
CHAPTER 1: Interactive Modal Sound Synthesis Using Generalized Proportional Damping1

1.1 Introduction

Modal analysis requires a model of the rigid object and a set of material parameters. These material

parameters are tedious to set by hand, but determine whether the object sounds like glass, metal, or another

material. One necessary component of sound synthesis is the damping model, which characterizes how the

amplitude of the sound decays over time. Damping is a complex phenomenon, and it can be difficult to

determine exactly how the vibrations of a modeled object will decay. Additionally, the presence of damping

may give rise to complex modes of vibration, which are more difficult to model than normal modes (Caughey

and O’Kelly, 1965). The most common approach is to assume all damping is viscous and to approximate the

decay rate of one part of an object as a linear combination of its mass and stiffness. This model is referred to

as Rayleigh damping or linearly proportional damping, and produces only normal modes. It is the de-facto

technique for modeling damping using modal sound synthesis. Rayleigh damping uses a simple linear model,

but there are known limitations about the damping of sound synthesized even using properly set Rayleigh

damping coefficients.

The limitations are: (1) Rayleigh damping is only a first-order approximation and (2) it was originally

chosen for its ease of computation, not its physical accuracy. Other damping models are common in

material and structural analysis, but have not been thoroughly examined in computer graphics for interactive

3D sound synthesis. The most general damping model to date that limits vibrations to normal modes is

generalized proportional damping (GPD) (Adhikari, 2006), of which Rayleigh damping is a special case.

These alternative damping models may be able to improve sound quality by providing a better fit to the

real-world damping behavior. By improving the quality of synthesized sound, we can enhance the immersion

in virtual environments to create more effective 3D games, telepresence applications, and training simulations.

1This chapter previously appeared as a paper in the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D
2016). The original citation is as follows: Sterling, A. and Lin, M. C. (2016). Interactive modal sound synthesis using generalized
proportional damping. In Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’16,
pages 79–86, New York, NY, USA. ACM
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In this chapter, we explore the use of generalized proportional damping for interactive modal sound

synthesis. We first present how GPD can be integrated into current methods for modal sound synthesis. We

describe a method for deriving damping models from the larger space of GPD functions and propose specific

models that may be of interest for modal sound synthesis. We further extend an optimization framework

originally designed to compute Rayleigh damping parameters given audio samples to compute material

parameters for the GPD model. Finally, we conduct a preliminary user study to evaluate the perceptual

differences between multiple damping models in modal sound synthesis.

To sum up, the main results include:

• Investigation of higher-order generalized damping models for modal sound synthesis (Section 1.2);

• Estimation of material parameters for Generalized Proportional Damping in sound rendering (Sec-

tion 1.3); and

• Evaluation, comparison, and analysis of perceived audio quality using these GPD models (Section 1.4).

1.2 Generalized Proportional Damping for Sound Synthesis

Generalized proportional damping (GPD), introduced by Adhikari (Adhikari, 2006), extends the damping

models previously discussed in ??. While Rayleigh and Caughey damping are models parameterized by real

valued coefficients αj , GPD is parameterized by functions. Rayleigh and Caughey damping can both be

derived as GPD models, but GPD is also able to capture a wider variety of damping behavior.

1.2.1 Generalized Proportional Damping

Generalized proportional damping is formulated as follows:

C = Mβ1(M−1K) + Kβ2(K−1M) (1.1)

β1 and β2 are matrix valued functions whose only restrictions are that they be analytic near the eigenvalues of

their arguments. For example, using β1(A) = α1A and β2(A) = α2A replicates Rayleigh damping. This

representation is much more convenient to work with than a Caughey series, as arbitrary functions can be

easily plugged in to the β functions. GPD still satisfies the necessary condition of the Caughey series since

any continuous function used as a β can be expanded as a power series.
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For GPD, the equation for ci was provided along with a lengthier proof (Adhikari, 2006), which we will

omit here:

ΦTCΦ = Mβ1(M−1K) + Kβ2(K−1M)

ci = β1(ω2
in) + ω2

inβ2(ω−2
in )

ci = β(ω2
in) (1.2)

The final form of the equation can be reached without loss of generality (the second term could be embedded

in β1) and is an even more convenient form to work with.

1.2.2 Modal Sound Synthesis with GPD

The technical change needed to use GPD for modal sound synthesis is conceptually simple: during

precomputation of damping coefficients use Equation (1.2) instead of ??. GPD’s increased flexibility has its

downsides: with Rayleigh damping it is tedious, but possible, to select the parameters α1 and α2 by hand

and fine tune until the resulting sound is acceptable. The challenge now lies in selecting an appropriate β

function for the sounding object in question, which covers a much broader space of functions.

β defines a curve in eigenvalue-damping space, which should match as closely as possible to the real-

world damping values. Considering damping modeling as a curve fitting problem, Rayleigh damping’s linear

model is only accurate as long as the true damping curve remains approximately linear.

1.2.2.1 Power Law Model

Our proposed solution is to pick functions parameterized with real-valued coefficients known to provide

good fits to damping curves. Rayleigh and Caughey damping use real-valued coefficients and stay in

the toolkit, but it opens up the possibility of other models. As one alternative model, in the study of

sound attenuation during propagation there is a well-known power law relation between frequency and

attenuation (Szabo, 1994). As sound propagates through a material, the pressure of the sound P attenuates

depending on the distance traveled ∆x and frequency ω according to:

P (x+ ∆x) = P (x)e−α1(ω)α2 ∆x (1.3)
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α1 and α2 are real-valued coefficients which vary depending on material. If we assume the physical

phenomenon causing attenuation over distance and damping over time are similar, we can use Equation (1.2)

to derive a similar damping model based on this power law:

ci = β(ω2
in) = α1ω

2α2
in (1.4)

α1 and α2 are now the real-valued parameters to this power law model. While the 2 in the exponent could

be incorporated into α2, it allows the function to be written in terms of the eigenvalue for clarity. Because

this model is a continuous function of the eigenvalue, GPD guarantees that there is a damping matrix C that

diagonalizes to produce these c values and therefore creates only normal modes of vibration.

Empirical findings for the power law model’s α2 in the context of attenuation place it in a range between

0 and 1, with 1 being a common finding for many materials. If damping can be said to be similar, this may

provide some physical justification for Rayleigh damping, whose second term fits this model. However,

Rayleigh damping could not handle any materials with an exponent not equal to one while a power law

damping model could adapt for each material. We use this power law model in later evaluation, but GPD

allows for a wide range of models, and we would encourage trying out different models to find optimal fits.

We demonstrate one such additional model in ??: a hybrid model combining Rayleigh and power law models,

though this chapter focus on the two separately.

1.3 Material Parameter Estimation

Instead of fine-tuning damping model parameters values by hand, we can instead automatically estimate

them from recorded audio. Rayleigh damping has been studied to determine that its α1 and α2 are geometry-

invariant and can be considered as properties of the material alone (Ren et al., 2013a). Other damping models

have not undergone the same level of rigorous testing, but we hypothesize that for any damping model with

real-valued parameters, the parameters will be similar across objects with different shapes and the same

material. Ideally, we would like to use the recorded audio to estimate all the material parameters needed to

synthesize sound of an object in any shape but made of the same material. The relevant material parameters

are Young’s modulus, Poisson’s ratio, density, and damping model parameters for the chosen damping model.

Ren et al. have suggested an optimization-based framework for estimating these parameters using a

Rayleigh damping model (Ren et al., 2013b). We extend the optimization framework to automatically
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identify material parameters for any damping model, including both Caughey series and GPD models. In this

section, we first review the parameter identification pipeline for turning an audio recording into example-

guided, physically-based synthesized sound. We then describe how we generalize such a system to estimate

parameters for alternative damping models.

1.3.1 Estimation of Rayleigh Coefficients

1.3.1.1 Feature Extraction

First, the input audio file is processed to extract audio features, where each feature represents a single

damped mode and consists of a frequency, damping coefficients, and initial amplitude. Multiple power

spectrograms of the input audio are constructed with varying temporal and spatial resolution, and frequencies

with high power are selected. The spectrograms with high temporal resolution have low spectral resolution

and will be useful in different situations than the spectrograms with low temporal resolution and high spectral

resolution. Once a peak is identified, an optimizer searches the local variations in frequency, damping, and

amplitude to produce the best fit. The power spectrogram of the new peak is subtracted from the current

spectrograms and the process repeats until a large enough percentage of the power is accounted for in the

extracted features. The remaining audio is the residual audio, containing background noise and nonlinear

effects such as complex modes.

1.3.1.2 Parameter Estimation

In order to estimate the material parameters of the recorded object, some additional information is

needed. Poisson’s ratio is not optimized as part of this system, so it must be predetermined before starting.

Additionally, eigenvalues scale proportionally with Young’s modulus (E) and inversely with density (ρ). The

ratio of Young’s modulus to density is referred to as the specific modulus γ = E/ρ. If parameter estimation is

intended to estimate a Young’s modulus, a density value needs to be predetermined in order to get an absolute

Young’s modulus. Finally, modal analysis is performed on a discretized model of the object with assumed

material parameters and it is struck with a unit impulse at the same hit point as the real-world object. The

resulting ΦT f contains the initial mode amplitudes of the assumed object, and since the same hit point was

used for the recorded object, its amplitudes should be a scaled version of the same. The final set of parameters
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used in optimization is γ, scale, and real-value coefficients. Scale is not a material parameter, but without it

the optimizer would be unable to properly match the volumes of the recorded and reconstructed audio.

The parameters are determined through optimization looking to minimize a similarity metric by varying

the parameters. The chosen metric combines both evaluation of differences between power spectrograms

and differences between features. Power spectrograms are compared after being transformed based on

psychoacoustic principles. Since humans cannot easily distinguish between similar frequencies of sound, and

since this effect varies in strength across the range of hearing, the frequency dimension is transformed to the

Bark scale which properly accounts for this effect. Perception of loudness also varies based on frequency, so

the intensities are converted to the sone scale, in which the loudness is scaled depending on the frequency of

the sample. With the spectrograms converted to perceptually-based scales, they can now be compared to one

another by finding the squared difference between them:

Πpsycho(I, Ī) =
∑
m,z

(T(I)[m, z] − T(̄I)[m, z])
2 (1.5)

The other part of the metric operates on (frequency, damping, amplitude) features extracted from the

recorded audio or taken from an assumed mode of vibration and its corresponding entry in the ΦT f amplitude

vector. Once again, the frequency is converted to the Bark scale for psychoacoustic purposes. The damping is

also inverted to become duration, which is less sensitive to differences between very short bursts of sound.

The sets of features are then matched with one another using the Match Product Ratio metric. A single feature

f1 can be compared to the set of possible matches in the other set of features f̄ using the point-to-set match

ratio:

R(fi, f̄) =

∑
j ui,jk(fi, f̄j)∑

j ui,j
(1.6)

u is a matrix of weights to give higher priority to prominent features, while k is a measure of distance between

the two points on [0, 1] such that a 1 means an exact fit. A full set of features f can be compared to another

set of features f̄ using the set-to-set match ratio:

R(f , f̄) =

∑
iwiR(fi, f̄)∑

iwi
(1.7)
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w is a vector of weights similar in purpose to u. With these match ratios defined, the Match Ratio Product

metric for the extracted audio features f extract and the assumed audio features fassume is:

ΠMRP = −R(f extract, fassume)R(fassume, f extract) (1.8)

The final metric to optimize is:

Πhybrid =
Πpsycho

ΠMRP
(1.9)

This metric takes into account both the power spectrograms and features, using psychoacoustic scales where

it can better match human hearing.

The starting points are generated by choosing multiple pairs of two dominant features extracted from the

recorded audio and fitting a line to them to generate starting material parameters. For each mode from the

modal analysis on assumed parameters, the eigenvalue and the corresponding amplitude in the ΦT f vector

are used to generate the starting γ and scale values. The starting γ is selected as the value that would cause

the selected mode to have the same frequency as one of the dominant features. Similarly, the starting scale

is the one that would scale the amplitude of the selected mode to the amplitude of the dominant feature.

Together, these define a starting point for the optimizer.

By running a non-gradient based optimizer on this metric from each starting point and selecting the best

final point, material parameters that best recreate the original sound are selected. The resulting γ can be used

to find the Young’s modulus, while the material parameters, such as α1 and α2 in Rayleigh model, define

the damping curve. These parameters can then be transferred to other geometries, effectively applying the

material parameters of the original recorded object to different virtual models.

Ren et al. also presented a method for taking the residual sound (anything not captured by the modal

feature extraction) and transferring it to alternative shapes, making even the residual somewhat geometry-

invariant (Ren et al., 2013b). We focus on the estimation of damping parameters and we do not adopt residuals

for sound synthesis.

1.3.2 Estimation of GPD Parameters

In order to estimate damping parameters from an arbitrary damping model, we reformulate the set of

optimized parameters to include γ, scale, and all of the damping model parameters (of which there could be
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Figure 1.1: Generation of specific modulus γ starting value using a damping value d from an extracted
feature, an eigenvalue ω2

n from modal analysis on assumed parameters, and a sampled damping model c(x).
γ is chosen such that c(γω2

n) = 2d.

many). Any instances of Rayleigh damping computation are replaced with a general β function (instead of

real values). Feature extraction and metric evaluation are still applicable, as the damping model plays no role

there.

The most significant difference lies in generation of the starting points. With Rayleigh damping’s linear

fit, any two points define a new line and new starting α1 and α2, but arbitrary β functions may require

many points to define a curve. Instead, we repeatedly sample a customizable percentage of the dominant

features—weighted by dominance. On each sample, we perform least-squares nonlinear regression on the

damping model to create the starting damping model parameter values. The sampling percentage is ideally

set such that there are enough features to get a useful fit, but not so many features that the starting points are

tightly clustered.

To generate a starting γ, we pair up each mode’s eigenvalue from the modal analysis on assumed

parameters with each damping value from extracted features. γ is computed through root-finding as the value

that maps the mode’s eigenvalue to the feature’s damping value through our sampled damping model. We are

effectively asking, “If this eigenvalue happened to be damped at this rate, what would γ have to be?” See

Figure 1.1 for a visual example. Similarly, the scale is chosen to match the mode’s amplitude to the extracted

feature’s amplitude. This is a fairly exhaustive search and the search space has many local minima, so quite a

few starting points are needed to find a nearly-global minima. Once these starting points are generated, the

optimizer can proceed to minimizing the metric.

8



Figure 1.2: Virtual reconstructions of virtual objects, placed in a scene where they fall onto a ground plane to
produce impact sounds.

1.4 Results

1.4.1 Sound Synthesis

We implemented Rayleigh, Caughey, and GPD-based sound synthesis using FEM meshes as our dis-

cretization. Audio was played using the STK library (Cook and Scavone, 1999; Scavone and Cook, 2005),

and videos were created using Blender with Bullet Physics for rigid-body simulation (Coumans, 2015).

Our meshes contain around 10,000–20,000 tetrahedra, resulting in up to 30 minutes of precomputation

time on modal analysis using a desktop workstation computer. Run time for material parameter estimation is

most dependent on the length of the sound: one starting point for a short impact converges in a few seconds,

while a reverberative object requires up to ten minutes. At runtime, sound is synthesized at 44 kHz: the

highest frequency we can perceive is around 22 kHz, so there is no benefit in synthesizing sound more often

than twice that frequency. The synthesis steps are fast enough that the 44kHz update rate can be easily

maintained for a number of sounding objects even on a laptop.

1.4.2 Parameter Estimation

We implemented our extended version of the material parameter optimization process, and have been

able to estimate parameters using different damping models. See ?? for the full set of objects used, comparing

the real objects in the top row to the meshes in the bottom row. Figure 1.2 shows a few of these objects

placed into a virtual scene as part of videos for our user study (Section 1.4.3). ?? shows a set of dominoes of

different materials, which collide with one another to produce a variety of sounds.

Table 1.1 presents some results from performing estimation of material damping parameters given

recorded audio, using Rayleigh damping, second-order Caughey damping, and power law damping. These
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Plastic 1 Plastic 2 Porcelain Wood Aluminum

Shared E 8 2.4 20 9.9 0.88

Rayleigh α1 125 58 189 35 .225
α2 8e-6 1e-6 1.5e-8 4.6e-7 1.45e-6

Caughey
α1 280 85 420 277 9.7
α2 -3.6e-7 6.6e-7 -2.4e-6 -2.0e-6 -3.4e-6
α3 2.0e-15 5.6e-14 3.8e-15 4.8e-15 5.8e-13

Power α1 1.13 .19 163 6.7 .02
α2 .3 .37 .01 .18 .445

Table 1.1: Estimated material parameters for a selection of materials. Young’s modulus is given in GPa. See
?? and Section 1.2 for the usage of each damping parameter. These are not necessarily the parameters that
minimize the MPR metric, but they are locally optimal and agree on a somewhat physically plausible Young’s
modulus E across damping models.

parameters may not be the most globally optimal as reported by the optimizer, but they are all parameters

that have reasonably low metric values and are at least locally optimal. Plastic 1 comes from the rigid, clear

plastic bowl, while Plastic 2 comes from the thin and much more flexible dog food scoop. We can assign

some physical meaning to these parameters; for example Porcelain has smaller values for Rayleigh’s α2 and

Power’s α2, indicating relatively less damping at higher frequencies. Also note that while most materials are

best fit by a Caughey series whose coefficients alternate signs with each term, Plastic 2 was better fit by a set

of only positive coefficients. The other damping models are unable to capture this unusual damping behavior

as well as the higher-order Caughey series.

1.4.3 User Study

One hypothesis with this work is that alternative damping models can recreate a wider range of more

realistic audio with more complex non-linear damping characteristics. In order to evaluate the perceptual

realism of the damping models, we conducted a preliminary user study where subjects were asked to compare

sound generated with different damping models. This study is a first exploration of the differences between

damping models. The study evaluates if subjects can tell the difference between them, and if so, which they

find more realistic.

10



1.4.3.1 User Study Setup

This study was conducted entirely online through the subject’s web browser. Subjects were informed

about the procedure of the study and instructed to use headphones or earbuds in order to better control the

audio environment.

Subjects were presented with a series of pairs of videos of an object being dropped on a flat surface.

Refer to Figure 1.2 for images of the objects used in the study. Each pair of videos showed the same visual

imagery, but had different audio generated using either Rayleigh damping, a second-order Caughey series, or

a power law model. Subjects were asked to rate, on a scale from 1 to 11, which video they perceived as more

realistic, with a 1 indicating a strong preference for the video on the left, an 11 indicating a strong preference

for the video on the right, and 6 being in the middle. Subjects were also asked to rate the similarity of the

sound in the videos, where a 1 is very different and an 11 is indistinguishable. The videos could be watched

repeatedly and subjects could return to previously-answered questions in case their opinions change.

1.4.3.2 User Study Results

40 subjects participated in the study, and while little demographic information was collected, the

recruitment methods used were likely to attract many subjects with little experience in evaluating sound

quality. We can begin by combining data from objects together to get a general sense of the perceived realism

ratings as a whole. Recall that perceived realism was rated on a scale from 1 to 11, with 6 being in the

middle. In comparisons between Rayleigh damped and Caughey damped audio, a 1 indicates preference

for Rayleigh and an 11 indicates preference for Caughey. Across all objects, when subjects compared

Rayleigh and Caughey damping, the realism rating was 6.5±3.3, and there was not a significant preference in

realism between the two (p > .05). When comparing Rayleigh to Power damping, where a 1 again indicates

a preference for Rayleigh, the realism rating was 4.78 ± 2.57 and there was a preference for Rayleigh

(p < .0001). Finally, when comparing Caughey to Power damping, where a 1 indicates a preference for

Caughey, the average realism rating was 3.95 ± 2.92 and there was a preference for Caughey (p < .0001).

We can also look at the subject-reported similarity values to determine if the subjects could notice a

perceptual difference between the models. Similarity was rated on a scale from 1 (very different) to 11 (very

similar). In comparisons between Rayleigh and Caughey damping, the similarity was 5.7 ± 3.0. Between
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Rayleigh and Power damping, the similarity was 6.9 ± 3.4. Finally, Caughey and Power damping had a

similarity of 4.4 ± 2.7.

For more detailed results, realism values for each of the objects individually are laid out in Table 1.2. For

simplicity, comparisons between two damping models, say Rayleigh and Power, are abbreviated as R/P in

the table. The results for the small floor tile and the long wood block contain some of the most significant

results, with Caughey damping greatly preferred over the other two. The plastic scoop was the only object for

which Rayleigh was preferred over Caughey, but for most of the objects the difference was not statistically

significant. The porcelain bowl is an interesting case where Rayleigh and Caughey are nearly identical in

realism, but for once the power model is considered to be nearly as (possibly more) realistic.

1.4.3.3 Discussion

When compared to either of the alternatives, Power was perceptually considered to be less realistic

by .47 standard deviations in the case of Rayleigh damping and by .7 standard deviations in the case of

Caughey damping. This is only a moderate preference, but enough to be statistically significant. One simple

explanation for this result is that a power law may not provide a good curve fit to the data. Despite this, the

two most similar sounding damping models were reported to be Rayleigh and Power. The power law model

often seems to be perceptually similar to Rayleigh damping at higher frequencies, while having less damping

on the lower frequencies. In some cases the amplified lower frequencies sound more realistic, but in most of

the cases in this user study it comes across as too strong and unrealistic.

In theory, Caughey damping can only improve upon Rayleigh damping since the higher order terms can

simply be set to 0 if the linear model would be optimal. The result that the difference in realism between

the two of them was not statistically significant could imply that the benefit gained from the second-order

term is not be large enough to be perceptibly noticeable. However, the similarity rating between them is not

particularly high, so a better interpretation might be that there is a perceptually noticeable difference between

the sounds, but subjects had difficulty determining which of the two different sounds was more realistic.

Subjects did not have access to any ground truth sound recordings, which made the task more difficult.

However, this is reasonable given that the primary application we are considering is using estimation

parameters to synthesize contact sounds in interactive virtual environments. The study focuses on subjects’

perception of the sounds presented in an entirely virtual environment to understand how they would react to

these sounds in a game, virtual teleconference, or training simulation. The subjects only need to perceive
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Object Models x̄ σ p

Metal Plate
R/C 6.5 3.2 .35
R/P ∗ ∗ ∗

C/P ∗ ∗ ∗

Plastic Bowl
R/C 6 3.3 1
R/P 2.9 1.9 .0002
C/P 3.9 2.0 .01

Plastic Scoop
R/C 3.6 2.2 .0035
R/P 4.3 2.3 .095
C/P 5.2 3.4 .294

Porcelain Bowl
R/C 6.1 3 .93
R/P 6 0 1
C/P 7.1 3.0 .32

Porcelain Plate
R/C 6.6 3.5 .53
R/P 4.8 2.9 .16
C/P 4.2 2.8 .04

Small Floor Tile
R/C 8.9 2.4 .001
R/P 4.4 3.0 .13
C/P 2.1 1.5 <.0001

Short Wood Block
R/C 6.6 4.2 .63
R/P 5.2 3.6 .5
C/P 4.0 2.9 .014

Long Wood Block
R/C 7.8 1.8 .005
R/P 5.2 2.9 .34
C/P 2.2 1.6 <.0001

Table 1.2: Realism values from the user study. For each object and each pair of damping models (R for
Rayleigh, C for Caughey, P for power), the range of realism ratings is shown as a mean x̄ and a standard
deviation σ. Ratings lower than 6 are a preference for the damping model on the left side of the slash. The
p-value evaluates whether there is a significant difference in realism preference from the “no preference”
realism rating of 6. ∗The metal plate power model was not included in the study.
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the sounds to be realistic. This perceptual approach also reduces the need for participants to be skilled at

evaluating sound; the “perceptual ground truth” is not consistent between subjects.

1.5 Summary

We have presented the integration of generalized proportional damping with modal sound synthesis

techniques. We explained how to derive GPD-based damping models, using a power law model as an example.

We extended an existing method for estimating material parameters to estimate real-valued parameters from

an arbitrary damping model. We conducted a preliminary user study comparing Rayleigh, Caughey, and

power law damping models.

While the user study did not find an improvement in perceived realism when using our example of a

GPD-based damping model, this result provides other benefits. This study provides additional validation

of the popular Rayleigh damping model in that second order Caughey damping models were not always

perceptually more realistic than Rayleigh damping and that GPD-based models that provide a perceptual

improvement may not be easy to find. In light of this result, future research may find success in using models

that encapsulate a larger function space. In ??, we do propose one such higher-order model. Additionally,

genetic programming and neural nets can both approximate continuous functions without needing to specify

a damping model in advance.

Future work in the area of GPD should likely focus on exploring alternative GPD-based damping models.

Additionally, it would be an improvement to incorporate the residual audio after the material parameter

estimation process, transferring it to other geometries. There is some uncertainty about the transferability of

arbitrary GPD parameters; an analysis similar to the one done for Rayleigh damping (Ren et al., 2013a) could

help determine if the real-valued model parameters can all be considered material parameters. Work in these

areas would help improve understanding of damping behavior and hopefully lead to more immersive sound.
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