizing contact sounds between textured objects (Ren et al.,

2010). This work introduced a multi-level model for lasting contact sounds combining fractal noise with

impulses collected from the normal maps on the surfaces of the objects. However, this application of normal

maps to sound generation without similar application to rigid-body dynamics causes noticeable sensory

conflict between the produced audio and visible physical behavior.

Acceleration sound is produced when an object is rapidly accelerated through air, and is perceptually

noticeable for very small objects such as dice and keys (Chadwick et al., 2012).

1.1.7 Full Physically-Accurate Simulation

To emphasize the restrictions that must be made for real-time sound synthesis, consider the case of

dominoes falling on a table, as seen in ??. A full and physically-correct simulation would need to consider

all of the above factors. Normal modes of vibration are simulated by modal sound synthesis, the perceptually-

dominant factor that this dissertation focuses on. Complex modes and acoustic radiance would need to be

simulated for a complete model of object vibrations. Acceleration noise may be perceptually noticeable for

these small dominoes. Accurate contact modeling for this scene would be important for this scene given

7



the stacking structure of the fallen dominoes. Sound propagation would be necessary not just to model the

acoustics of the room, but also to model the interactions between objects.

This theoretical full simulation would require tight coupling between each objects’ interior deformations,

inter-object forces, and the air pressure/velocity fields. Some of this could be achieved with a wave-based

simulator (Wang et al., 2018) and accurate contact model (Zheng and James, 2011). However, simulation

of these factors is too computationally-intensive for real-time sound synthesis. Therefore, for real-time

applications such as virtual environments, we are limited to modal sound synthesis and approximate sound

propagation (James et al., 2006).

1.2 Multimodal Interaction with Virtual Objects

Multimodal interaction, in the context of this dissertation, refers to interaction using multiple senses

simultaneously. The senses of sight, hearing, and touch are each different interaction modalities, which have

been independently researched. In this section, I discuss prior work related to texture mapping and each of

these additional modalities of interaction. As one of the main contributions in this dissertation is a method for

multimodal interaction with textured surfaces (??), much of the background in this section focuses on surface

interactions.

1.2.1 Human Auditory Perception

Since this work focuses on audio, rendering for the sense of hearing has been discussed earlier inSec-

tion 1.1. However, as sound is inherently perceptual, studies of human auditory perception provide important

clues about perceptually important parameters. Studies have evaluated which parameters humans rely on for

material identification, finding that damping rate and frequency (i.e. pitch) are particularly important (Klatzky

et al., 2000; McAdams et al., 2010). Studies have tested the discriminability of materials and the generaliz-

ability of the Rayleigh damping model (Ren et al., 2013a). Similar studies have focused on perception of

object size from sound (Giordano and McAdams, 2006; Grassi, 2005). Material perception is also affected by

concurrent visual stimuli (Fujisaki et al., 2014).
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1.2.2 Visual Rendering

Realistic visual rendering has been the focus of the computer graphics field for many decades, and photo-

realistic visual appearances are possible given talented artists and sufficient computational resources. Many

books provide an introduction to the field (Akenine-Moller et al., 2002; Foley et al., 1990). Creating realistic

visual appearances in interactive environments in real time is more challenging, but can be accomplished

using optimizations.

For example, texture mapping uses low-resolution 3D triangle meshes with higher-resolution 2D textures

to model detailed objects. Normal maps and relief maps are used as representations of fine detail of the surface

of objects. Normal maps were originally introduced for the purposes of bump mapping, where they would

perturb lighting calculations to make the details more visibly noticeable (Blinn, 1978). Relief mapping uses

both depths and normals for more complex shading (Oliveira et al., 2000; Policarpo et al., 2005). Numerous

other texture mapping techniques exist as well. Displacement mapping, parallax mapping, and a number of

more recent techniques use height maps to simulate parallax and occlusion (Cook, 1984; Kaneko et al., 2001;

Tevs et al., 2008). A recent survey goes into more detail about many of these techniques (Szirmay-Kalos and

Umenhoffer, 2008). Mapping any of these textures to progressive meshes can preserve texture-level detail as

the level-of-detail (LOD) of the mesh shifts (Cohen et al., 1998).

1.2.3 Rigid-Body Simulation

Simulation of the movement and collisions between rigid objects allows virtual environments to simulate

gravity and user behavior such as stacking and throwing objects (Featherstone, 2007). Height maps mapped

to object surfaces have been used to modify the behavior of simple collisions in rigid-body simulations (Nykl

et al., 2013). When height maps are applied to two colliding objects, previous methods can effectively

compute and resolve their collision (Otaduy et al., 2004).

1.2.4 Haptic Rendering

Haptics refers to interaction using the sense of touch, and focuses on the textures of surfaces (Loomis and

Lederman, 1986). There has been significant work on how humans perceive haptic sensations to recognize

shapes and textures (Lederman and Taylor, 1972; Klatzky et al., 1985). In haptic rendering, a 3D object’s

geometries and textures can be felt by applying forces based on point-contacts with the object (Basdogan et al.,
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1997; Ho et al., 1999). Complex objects can also be simplified, with finer detail placed in a displacement map

and referenced to produce accurate force and torque feedback on a probing object (Otaduy et al., 2004). The

mapping of both normal and displacement maps to simplified geometry for the purposes of haptic feedback

has also been explored (Theoktisto et al., 2010). Dynamic deformation textures, a variant of displacement

maps, can be mapped to create detailed objects with a rigid center layer and deformable outer layer. The

technique has been extended to allow for 6-degree-of-freedom (DOF) haptic interaction with these deformable

objects (Galoppo et al., 2007). A common approach to force display of textures is to apply lateral force

depending on the gradient of a height map such that the user of the haptic interface feels more resistance

when moving “uphill” and less resistance when moving “downhill” (Minsky et al., 1990; Minsky, 1995).

1.2.5 Integrated Multimodal Interaction

For realistic multimodal interaction, it is important that content is not only rendered well for individual

senses, but that each sense is consistent with one another. Between audio and rigid-body simulation,

modal sound synthesis can be coupled with physics simulations to couple the movements of objects and

their resulting sounds (O’Brien et al., 2002; Zheng and James, 2011). Depth maps can modify contacts

between objects, coupling the visual appearances of the objects with their physical movements (Nykl et al.,

2013). When multiple objects are in contact, the long-lasting contacts produce continuous sounds which

depend heavily on the objects’ textures, further coupling motion and sound (Ren et al., 2010). Between

audio and haptics, some work has considered the multimodal aspects of touch-enabled interfaces for sound

synthesis (Ren et al., 2012). These methods involve only one or two interaction modalities each, and do not

use a single representation of surface detail to inform all modalities.

1.3 Auditory Understanding

The inverse of the modal sound synthesis problem is to use impact sounds to understand the objects that

created those sounds. In this dissertation, I present multiple methods for estimating properties of real-world

objects from recorded sounds. In this section, I will review the broad area of processing sounds to learn

something about the sound’s source. I will begin with discussion of general concepts and methodology, then

focus in on object sounds.
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1.3.1 Environmental Sound Classification

One broad way of approaching sound understanding is to classify sounds into descriptive categories.

Multiple datasets have been established for evaluating classification of various environmental sounds (Gem-

meke et al., 2017; Piczak, 2015b; Salamon et al., 2014). Traditional techniques use a variety of features

extracted from sounds, such as Mel frequency spectral coefficients and spectral shape descriptors (Büchler

et al., 2005; Cowling and Sitte, 2003). Similar approaches are used to classify an environment based on the

sounds heard within it (Barchiesi et al., 2015).

Convolutional neural networks have also been applied to these problems, producing improved re-

sults (Piczak, 2015a; Salamon and Bello, 2017). Recently, some interest has been given to exploring the

performance of different network structures (Hershey et al., 2017; Huzaifah, 2017). Impact sounds are a

specific category of environmental sounds, which contain fewer cues to differentiate them from one another.

1.3.2 Statistical Sound Modeling

Statistical methods have found applications in summarizing and analyzing sound. The late reverberations

of sounds in rooms have been modeled as Gaussian noise, whose summary statistics convey properties of

the environment (Traer and McDermott, 2016). It has also been found that humans inherently use summary

statistics to understand sounds (McDermott et al., 2013). Previous methods for material parameter estimation

assume minimal variable effects in estimation of damping rates. In comparison, the probabilistic damping

model presented in ?? models recorded impact sounds as inherently stochastic.

1.3.3 Object Understanding Through Sound

I now shift the focus to understanding of objects’ impact sounds in particular. A common application is to

learn properties of a real-world object in order to resynthesize similar sounds in a virtual environment. Some

methods use a single recorded sound, then apply modifications to create realistic variety in resynthesized

sounds. Deterministic features of a sound can be extracted, then stochastic noise can be added to those

features to model slight variations (Serra and Smith, 1990). Alternatively, the modal content of a sound

can be extracted, then resynthesized, slightly modifying mode amplitudes to create variations (Lloyd et al.,

2011). Other methods use multiple input sounds for a single object, generated by striking the object in
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known locations. The sounds’ spectral content can be interpolated spatially to approximate hit points at new

locations (Pai et al., 2001).

However, these methods work by modifying recorded sounds without gaining much fundamental knowl-

edge about the object itself. They do not model the object’s material or shape independently from one another.

Ideally, sounds from struck real-world objects could be used to recreate the shape and material parameters of

the objects. In the rest of this section, I will consider both independent material and shape estimation.

1.3.3.1 Auditory Material Estimation

Material parameters can be estimated experimentally with specialized measurement equipment (E756,

2017), but impact sounds do not require specialized equipment or trained personnel to record. The Young’s

modulus for small parts of the object can be individually optimized to best match input sounds (Yamamoto

and Igarashi, 2016). The most relevant work is that of Ren et al. (Ren et al., 2013b), which performs

automatic estimation of material parameters from a single audio sample. This method works by optimizing a

synthetic sound to most closely match the recorded sound. The material parameters that optimally match

the synthetic and recorded sounds are the most likely material parameters for the real-world object. The

estimated parameters can be applied to synthesis of sounds for any object with that material. However, their

method is able to estimate damping parameters only for the Rayleigh damping model, which may be limited

in its ability to represent diverse materials.

These methods are often limited in their robustness by relying on Rayleigh damping, not accounting

for environmental factors, and not using multimodal input. These limitations are addressed as part of this

dissertation. Methods that estimate material damping parameters support only the Rayleigh damping model,

which I address in ??. All of these methods assume that properties of the recording environment are known

or are assumed to be minimal, which I address in ??. If both video and audio of the object are available, these

methods have no way of using the visual information to improve material estimates, which I address in ??.

1.3.3.2 Auditory Shape Estimation

The ideal case of using one sound to reconstruct an entire object is known to be underconstrainted (Kac,

1966), but prior research has explored what information can be estimated under different constraints. For

example, binary shape attributes such as planarity and mirror symmetry, may be easier to estimate than a full

geometric model (Fouhey et al., 2016; Fouhey et al., 2019). Sound can be used as a source of information for
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deeper understanding of 3D object structure. Little work has been done in this area, and existing methods

limit themselves to estimation of shape attributes (Zhang et al., 2017b). Zhang et al. evaluated the ability of

the ShapeNet neural network (Aytar et al., 2016) to identify an object shape out of 14 possible shapes, but

these were largely shape primitives that were not representative of real-world object geometries (Zhang et al.,

2017a). In ??, I address these limitations with a method that uses multimodal input and evaluates on datasets

of shapes more representative of the real world.

1.4 Visual Understanding

Having discussed machine understanding of sound, I now discuss what information can be gleaned

through visual means.

1.4.1 Visual Object Reconstruction

An important step in object virtualization is to obtain the 3D shape and visual surface texture of a

real-world object. This information can be obtained by reconstructing the object from a series of images

looking at the object from multiple angles. Structure from Motion (SFM) (Westoby et al., 2012; Snavely et al.,

2006), Multi-View Stereo (MVS) (Goesele et al., 2007; Seitz et al., 2006), and Shape from Shading (Zhang

et al., 1999) are classes of techniques for obtaining 3D shape information from a set of 2D images. Although

these methods alone do not achieve a segmented representation of the objects within the scene, they serve

as a foundation for many algorithms. Bundle adjustment is used to jointly optimize poses when many

images are used as input (Triggs et al., 2000). RGB-D depth-based, active reconstruction methods can also

be used to generate 3D geometrical models of static (Newcombe et al., 2011; Golodetz* et al., 2015) and

dynamic (Newcombe et al., 2015; Dai et al., 2017) scenes using commodity sensors such as the Microsoft

Kinect and GPU hardware in real-time.

1.4.1.1 3D Object Datasets

With the rise of data-driven methods for visual understanding, large and well-annotated datasets have

become valuable. Thanks to a plethora of 3D scene and object datasets such as BigBIRD(Singh et al., 2014)

and RGB-D Object Dataset (Lai et al., 2011), neural network models have been trained to label objects based

on their visual representation. 3D ShapeNets (Wu et al., 2015) also provides two sets of object categories
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for object classification referred to as ModelNet10 and ModelNet40, which are common benchmarks for

evaluation (Kanezaki et al., 2016). Scene-based datasets have also been built from RGB-D reconstruction

scans of entire spaces, allowing for semantic data such as object and room relationships. For instance, NYU

Depth Dataset (Silberman et al., 2012) and SUNCG (Song et al., 2017) enable indoor segmentation and

semantic scene completion from depth images.

1.4.2 Multimodal Understanding

It is well known that vision alone is limited in its ability to understand scenes. In this dissertation I focus

on using audio as a primary cue for improved object understanding, though many other modalities have also

been explored. Here, I will discuss prior work on multimodal understanding.

Additional input modalities may improve results for objects and materials that are difficult to reconstruct.

Reflective objects have glare which change in location with the movement of the viewer, while transparent

objects make it difficult to determine depth. A time-of-flight camera can correct estimated depth of transparent

objects (Tanaka et al., 2017). The dip transform for 3D shape reconstruction (Aberman et al., 2017) uses

fluid displacement of an object to obtain shape information.

Sound and video are intrinsically linked modalities for understanding the same scene, object, or event.

Using visual and audio information, it is possible to predict the sound corresponding to a visual image or

video (Owens et al., 2016b; Aytar et al., 2016). Sound prediction from video has also been specifically

explored for impact sounds (Owens et al., 2016a).

Impact sound provides an additional input modality, containing cues about the internal structure of an

object. Environmental scene classification is a related task approached through spectral analysis (Büchler

et al., 2005) or convolutional neural networks (Piczak, 2015a; Salamon and Bello, 2017), but produces broad

classifications of an entire environment. However, no current methods use impact sounds in particular to aid

in complete shape reconstruction. One goal of this research is to use impact sounds to help determine the

object shape and material in cases where visual methods struggle.

1.4.2.1 Multimodal Fusion

Other works have fused audio and visual cues to better understand objects and scenes. Sparse auditory

clues can supplement the ability of random fields to obtain material labels and perform segmentation (Arnab

et al., 2015). Neural networks have proven valuable in fusing audio-visual input to emulate the sensory
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interactions of human information processing (Zhang et al., 2017b). While multimodal methods have

succeeded in fusing input streams to capture material and low-level shape properties to aid segmentation,

they have not attempted to identify specific object geometries.

Early attempts at multimodal fusion in neural networks focused on increasing classification specificity

by combining the individual classification results of separate input streams (Simonyan and Zisserman,

2014). Bilinear modeling can model the multiplicative interactions of differing input types, and has been

applied as a method of pooling input streams in neural networks (Tenenbaum and Freeman, 2000; Lin et al.,

2015). Bilinear methods have been further developed to reduce complexity and increase speed, while other

approaches to modeling multiplicative interactions have also been explored (Gao et al., 2016; Yu et al.,

2017; Park et al., 2016). Bilinear methods have not yet been applied to merging audio-visual networks. The

ISNN networks I present in ?? take a step towards combined audio-visual object reconstruction with bilinear

methods.
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