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Abstract

We present a modal sound synthesis technique using a generalized
proportional damping (GPD) model capable of capturing nonlinear
frequency-dependent damping functions. We extend a prior method
for automatic extraction of audio material parameters directly from
recorded audio clips to determine material parameters for alterna-
tive damping models. We demonstrate the results with example-
guided synthesized sounds, accompanied by a preliminary, percep-
tual study comparing the audio quality of the commonly used, linear
Rayleigh damping model against a collection of alternative models.

Keywords: Material Damping Models, Sound Rendering

Concepts: •Applied computing → Sound and music comput-
ing;

1 Introduction

Engaging multiple senses in a virtual environment (VE) or an in-
teractive 3D application is critical for an immersive user experi-
ence. Realistic sound corresponding to the visuals of a scene can
considerably improve the quality of interaction and enhance the
sense of presence in a virtual world. Ideally, physical behavior in
a VE would dynamically create the corresponding auditory feed-
back. One area of particular interest is the simulation of sounds
created by vibrating rigid bodies. These audio cues may include
the types of sounds created by knocking on a door, rolling dice,
ringing a bell, or dropping a spatula. A common technique for re-
producing these sounds is to analyze the vibrations of the sounding
object using modal analysis, then dynamically create new sounds at
runtime with modal synthesis. Modal analysis requires as param-
eters a model of the rigid object and a set of material properties.
These material properties are tedious to set by hand, but determine
whether the object sounds like glass, metal, or another material.

One aspect of sound synthesis is the damping model, which char-
acterizes how the amplitude of the sound decays over time. Damp-
ing is a complex phenomenon, and it can be difficult to determine
exactly how the vibrations of a modeled object will decay. Addi-
tionally, the presence of damping may give rise to complex modes
of vibration, which are more difficult to model than normal modes
[Caughey and Okelly 1965]. The most common approach is to as-
sume all damping is viscous and to approximate the decay rate of
one part of an object as a linear combination of its mass and stiff-
ness. This model is referred to as Rayleigh damping or linearly
proportional damping, and only produces normal modes. It is the
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de-facto technique for modeling damping using modal sound syn-
thesis. Rayleigh damping uses a simple linear model, but there are
few known limitations about the damping properties of synthesized
sound using properly set Rayleigh damping coefficients.

The limitations are: (1) Rayleigh damping is only a first-order ap-
proximation and (2) it was originally chosen for its ease of compu-
tation, not its physical accuracy. Other damping models are com-
mon in material and structural analysis, but have not been thor-
oughly examined in computer graphics for interactive 3D sound
synthesis. The most general damping model to date that limits
vibrations to normal modes is generalized proportional damping
(GPD) [Adhikari 2006], of which Rayleigh damping is a special
case. These alternative damping models may be able to improve
sound quality by providing a better fit to the real-world damping
behavior. By improving the quality of synthesized sound, we can
enhance the immersion in virtual environments to create more ef-
fective 3D games, telepresence applications, and training simula-
tions.

In this paper, we explore the use of generalized proportional damp-
ing for interactive modal sound synthesis. We first describe how
GPD can be integrated into current methods for modal sound syn-
thesis. We also propose specific damping models within the larger
space of GPD functions that may be of interest for modal sound
synthesis. We further extend an optimization framework originally
designed to compute Rayleigh damping parameters given audio
samples to compute material parameters for the GPD model. Fi-
nally, we conduct a preliminary user study to evaluate the percep-
tual differences between multiple damping models in modal sound
synthesis.

To sum up, the main results of this paper include:

• Investigation of higher-order generalized damping models for
modal sound synthesis (Section 3);

• Estimation of material parameters for Generalized Propor-
tional Damping in sound rendering (Section 4); and

• Evaluation, comparison, and analysis of percevied audio qual-
ity using these GPD models (Section 5).

We’ll briefly survey some of the related work in modal sound syn-
thesis and audio parameter identification.

2 Previous Work

Modal analysis has historically been used for mostly engineering
applications, but has also been applied for synthesizing sound from
shapes with analytically-computed eigen-systems [van den Doel
and Pai 1996]. This approach was later extended to use numeri-
cal methods for computing eigen-systems of objects with arbitrary
shapes and setting the precedence of using Rayleigh damping for
sound synthesis [O’Brien et al. 2002]. Real-time synthesis for many
objects simultaneously is enabled by optimization based on psy-
choacoustic principles [Raghuvanshi and Lin 2006] or by perform-
ing synthesis in frequency space [Bonneel et al. 2008]. While this
paper focuses purely on modal sound synthesis, it is worthwhile to
mention work done on coupling synthesis and propagation [James
et al. 2006] and work incorporating sound from sources other than
modal free-vibration sounds [Chadwick et al. 2012],
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Damping models are widely used in creating virtual sound, but
they were originally proposed to determine the damping proper-
ties of materials for structural analysis [Adhikari and Woodhouse
2001]. Rayleigh damping is the oldest and still the most popu-
lar damping model used in damping analysis and in sound synthe-
sis [Rayleigh 1896], due to its simplicity and ease of implementa-
tion. Necessary and sufficient conditions for normal modes have
been discovered [Caughey 1960] and damping models have been
formed around these concepts [Caughey and Okelly 1965].

Real-world audio recordings have been used to guide sound syn-
thesis. Older techniques are able to reproduce the sound of a spe-
cific object given many recordings representing a complete audio
sampling of a given object [Pai et al. 2001]. More recent results in-
volve obtaining an object’s modal information from sound record-
ings [Lloyd et al. 2011] and automatic extraction of Rayleigh damp-
ing parameters from a single audio sample [Ren et al. 2013b]. In
all these cases, Rayleigh damping is used to model losses, where
the viscous damping is represented as a linear combination of the
mass and stiffness.

3 Modal Sound Synthesis

To generate realistic, physically-based sound, we use modal analy-
sis for sound synthesis. In this section, we describe these methods
and associated damping models. We also describe how generalized
proportional damping can be integrated into such a system.

3.1 Modal Analysis

When a rigid object is struck, it vibrates in response, though these
vibrations may be imperceptible to the eye. As the surface of the ob-
ject vibrates and deforms, the surrounding air is rapidly compressed
and expanded, creating pressure waves which propagate through
the environment. Our ears perceive the variation in air pressure as
sound. In modal analysis, the shape and material properties of the
object are analyzed to decompose the vibrations into a set of modes
of vibration. Each normal mode of vibration describes one way in
which the object could deform sinusoidally over time. Vibrations
from an impact can roughly be represented as a linear combina-
tion of normal modes with different amplitudes, frequencies, and
phases.

Nowadays, modal analysis is performed numerically, where the ob-
ject is represented using a discretized model such as a FEM mesh
or spring-mass thin-shell system. Regardless of the choice of dis-
cretization, we can consider the dynamics of the system as it vi-
brates using a system of equations:

Mr̈+Cṙ+Kr = f (1)

Here, r is a vector of the displacement of each element, where a
vector of all zeros represents the object at rest. Since we usually
work with three-dimensional objects, an object with n discrete el-
ements would have a r vector of size 3n. f is the vector of forces
applied to each element, inducing vibrations. M is the mass ma-
trix, which describes where mass is located on the object. C is the
viscous damping matrix, which describes how the velocity of the
elements ṙ decays over time. K is the stiffness matrix, in which the
connectivity of the elements is defined. Given these matrices, we
can properly simulate the vibration of the object in response to an
impulse. M and K can be constructed through knowledge of the
shape of the object and its material properties, notably its density,
Poisson’s ratio, and Young’s modulus. The damping matrix C, is
not as simple to construct, and is the focus of this paper.

Modal analysis examines the eigenvalues and eigenvectors of the
system in free vibration, that is, with f = 0 after some initial im-

pulse has been applied. Temporarily ignoring damping, we can set
up a generalized eigenvalue problem of the form:

Kv = λMv (2)

Finding this eigendecomposition and combining the eigenvectors
into a matrix Φ allows the matrices M and K to be diagonalized.
Specifically, the eigenvectors are mass-normalized such that:

ΦTMΦ = I and ΦTKΦ = Ω2
(3)

The matrix Φ can be intuitively described as a matrix which trans-
forms between object space and mode space: each column of Φ
contains the shape of a normal mode, while ΦT f converts forces
on elements to normal mode amplitudes. The natural undamped
frequencies of the system are contained in the diagonal matrix Ω,
while their squares in Ω2 are the eigenvalues of the system. We can
continue the decoupling by considering the system in mode space
z = ΦTMr:

ΦTMΦz̈+ΦTCΦż+ΦTKΦz = ΦTf (4)

z̈+ΦTCΦż+Ω2z = ΦTf (5)

We now run into problems with the damping matrix C. While Φ
diagonalizes M and K, if it does not diagonalize C then the system
does not properly decouple and the resulting modes are not linearly
independent. The linearly dependent modes are called complex
modes, and accurately modeling them is much more difficult com-
pared to the linearly independent normal modes. To get around this
issue, for sound synthesis purposes we restrict ourselves to classical
damping with only normal modes, which means all of our damping
matrices must be diagonalizable by Φ.

3.2 Damping Models

3.2.1 Conventional Damping Models

Various damping models have been developed which guarantee
only normal modes.

The most popular model is Rayleigh damping [Rayleigh 1896], in
which the damping is a linear combination of mass and stiffness:

C = α1M+ α2K (6)

α1 and α2 are real-valued parameters to Rayleigh damping mod-
els. Rayleigh damping has been, to the best of our knowledge, the
only damping model used for sound synthesis in computer graph-
ics. An analysis of Rayleigh damping has shown that for percep-
tion of synthesized sound, the Rayleigh damping parameters α1

and α2 are geometry-invariant and are best seen as material proper-
ties [Ren et al. 2013a]. While other damping models should share
this property, they have not undergone the same rigorous evaluation
for sound synthesis.

Caughey and O’Kelly proposed a more general model, now known
as Caughey damping or a Caughey series [Caughey and Okelly
1965], which they proved to be a necessary and sufficient condi-
tion for normal modes:

C = M

n−1
∑

i=0

ηi(M
−1K)

i
(7)

All ηi are real-valued parameters for Caughey damping models. In
practice, the series could truncated after a few terms.



3.2.2 Generalized Proportional Damping

Generalized proportional damping (GPD) formulates the damping
matrix even more generally [Adhikari 2006]:

C = Mβ1(M
−1K) +Kβ2(K

−1M) (8)

β1 and β2 are matrix valued functions whose only restrictions are
that they be analytic near the eigenvalues of their arguments. For
example, using β1(A) = α1A and β2(A) = α2A replicates
Rayleigh damping. This representation is much more convenient
to work with than a Caughey series, as arbitrary functions can be
easily plugged in to the β functions. GPD still satisfies the neces-
sary condition of the Caughey series since any continuous function
used as a β can be expanded as a power series.

3.3 Modal Sound Synthesis

With these damping models, we have a damping matrix guaran-
teed to be diagonalizable by Φ. With the system diagonalized, the
free-vibration form is now decoupled into independent second or-
der differential equations:

z̈ + cż + ω2
nz = 0 (9)

c is an entry in the diagonalized damping matrix, and is discussed
in more detail in Section 3.4. These equations each have known
analytical solutions as damped sinusoids:

z(t) = ae−dt cos(ωdt) (10)

a is the amplitude of the sinusoid, while the damping coefficient
d = c/2 defines the rate at which the amplitude decreases. ωn in
Equation 9 is the natural undamped frequency of oscillation, but in
the presence of damping we use the damped frequency ωd:

ωd =
√

ω2
n − d2 (11)

For real-time synthesis, a preprocessing step is first performed for
a given object and material. In this step, the eigendecomposition
is performed and the resulting ΦT and each mode’s d and ωd are
saved. At runtime, an applied force f is transformed to mode space
by ΦT, and the resulting vector contains the amplitudes with which
to excite each mode. The resulting damped sinusoids can be com-
bined and sampled at 44 kHz to produce the sound itself.

3.4 Obtaining Damping Coefficients

In practice, we do not actually want to perform the matrix opera-
tions in the damping models. Through heavy use of Equation 3, we
can find analytical solutions for how C is diagonalized and com-
pute c in terms of the corresponding eigenvalue ω2

n. The solution
for Rayleigh damping is common in modal sound synthesis work:

ΦTCΦ = ΦTα1MΦ+ΦTα2KΦ

= α1I+ α2Ω
2

ci = α1 + α2ω
2
in (12)

Caughey damping is slightly more involved, but leads to a fairly

intuitive solution:

ΦTCΦ = ΦTM

n−1
∑

j=0

ηj(M
−1K)

j
Φ

= Φ−1
n−1
∑

j=0

ηj(ΦΩ2Φ−1)
j
Φ

=

n−1
∑

j=0

ηjΩ
2j

ci =

n−1
∑

j=0

ηjω
2
in

j
(13)

For GPD, the equation for c was provided along with a lengthier
proof [Adhikari 2006], which we will omit here:

ΦTCΦ = Mβ1(M
−1K) +Kβ2(K

−1M)

ci = β1(ω
2
in) + ω2

inβ2(ω
−2
in )

ci = β(ω2
in) (14)

The final form of the equation can be reached without loss of gen-
erality (the second term could be embedded in β1) and is an even
more convenient form to work with.

3.5 Modal Sound Synthesis with GPD

The technical change needed to use GPD for modal sound synthesis
is conceptually simple: during precomputation of damping coeffi-
cients use Equation 14 instead of Equation 12. GPD’s increased
flexibility has its downsides: with Rayleigh damping it is tedious,
but possible, to select the parameters α1 and α2 by hand and fine
tune until the resulting sound is acceptable. The challenge now lies
in selecting an appropriate β function for the sounding object in
question, which covers a much broader space of functions.

β defines a curve in eigenvalue-damping space, which should match
as closely as possible to the real-world damping values. Consider-
ing damping modeling as a curve fitting problem, Rayleigh damp-
ing’s linear model is only accurate as long as the true damping curve
remains approximately linear.

3.5.1 Power Law Model

One possible solution we propose is to pick functions with real-
valued coefficients known to provide good fits to damping curves.
Rayleigh and Caughey damping use real-valued coefficients and
stay in the toolkit, but it opens up the possibility of other models.
As one alternative model, in the study of sound attenuation during
propagation there is a well-known power law relation between fre-
quency and attenuation [Szabo 1994]. As sound propagates through
a material, the pressure of the sound P attenuates depending on the
distance traveled ∆x and frequency ω according to:

P (x+∆x) = P (x)e−µ1(ω)y∆x
(15)

µ1 and y are real-valued coefficients which vary depending on ma-
terial. If we assume the physical phenomenon causing attenuation
over distance and damping over time are similar, we can use Equa-
tion 14 to derive a similar damping model based on this power law:

ci = β(ω2
in) = µ1ω

2µ2

in (16)

µ1 and µ2 are now the real-valued parameters to this power law
model. While the 2 in the exponent could be incorporated into µ2, it



allows the function to be written in terms of the eigenvalue for clar-
ity. Because this model is a continuous function of the eigenvalue,
GPD guarantees that there is a damping matrix C which diagonal-
izes to produce these c values and therefore creates only normal
modes of vibration.

Empirical findings for µ2 in the context of attenuation place it in a
range between 0 and 1, with 1 being a common finding for many
materials. If damping can be said to be similar, this may provide
some physical justification for Rayleigh damping, whose second
term fits this model. However, Rayleigh damping could not handle
any materials with an µ2 6= 1 while a power law damping model
could adapt for each material. We use this power law model in later
evaluation, but GPD allows for a wide range of models, and we
would encourage trying out different models to find optimal fits.

4 Material Parameter Extraction

Instead of fine-tuning damping model parameters values by hand,
we can instead automatically estimate them from recorded audio.
Rayleigh damping has been studied to determine that α1 and α2

are geometry-invariant and can be considered as high level mate-
rial properties [Ren et al. 2013a]. Other damping models have not
undergone the same level of rigorous testing, but we hypothesize
that for any damping model with real-valued parameters, the pa-
rameters will be similar across objects with different shapes and
the same material. Ideally, we would like to use the recorded audio
to extract all the material properties needed to synthesize sound of
an object in any shape but made of the same material. The relevant
material properties are Young’s modulus, Poisson’s ratio, density,
and damping model parameters for the chosen damping model.

Ren et al. have suggested an optimization-based framework for ex-
tracting these parameters using a Rayleigh damping model [Ren
et al. 2013b]. We extend the optimization framework to automati-
cally identify material parameters for any damping model, includ-
ing both Caughey series and GPD models. In this section, we
first review the parameter identification pipeline for turning an au-
dio recording into example-guided, physically-based synthesized
sound. We then describe how we generalize such a system to extract
parameters for alternative damping models.

4.1 Extraction of Rayleigh Coefficients

4.1.1 Feature Extraction

First, the input audio file is processed to extract audio features,
where each feature represents a single damped mode and consists of
a frequency, damping coefficients, and initial amplitude. Peaks are
automatically selected by searching over multiple power spectro-
grams of the same audio, where the spectrograms vary in temporal
and spectral resolution. The spectrograms with high temporal res-
olution have low spectral resolution and will be useful in different
situations than the spectrograms with low temporal resolution and
high spectral resolution. Once a peak is identified, an optimizer
searches the local variations in frequency, damping, and amplitude
to produce the best fit. The power spectrogram of the new peak is
subtracted from the current spectrograms and the process repeats
until a large enough percentage of the power is accounted for in the
extracted features.

4.1.2 Parameter Estimation

In order to estimate the material parameters of the recorded ob-
ject, some additional information is needed. Poisson’s ratio is not
optimized as part of this system, so it must be predetermined be-
fore starting. Additionally, eigenvalues scale proportionally with

Young’s modulus (E) and inversely with density, so only the ratio
γ = E/ρ can be optimized and a density value needs to be predeter-
mined in order to get an absolute Young’s modulus. Finally, modal
analysis is performed on a discretized model of the object with as-
sumed material parameters and it is struck with a unit impulse at
the same hit point as the real-world object. The resulting ΦT f con-
tains the initial mode amplitudes of the assumed object, and since
the same hit point was used for the recorded object, its amplitudes
should be a scaled version of the same. The final set of parameters
used in optimization is γ, scale, and real-value coefficients. Scale
is not a material parameter, but without it the optimizer would be
unable to properly match the volumes of the recorded and recon-
structed audio.

The parameters are determined through optimization looking to
minimize a similarity metric by varying the parameters. The cho-
sen metric combines both evaluation of differences between power
spectrograms and differences between features. Power spectro-
grams are compared after being transformed based on psychoa-
coustic principles. Since humans cannot easily distinguish between
similar frequencies of sound, and since this effect varies in strength
across the range of hearing, the frequency dimension is transformed
to the Bark scale which properly accounts for this effect. Percep-
tion of loudness also varies based on frequency, so the intensities
are converted to the sone scale, in which the loudness is scaled de-
pending on the frequency of the sample. With the spectrograms
converted to perceptually-based scales, they can now be compared
to one another by finding the squared difference between them:

Πpsycho(I, Ī) =
∑

m,z

(T(I)[m, z]−T(̄I)[m, z])
2

(17)

The other part of the metric operates on (frequency, damping, am-
plitude) features extracted from the recorded audio or taken from
an assumed mode of vibration and its corresponding entry in the
ΦT f amplitude vector. Once again, the frequency is converted to
the Bark scale for psychoacoustic purposes. The damping is also
inverted to become duration, which is less sensitive to differences
between very short bursts of sound. The sets of features are then
matched with one another using the Match Product Ratio metric. A
single feature f1 can be compared to the set of possible matches in
the other set of features f̄ using the point-to-set match ratio:

R(fi, f̄) =

∑

j
ui,jk(fi, f̄j)
∑

j
ui,j

(18)

u is a matrix of weights to give higher priority to prominent fea-
tures, while k is a measure of distance between the two points on
[0, 1] such that a 1 means an exact fit. A full set of features f can
be compared to another set of features f̄ using the set-to-set match
ratio:

R(f , f̄) =

∑

i
wiR(fi, f̄)
∑

i
wi

(19)

w is a vector of weights similar in purpose to u. With these match
ratios defined, the Match Ratio Product metric for the extracted au-
dio features fextract and the assumed audio features fassume is:

ΠMRP = −R(fextract, fassume)R(fassume, fextract) (20)

The final metric to optimize is:

Πhybrid =
Πpsycho

ΠMRP

(21)

This metric takes into account both the power spectrograms and fea-
tures, using psychoacoustic scales where it can better match human
hearing.



The starting points are generated by choosing multiple pairs of two
dominant features extracted from the recorded audio and fitting a
line to them to generate starting material parameters. For each
mode from the modal analysis on assumed parameters, the eigen-
value and the corresponding amplitude in the ΦT f vector are used
to generate the starting γ and scale values. The starting γ is selected
as the value which would cause the selected mode to have the same
frequency as one of the dominant features. Similarly, the starting
scale is the one that would scale the amplitude of the selected mode
to the amplitude of the dominant feature. Together, these define a
starting point for the optimizer.

By running a non-gradient based optimizer on this metric from each
starting point and selecting the best final point, material parameters
which best recreate the original sound are selected. The resulting γ
can be used to find the Young’s modulus, while the material param-
eters, such as α1 and α2 in Rayleigh model, define the damping
curve. These parameters can then be transferred to other geome-
tries, effectively applying the material parameters of the original
recorded object to different virtual models.

Ren et al. also presented a method for taking the residual sound
(anything not captured by the modal feature extraction) and trans-
ferring it to alternative shapes, making even the residual somewhat
geometry-invariant [Ren et al. 2013b]. For this paper, we focus on
the extraction of damping parameters and we do not adopt residuals
for sound synthesis.

4.2 Extraction of GPD Parameters

In order to extract damping parameters from an arbitrary damp-
ing model, we reformulate the set of optimized parameters to in-
clude γ, scale, and all of the damping model parameters (of which
there could be many). Any instances of Rayleigh damping compu-
tation are replaced with a general β function (instead of real values).
Feature extraction and metric evaluation are still applicable, as the
damping model plays no role there.

The most significant difference lies in generation of the starting
points. With Rayleigh damping’s linear fit, any two points define a
new line and new starting α1 and α2, but arbitrary β functions may
require many points to define a curve. Instead, we repeatedly sam-
ple a customizable percentage of the dominant features—weighted
by dominance. On each sample, we perform least-squares nonlin-
ear regression on the damping model to create the starting damping
model parameter values. The sampling percentage is ideally set
such that there are enough features to get a useful fit, but not so
many features that the starting points are tightly clustered.

To generate a starting γ, we pair up each mode’s eigenvalue from
the modal analysis on assumed parameters with each damping value
from extracted features. γ is computed through root-finding as the
value that maps the mode’s eigenvalue to the feature’s damping
value through our sampled damping model. We are effectively ask-
ing, “If this eigenvalue happened to be damped at this rate, what
would γ have to be?” See Figure 1 for a visual example. Simi-
larly, the scale is chosen to match the mode’s amplitude to the ex-
tracted feature’s amplitude. This is a fairly exhaustive search and
the search space has many local minima, so quite a few starting
points are needed to find a nearly-global minima. Once these start-
ing points are generated, the optimizer can proceed to minimizing
the metric.

Eigenvalue

D
am

p
in

g

2d

c(x)

ω2
nγω2

n

γ

Figure 1: Generation of γ (ratio of Young’s modulus to density)
starting value using a damping value d from an extracted feature,
an eigenvalue ω2

n from modal analysis on assumed parameters, and
a sampled damping model c(x). γ is chosen such that c(γω2

n) =
2d.

5 Results

5.1 Sound Synthesis

We implemented Rayleigh, Caughey, and GPD-based sound syn-
thesis using FEM meshes as our discretization. Audio was played
using the STK library [Cook and Scavone 1999; Scavone and Cook
2005], and videos were created using Blender with Bullet Physics
for rigid-body simulation [Coumans 2015].

Our meshes contain around 10,000–20,000 tetrahedra, resulting in
up to 30 minutes of precomputation time on modal analysis using
a desktop workstation computer. Run time for material parameter
estimation is most dependent on the length of the sound: one start-
ing point for a short impact converges in a few seconds, while a
reverberative object requires up to ten minutes. At runtime, sound
is synthesized at 44 kHz: the highest frequency we can perceive is
around 22 kHz, so there is no benefit in synthesizing sound more
often than twice that frequency. The synthesis steps are fast enough
that the 44kHz update rate can be easily maintained for a number
of sounding objects even on a laptop.

5.2 Parameter Extraction

We implemented our extended version of the material parameter op-
timization process, and have been able to extract parameters using
different damping models. See Figure 2 for the full set of objects
used, comparing the real objects in the top row to the meshes in the
bottom row.

Table 1 presents some results from performing extraction of ma-
terial damping parameters given recorded audio, using Rayleigh
damping, second-order Caughey damping, and power law damping.
These parameters may not be the most globally optimal as reported
by the optimizer, but they are all parameters that have reasonably
low metric values and are at least locally optimal. Plastic 1 comes
from the rigid, clear plastic bowl, while Plastic 2 comes from the
thin and much more flexible dog food scoop. We can assign some
physical meaning to these parameters; for example Porcelain has
smaller values for Rayleigh’s α2 and Power’s µ2, indicating rel-
atively less damping at higher frequencies. Also note that while
most materials are best fit by a Caughey series whose coefficients
alternate signs with each term, Plastic 2 was better fit by a set of



Figure 2: The objects used to extract material parameters. The top row shows pictures of the real objects, while the bottom row shows meshes
modeling the objects.

Plastic 1 Plastic 2 Porcelain Wood Aluminum

Shared E 8 2.4 20 9.9 0.88

Rayleigh
α1 125 58 189 35 .225
α2 8e-6 1e-6 1.5e-8 4.6e-7 1.45e-6

Caughey
η1 280 85 420 277 9.7
η2 -3.6e-7 6.6e-7 -2.4e-6 -2.0e-6 -3.4e-6
η3 2.0e-15 5.6e-14 3.8e-15 4.8e-15 5.8e-13

Power
µ1 1.13 .19 163 6.7 .02
µ2 .3 .37 .01 .18 .445

Table 1: Extracted material parameters for a selection of materials. Young’s modulus is given in GPa. See Section 3.4 for the usage of each
damping parameter. These are not necessarily the parameters that minimize the MPR metric, but they are locally optimal and agree on a
somewhat physically plausible Young’s modulus E across damping models.

only positive coefficients. The other damping models are unable to
capture this unusual damping behavior as well as the higher-order
Caughey series.

5.3 User Study

One hypothesis with this work is that alternative damping models
can recreate a wider range of more realistic audio with more com-
plex non-linear damping characteristics. In order to evaluate the
perceptual realism of the damping models, we conducted a pre-
liminary user study where subjects were asked to compare sound
generated with different damping models. This study is a first ex-
ploration of the differences between damping models. The study
evaluates if subjects can tell the difference between them, and if so,
which they find more realistic.

5.3.1 User Study Setup

This study was conducted entirely online through the subject’s web
browser. Subjects were informed about the procedure of the study
and instructed to use headphones or earbuds in order to better con-
trol the audio environment.

Subjects were presented with a series of pairs of videos of an ob-
ject being dropped on a flat surface. Refer to Figure 2 for images
of the objects used in the study. Each pair of videos showed the
same visual imagery, but had different audio generated using ei-
ther Rayleigh damping, a second-order Caughey series, or a power
law model. Subjects were asked to rate, on a scale from 1 to 11,
which video they perceived as more realistic, with a 1 indicating a
strong preference for the video on the left, an 11 indicating a strong
preference for the video on the right, and 6 being in the middle.
Subjects were also asked to rate the similarity of the sound in the

videos, where a 1 is very different and an 11 is indistinguishable.
The videos could be watched repeatedly and subjects could return
to previously-answered questions in case their opinions change.

5.3.2 User Study Results

40 subjects participated in the study, and while little demographic
information was collected, the recruitment methods used were
likely to attract many subjects with little experience in evaluating
sound quality. We can begin by combining data from objects to-
gether to get a general sense of the perceived realism ratings as a
whole. Recall that perceived realism was rated on a scale from 1 to
11, with 6 being in the middle. In comparisons between Rayleigh
damped and Caughey damped audio, a 1 indicates preference for
Rayleigh and an 11 indicates preference for Caughey. Across all
objects, when subjects compared Rayleigh and Caughey damping,
the realism rating was 6.5 ± 3.3, and there was not a significant
preference in realism between the two (p > .05). When comparing
Rayleigh to Power damping, where a 1 again indicates a preference
for Rayleigh, the realism rating was 4.78 ± 2.57 and there was a
preference for Rayleigh (p < .0001). Finally, when comparing
Caughey to Power damping, where a 1 indicates a preference for
Caughey, the average realism rating was 3.95± 2.92 and there was
a preference for Caughey (p < .0001).

We can also look at the subject-reported similarity values to deter-
mine if the subjects could notice a perceptual difference between
the models. Similarity was rated on a scale from 1 (very differ-
ent) to 11 (very similar). In comparisons between Rayleigh and
Caughey damping, the similarity was 5.7± 3.0. Between Rayleigh
and Power damping, the similarity was 6.9±3.4. Finally, Caughey
and Power damping had a similarity of 4.4± 2.7.



Object Models x̄ σ p

Metal Plate
R/C 6.5 3.2 .35
R/P ∗ ∗ ∗

C/P ∗ ∗ ∗

Plastic Bowl
R/C 6 3.3 1
R/P 2.9 1.9 .0002
C/P 3.9 2.0 .01

Plastic Scoop
R/C 3.6 2.2 .0035
R/P 4.3 2.3 .095
C/P 5.2 3.4 .294

Porcelain Bowl
R/C 6.1 3 .93
R/P 6 0 1
C/P 7.1 3.0 .32

Porcelain Plate
R/C 6.6 3.5 .53
R/P 4.8 2.9 .16
C/P 4.2 2.8 .04

Small Floor Tile
R/C 8.9 2.4 .001
R/P 4.4 3.0 .13
C/P 2.1 1.5 <.0001

Short Wood Block
R/C 6.6 4.2 .63
R/P 5.2 3.6 .5
C/P 4.0 2.9 .014

Long Wood Block
R/C 7.8 1.8 .005
R/P 5.2 2.9 .34
C/P 2.2 1.6 <.0001

Table 2: Realism values from the user study. For each object and
each pair of damping models (R for Rayleigh, C for Caughey, P for
power), the range of realism ratings is shown as a mean x̄ and a
standard deviation σ. Ratings lower than 6 are a preference for the
damping model on the left side of the slash. The p-value evaluates
whether there is a significant difference in realism preference from
the “no preference” realism rating of 6. ∗The metal plate power
model was not included in the study.

For more detailed results, realism values for each of the objects
individually are laid out in Table 2. For simplicity, comparisons
between two damping models, say Rayleigh and Power, are abbre-
viated as R/P in the table. The results for the small floor tile and
the long wood block contain some of the most significant results,
with Caughey damping greatly preferred over the other two. The
plastic scoop was the only object for which Rayleigh was preferred
over Caughey, but for most of the objects the difference was not
statistically significant. The porcelain bowl is an interesting case
where Rayleigh and Caughey are nearly identical in realism, but
for once the power model is considered to be nearly as (possibly
more) realistic.

5.3.3 Discussion

When compared to either of the alternatives, Power was percep-
tually considered to be less realistic by .47 standard deviations in
the case of Rayleigh damping and by .7 standard deviations in the
case of Caughey damping. This is only a moderate preference, but
enough to be statistically significant. One simple explanation for
this result is that a power law may not provide a good curve fit
to the data. Despite this, the two most similar sounding damping
models were reported to be Rayleigh and Power. The power law
model often seems to be perceptually similar to Rayleigh damp-
ing at higher frequencies, while having less damping on the lower
frequencies. In some cases the amplified lower frequencies sound

more realistic, but in most of the cases in this user study it comes
across as too strong and unrealistic.

In theory, Caughey damping can only improve upon Rayleigh
damping since the higher order terms can simply be set to 0 if the
linear model would be optimal. The result that the difference in re-
alism between the two of them was not statistically significant could
imply that the benefit gained from the second-order term is not be
large enough to be perceptibly noticeable. However, the similarity
rating between them is not particularly high, so a better interpre-
tation might be that there is a perceptually noticeable difference
between the sounds, but subjects had difficulty determining which
of the two different sounds was more realistic.

Subjects did not have access to any ground truth sound recordings,
which made the task more difficult. However, this is reasonable
given that the primary application we are considering is using ex-
tracted parameters to synthesize contact sounds in interactive vir-
tual environments. The study focuses on subjects’ perception of the
sounds presented in an entirely virtual environment to understand
how they would react to these sounds in a game, virtual teleconfer-
ence, or training simulation. The subjects only need to perceive the
sounds to be realistic. This perceptual approach also reduces the
need for participants to be skilled at evaluating sound; the “percep-
tual ground truth” is not consistent between subjects.

6 Conclusion

We have presented the integration of generalized proportional
damping with modal sound synthesis techniques. We explained
how to derive GPD-based damping models, using a power law
model as an example. We extended an existing method for extract-
ing material parameters to extract real-valued parameters from an
arbitrary damping model. We conducted a preliminary user study
comparing Rayleigh, Caughey, and power law damping models.

While the user study did not find an improvement in perceived re-
alism when using our example of a GPD-based damping model,
this result provides other benefits. From a somewhat different per-
spective, this study provides additional validation of the popular
Rayleigh damping model in that second order Caughey damping
models were not always perceptually more realistic than Rayleigh
damping and that GPD-based models which provide a perceptual
improvement may not be easy to find. In light of this result, fu-
ture research may find success in using models which encapsulate a
larger function space. For example, genetic programming and neu-
ral nets can both approximate continuous functions without needing
to specify a damping model in advance.

Future work in the area of GPD should likely focus on using the ex-
tended systems described in this paper to explore alternative GPD-
based damping models. Additionally, it would be an improvement
to incorporate the residual audio after the material parameter esti-
mation process, transferring it to other geometries. There is some
uncertainty about the transferability of arbitrary GPD parameters;
an analysis similar to the one done for Rayleigh damping [Ren
et al. 2013a] could help determine if the real-valued model param-
eters can all be considered material properties. Work in these ar-
eas would help improve understanding of damping properties and
hopefully lead to more immersive sound.
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