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Fig. 1. A real-time interactive virtual environment where striking objects produces dynamic sounds using our method (left); a ball
striking plates of various sizes plays a melody (middle); and a set of wind chimes blowing in a virtual forest (right).

Abstract— Modal sound synthesis has been used to create realistic sounds from rigid-body objects, but requires accurate real-world
material parameters. These material parameters can be estimated from recorded sounds of an impacted object, but external factors
can interfere with accurate parameter estimation. We present a novel technique for estimating the damping parameters of materials
from recorded impact sounds that probabilistically models many of these external factors. We use a generative model to represent the
combined effects of material damping, support damping, and sampling inaccuracies, then use maximum likelihood estimation to fit a
damping model to recorded data. This technique simplifies the recording process, only requires audio as input without knowing the
precise object geometry or the exact hit location, and uses multiple recorded impact sounds to improve accuracy. We validate the
effectiveness of this technique with a comprehensive analysis of a synthetic dataset and a perceptual study on material identification.

Index Terms—Sound synthesis, modal analysis, damping modeling, maximum likelihood estimation

1 INTRODUCTION

Maintaining the sense of immersion is one primary goal in creating
interactive virtual environments. An important aspect of immersion is
the feeling of cohesiveness between senses, e.g. an object that looks like
wood should also sound like wood. Furthermore, objects colliding with
one another or being impacted by a user should produce different sounds
depending on the location, direction, and magnitude of impact. For rigid
objects such as tables, dishes, and dice, a physically-based, real-time
technique, modal sound synthesis, can be used to analyze the vibrations
of the objects and produce dynamic impact sounds [21]. Modal sound
synthesis can improve a user’s sensory cohesion when dealing with
rigid objects, but it requires accurate real-world material parameters.
Damping, which determines the rate at which vibrations and sound
decay over time, is crucial in differentiating between different materials,
such as a reverberative metal pan and a muted wood plate [25], giving
the characteristic sound for each audio material. Some parameters, e.g.
density and Young’s modulus, can be looked up for known materials,
but damping properties can be difficult to identify and parameterize.

One way to obtain material parameters is by estimating them from
recorded impact sounds. Given an object made of a particular mate-
rial, we can strike the object and record the resulting sound. Existing
methods use the sound, along with some mandatory knowledge about
the shape and properties of the struck object, to estimate a number of
material parameters [26]. The material parameters can be applied to
any virtual object, effectively “virtualizing” the audio characteristics of
a given material. While recent techniques have been able to estimate
material damping properties, they assume that there is very little effect
on damping from external factors.

For example, an object struck for the purposes of recording either
needs to be held by hand or left to rest on another surface. In either
case, the interface between the object and its support will introduce
additional damping, as energy is transferred from the vibrating object

to the more stationary support. To account for the support damping,
recordings must be made with supports that introduce minimal damping,
requiring a carefully controlled recording environment using special
support [22], e.g. strings or rubber bands, to suspend the object [25].
Other factors that affect estimated damping values, such as complex
modes of vibration, background noise, and accumulated error during
estimation are assumed by prior work to be minimized.

In this paper, we present a practical and efficient technique to esti-
mate material damping properties from recorded impact sounds that
accounts for the additional factors affecting damping. By automati-
cally acquiring the material parameters directly from a given audio
sample, our technique is more general and applicable to real-world
recordings in less controlled environments. Unlike previous work [25],
this method is fast and requires no prior knowledge about the recorded
object’s geometry, size, or hit location. As a result, we are able to
create virtualized versions of real-world materials that can be applied
to any sounding objects. Figure 2 shows the full pipeline for estimating
material parameters and using them to synthesize sound. The only input
needed to estimate damping parameters is a set of recorded sounds.
The key contributions of this work include:

• A new model of the probability distribution of damping values
that separately considers each source of damping; and

• Application of this probabilistic model to recorded audio for
estimating material damping parameters.

We test our approach using impact sounds from several real-world
objects with varying hit points and environmental factors. First, we
experimentally verify the effectiveness of our algorithm via an auditory
perceptual study on material identification. Next, we validate this
approach by estimating parameters of a synthetic audio dataset with
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Fig. 2. Our pipeline for estimating material parameters from recorded audio and using the parameters to synthesize sound for objects of the same
material. Inputs are in green with italic text. If the object and hit points are unknown, the pipeline can begin with recorded sounds instead. Feature
extraction is described in Section 4.1, parameter estimation with an exponentially modified Gaussian (EMG) is described in Section 4.3, and modal
sound synthesis with contacts is described in Sections 3.1 and 4.5.

known parameters. Finally, the results on the synthetic audio dataset
are compared against two alternative techniques. Fig. 1 shows the
demonstration of our system on several complex virtual environments
– both indoor and outdoor – consisting of virtual objects of different
materials. These virtual scenes are designed and implemented in the
Unreal Engine and integrated with an HTC Vive headset, allowing users
to interact with objects in real time.

The rest of the paper is organized as follows. Section 2 reviews
related work and Section 3 describes the mathematical formulations
for modal sound synthesis and damping models. We introduce the
algorithm for parameter estimation in Section 4 and present the results
and analysis in Section 5. We conclude by discussing limitations and
possible future work.

2 PREVIOUS WORK

Parameter estimation has been extensively studied across a diverse
engineering and scientific domains, as well as in computer graphics.
We focus our discussion only on works related to sound synthesis.

Sound synthesis techniques attempt to recreate realistic audio, while
providing variance between sounds so that each is distinct and natural.
Strings and drums are relatively easy to simulate through the use of a
wavetable and a series of filters [16]. For simple objects with known
analytical modes of vibration, the frequencies of their modes can be
used to synthesize impact sounds [32]. For more complicated rigid
objects, a discretized model of the object can be used to approximate
the vibrations of the modes and synthesize sound for any conceivable
object [21]. Simulation of acoustic radiance can help spatialize syn-
thesized modal sound [14], and can be approximated for real-time
applications [18].

Existing methods can provide real-time sound synthesis of relatively
simple objects. However, as the complexity of object geometry in-
creases, optimizations must be made. For example, modes can be
efficiently culled based on psychoacoustic principles [23] to improve
runtime performance or significantly compressed based on symmetries
in the object to reduce memory usage [17].

Some recent papers consider the effect of contacts with a sound-
ing object. In order to create an object that vibrates at user-selected
frequencies, the unwanted frequencies can be reduced by resting the
object on foam blocks [4]. The foam blocks are positioned such that
they inhibit vibration at locations where the unwanted frequencies are
strong and the desired frequencies are weak. A contact model can be
used to modify the damping matrix for sound synthesis based on forces
applied by other objects [37]. With this contact model, object contacts
increases the damping of frequencies based on the force of the contact,
the coefficient of friction, and a material-dependent value.

Damping has long been a concern in the construction of buildings
and other structures [20], but also plays a significant role in modal
sound synthesis. The physical phenomena behind damping in vibrating
structures are complex. There are a number of ways to model their

effects to varying degrees of accuracy [29, 34]. Under the common
assumption of viscous damping, various damping models describe the
damping of an object as a function of its mass and stiffness [1].

Parameter recovery from recorded sounds is an ideal [15] that
can be powerful, but is currently impossible to achieve for general
objects without sufficient constraints on the problem. One of the ob-
jectives of this work is to minimize the number of assumptions on the
required input for accurate estimation of material parameters that give
each sounding object its characteristic audio quality. Previous analy-
sis/synthesis techniques extract deterministic features of an input sound
while treating the rest of the sound as stochastic noise [28]. Another
option is to extract the modal content of the sound, and then apply
random variation to the gains to produce plausible variations on the
initial sound [19].

With many audio samples at known locations on the object’s surface,
the spectral content can be interpolated to approximate the sound at
an arbitrary point [22]. Alternatively, the Young’s modulus for small
parts of the object can be individually optimized to best recreate the
input sounds [35]. These techniques produce results specific for a
single object that cannot be easily transferred to another shape. A more
recent technique focuses on estimating material parameters from a
single audio recording, where the resulting material parameters are not
specific to any one geometry and have more versatile applications [26].
This technique has been extended to support optimization over arbitrary
damping models [30]. However, both methods assume that the object
geometry, its exact dimensions, and the precise hit point are all known,
which is not always the case with pre-existing audio recordings.

Material parameters for visual simulation of object motion can
also be estimated from video sources. Existing techniques can estimate
similar parameters for various rigid [11] and deformable [33,36] objects
and materials. In contrast, this paper focuses solely on reconstruction
of audio-material parameters.

3 MODAL SOUND SYNTHESIS

As an object vibrates, its surface deforms and oscillates. These os-
cillations produce pressure waves in the surrounding medium which
propagate through the environment. Upon reaching the ear, the varia-
tion in pressure over time is perceived as sound. The standard range of
human hearing covers sound waves between 20 Hz and 20 kHz. In this
section, we describe a popular sound synthesis technique and explain
the need for accurate damping parameters.

3.1 Modal Analysis
Linear modal sound synthesis is a common technique to produce the
modal components of a sound. We give a brief overview on modal
sound synthesis here and refer to [21] for more comprehensive tutorials
and [30] on damping models for sound synthesis.

Modal sound synthesis assumes that an object’s vibrations can be
broken down as a linear combination of its modes of vibration. Modal
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sound synthesis traditionally operates under the assumption of viscous
damping within each object [3]. As described in Section 3.3, it also
assumes that parameters defining the rate of damping for each mode
are simply a function of that mode’s frequency and not a function of
the object’s geometry.

There are two key steps to modal sound synthesis: preprocessing
modal analysis and runtime modal synthesis. Modal analysis uses
the geometry of the object along with real-world material parameters,
such as the Young’s Modulus and Poisson’s Ratio, to perform the
decomposition of vibrations. This step can be performed numerically
using a discretized tetrahedral or spring-mass model of the object and
representing its vibrations with a system of equations:

Mr̈+Cṙ+Kr = f. (1)

This system models the acceleration, velocity, and displacement of
each discrete element r in response to a force vector f. With n discrete
elements, r and f are of dimension 3n to account for impulses and
movement in three dimensions. The mass matrix M and the stiffness
matrix K can be constructed based on the geometry of the mesh and
the connectivity of its elements. The matrix C is the viscous damping
matrix, which describes how and where vibrations decay within the
object. C has specific limitations on how it can be constructed, which
will be described in Section 3.3.

The central step of modal analysis is a generalized eigendecomposi-
tion of the system. The eigendecomposition produces an eigenvector
matrix Φ, that transforms between element space and mode space, and
a diagonal matrix Ω2 containing the eigenvalues.

3.2 Modal Synthesis
Assuming the object is in free vibration after the initial impulse, each
equation in the decoupled system is a second order differential equation:

z̈i + ciżi +ω
2
inzi = 0. (2)

Here, zi is the current amplitude of the mode, ci is the corresponding
entry in the decoupled damping matrix, and ωin is the corresponding
undamped natural frequency from Ω, the square root of the eigenvalues.
These equations have known solutions as damped sinusoids:

zi(t) = aie−dit cos(ωidt). (3)

The initial amplitude of the mode is given by ai, while di = ci/2 is the
rate of decay of vibrations. ωid is the damped frequency of vibration,
which can be calculated as:

ωid =
√

ω2
in−d2. (4)

When an impact occurs at runtime, the force vector is transformed
by Φ

T to determine the initial mode amplitudes. Each damped sinusoid
can then be sampled at 44 kHz to produce the resulting sound in real
time. With various optimizations [17, 23], sound synthesis can be
performed on many objects simultaneously in an interactive application.

3.3 Material Damping Modeling
There are a number of material damping models that provide means to
construct appropriate C matrices as a function of the other two matrices
M and K. These model damping of vibrations as a result of the material
of the object by itself. The damping models are necessary to separate
the vibrations into independent normal modes of vibration. While other
damping matrices are possible, these damping models avoid complex
modes which are difficult to model and slow to evaluate in real-time.

The most common damping model for sound synthesis is Rayleigh
(proportional) damping [24], in which C is a linear combination of M
and K:

C = α1M+α2K. (5)

Physically speaking, this model assumes that damping occurs in each
discrete element proportional to the mass of that element, as well as
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Fig. 3. Three possible damping models fit to real-world (λ ,c) pairs using
least squares fits. These demonstrate the usual shapes of each damping
function on log-log plots. The parameters estimated by least squares
here vastly overestimate the material damping and are not ideal, as
described in Section 4.2.

in each interface between elements proportional to the stiffness of the
connection. Upon decoupling Equation 5, each mode’s entry in c is:

ci = α1 +α2ω
2
in. (6)

Other material damping models also guarantee diagonalizable C
matrices. In Caughey damping, each ci is a polynomial function of
ω2

in to an arbitrary degree [6, 7]. Generalized Proportional Damping
(GPD) is an even more general model, where each ci can be an arbitrary
function of ω2

in as long as the function is analytical and continuous near
the eigenvalues of the system [2].

We consider one additional GPD-derived damping model: a hybrid
model incorporating Rayleigh damping and a power law damping
model [30]. The damping matrix entries are described according to the
function:

ci = γ1 + γ2ω
2γ3
in . (7)

When γ1 is 0, this becomes the power law damping model, and when γ3
is 1, this becomes the Rayleigh damping model. Since previous work
has found that the optimal damping model varies depending on the
object [30], this hybrid model can model damping best represented by
Rayleigh or power law damping.

For a given damping model, the real-valued parameters (e.g. α j,
γ j) are the damping parameters which define the damping of each
mode. By varying these values, the same object can be made to sound
like a wide range of materials. Damping parameters have been shown
to be perceptually geometry-invariant under the Rayleigh damping
model [25]; it is reasonable to assume this holds for other damping
models as well. Thus, if damping parameters can be estimated for a
metal bowl, synthesizing sound for a box with those parameters will
produce a metallic sound.

4 PROBABILISTIC DAMPING MODELING

In order to perform the synthesis process described previously in Sec-
tion 3, we need to know the object’s geometry, Young’s Modulus,
density, Poisson’s Ratio, and damping parameters for a chosen damp-
ing model. A person attempting to add a realistic sounding object to
a virtual environment would need to know all of these, so we now
consider how this information can be obtained in the first place. The
geometry can either be taken from a real-world object or designed for
a virtual object. Young’s Modulus, density, and Poisson’s Ratio can
be measured from real-world objects, but for many materials these
values have been published and approximate values can be selected
for synthesis purposes. Damping parameters, on the other hand, are
specific to their damping model and even with the popular Rayleigh
damping model, parameters are difficult to find for arbitrary materials.
In this section, we present our technique for estimating these damping
parameters from recorded real-world impact sounds. We also compare
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Fig. 4. A porcelain bowl struck in the same location produces different
sound when supported with a tight grip (left) or supported by resting on a
single point (right). Without accounting for the effect of the support, prior
methods would not be able to estimate accurate material parameters
from these sounds.

our technique against two alternative parameter estimation methods: a
least squares fit and a “lower bound” fit.

4.1 Feature Extraction from Audio
Our technique could use a single recorded sound as input, but in prac-
tice multiple sounds are necessary for good accuracy. Our technique
requires audio recordings of impact sounds as input. As damping
parameters are geometry-invariant [25], we do not need to know the
object’s geometry, its size, or its hit location. This is important since the
environmental factors may change with each input sound. A mode that
is heavily damped by external factors in one sound may be relatively
undamped in another, providing additional information about the range
of possible damping values.

The first step in our approach is to extract the modal components of
each input sound. Assuming the sounds come from rigid objects, the
sound produced will be mostly modal and can be decomposed into a
set of features. Each feature corresponds to one mode of vibration and
can be parameterized as a damped sinusoid with a damped frequency
ωid , an initial amplitude ai, and an exponential damping coefficient di.

We adopt a feature extraction process that identifies likely features,
then performs local optimization, similar to that of Ren et al. [26].
Multiple power spectrograms of the input audio are constructed, and
frequencies with high power are selected. At each of these frequen-
cies, local optimization is performed to find the (ωid ,ai,di) parameters
which best match the local region of the spectrogram. Once a feature
is identified, it can be subtracted from the original spectrograms to en-
able extraction of additional features. Peaks are automatically selected
until a target percentage of the original power is accounted for in the
extracted modal features. The remaining audio is the residual audio,
containing background noise and nonlinear effects such as complex
modes.

As an additional step, we remove features with di under a threshold.
These low-damping features are likely to be a constant pitched back-
ground noise unrelated to the impact sound. We also remove features
below an amplitude threshold, as they are more susceptible to noise.
The extracted (ωid ,ai,di) features can be converted into pairs of (λi,di)
values for later use. The eigenvalue can be computed by inverting the
process in Equation 4:

λi = ω
2
in = ω

2
id +d2

i . (8)

As a result of this feature extraction process, we have a set of features
roughly corresponding to the modes of vibration of the object.

4.2 External Damping Factors
With the features extracted from the input sounds, we now consider
factors that may influence the estimated frequencies or damping values.

Unless an object is flying through the air, there must be something
supporting it; the object could be sitting on a desk, held in a hand, or
dangling from a ceiling. In this paper, we define a support broadly
as any long-lasting contact with the sounding object of interest, with
enough friction to maintain its contact with the object even when
the object is struck. Regardless of the form of support, some energy

from the object’s vibrations will be transferred to the support, causing
additional damping. In carefully controlled environments with proper
supports, this damping is minimal and can be ignored. In real-world
situations where the object is unlikely to be minimally supported, the
additional damping significantly affects the sound.

Refer to Figure 4 for an example of the effect of the support on
the resulting sound. When the porcelain bowl is gripped tightly with
fingers absorbing vibrations of both the upper rim and the lower bowl,
the resulting sound is short and heavily damped. If the bowl is instead
supported by balancing on fingertips, the same impact produces a much
longer-lasting sound.

A real-world object’s modes of vibration may be somewhat complex
modes of vibration. Intuitively, normal modes of vibration are standing
waves with consistent nodal points, while complex modes of vibration
are traveling waves. Modes of vibration for real objects will usually be
mostly normal, though a small amount of complex motion is common,
and the addition of a support may further increase mode complexity.
The damping models described in Section 3.3 cannot fully capture the
damping behavior of complex modes. Since most systems only have
slightly complex modes, normal modes are a close approximation [13].

Background noise in recorded sounds is too variable to realistically
model. The feature extraction step of the method is designed to specif-
ically extract modal features from the sound. This mostly eliminates
persistent “hums” and “buzzes”, which do not match the exponential-
decay model associated with damped modes of vibration. However,
background noise may also affect estimates of damping rates for each
mode. Acoustic reflections and reverberations from room acoustics
are of particular concern. Without knowing the properties of the room
acoustics, we cannot separate the effect of a damping material from the
effect of the acoustics. For our model, we still assume minimal room re-
verberations, and we have recorded our sounds in a padded sound booth
to minimize these effects. However, some small sources of background
noise may be appropriately modeled by a normally distributed effect
on damping values. A short sound coincidentally aligned with the start
of the impact sound will make the modes with matching frequencies
appear to have a higher rate of damping. Conversely, a background
“hum” aligned with a particular mode’s frequency may appear to cause
a lower rate of damping.

The feature extraction step itself is not perfect; some error is intro-
duced in the process. For example, spectrograms have limited spectral
and temporal resolution, and the Fourier transform’s assumption of
periodicity in each window is an approximation. The resulting side-
lobes may appear as separate peaks, or more likely, affect the estimated
damping rate of nearby modes.

Modes do not radiate equally in all directions: the acoustic radiance
of the object may mean that different microphone placements will
result in different initial mode amplitudes. This can be accounted for by
keeping the microphone stationary during an impact sound. However,
the relative positions of the microphone and object do not need to
be fixed across all input sounds. Moving the microphone between
sounds will change the perceived initial mode amplitudes, but not their
frequencies or exponential rate of decay, and thus does not need to be
accounted for in our model.

Current damping parameter estimation techniques do not explicitly
consider these factors and attribute all damping to the material [30].
This assumption greatly limits the recordings which can be used for
accurate damping parameter estimation: they must be recorded in
a carefully controlled setting. Furthermore, while these techniques
are able to create realistic sound, the estimated values are not solely
properties of the material. Instead, they are parameters to a line of
best fit which models the combined effect of the material and the
environment. These parameters may not properly transfer to an object
of the same material, but in a different environment. With a thoroughly
robust technique that can separately model environmental factors, we
can better estimate the true, physically-accurate material parameters.

4.3 Generative Model for Combined Damping
We now introduce a generative model for sampling damping values.
The model defines the probability distribution for the extracted damping
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value di, given the eigenvalue λi and a set of parameters θ . This can
be written as p(di|λi,θ). Some components of θ are the damping
parameters: α1 and α2 for Rayleigh damping and γ1–γ3 for hybrid
damping. These damping parameters will be referred to as θd for
generality, since their quantity and meaning change depending on the
chosen damping model. The remaining components of θ are parameters
of the probability density functions.

The damping value di is the final damping value as reported by the
feature extraction step. In the absence of any external factors, di would
only consist of the material damping value: the damping function c
evaluated at an eigenvalue λ with damping parameters θ . To account
for the external factors, we model di as a random variable based on the
sum of normally and exponentially distributed random variables.

We use a normal distribution to model the effect of some external
factors. The normal distribution accounts for the slight complexity
of the modes of vibration, the small sources of frequency-aligned
background noise, and error in feature extraction due to spectrogram
discretization. We assume that each of these factors are an additive,
normally distributed random variable. Whether or not these factors are
dependent or independent, their sum, dn

i is also normally distributed:

p(dn
i |λi,θd ,σ) = N

(
c(λi,θd),σ

2
)

The distribution is centered on the damping function c evaluated at an
eigenvalue λ with damping parameters θd , with a standard deviation σ

resulting from the combination of factors.
We use an exponential distribution to model the effect of the object’s

support.
p(de

i |η) = Exp(η) = ηe−ηde
i . (9)

de
i is the resulting exponential damping resulting from the object’s

support, while η is the rate parameter of the exponential distribution.
Zheng and James defined a model to approximate additional per-mode
damping based on contacts with other objects (see Section 4.5) [37]. In
this model, the additional damping is primarily a function of products
of values in the eigenvector matrix φ , with the contact point and coef-
ficient of friction weighting certain modes more heavily. We are not
aware of any prior work that has attempted to statistically model the
distribution of eigenvector matrix φ components, and it is unclear to
what extent the geometry of the object impacts this distribution. We
analyzed the distribution of φ components for synthetic objects. The
data failed Kolmogorov-Smirnov goodness-of-fit tests for normal, ex-
ponential, and a number of other common distributions (p > .05). We
have selected the exponential distribution as a way to approximate the
support damping values in the absence of a more well-defined model.
Although it is an approximation, this captures (1) the [0,∞) support
of the distribution of support damping values, and (2) the relatively
long tail of the exponential distribution as compared to the normal
distribution.

These final extracted damping value di can then be modeled as the
combination of the normally-distributed factors dn

i centered on the
evaluated material damping model, and the exponentially-distributed
factor de

i . Assuming that the factors are independent, they can be
considered as two separate sources of exponential decay:

zi(t) = aie−dn
i te−de

i t cos(ωidt) (10)

= aie−(d
n
i +de

i )t cos(ωidt). (11)

The probability density function of the sum of the two random vari-
ables di = dn

i + de
i is the convolution of their individual probability

density functions. The resulting distribution is an exponentially modi-
fied Gaussian (EMG) distribution. EMG distributions have been used
extensively in chromatography [12], but have also found uses in other
domains. Probability density functions for each of these distributions
are plotted in Figure 5. The EMG probability density function is some-
where between that of its two components: more of a Gaussian on
one side and more of an exponential on the other. With the modified
normal distribution being centered on the evaluated damping function,
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Fig. 5. Probability density functions for the exponentially modified Gaus-
sian (EMG) distribution, which is the combination of a normal and expo-
nential distribution. The EMG distribution behaves like an exponential
distribution on the right and a normal distribution on the left, accurately
capturing the distribution of extracted damping values for di.

the probability density function for the EMG is:

p(di|λi,θd ,σ ,η) =
η

2
e

η

2 (2c(λi,θd)+ησ 2−2di) erfc(si) (12)

si =
c(λi,θd)+ησ2−di√

2σ
, (13)

where erfc is the complementary error function, defined as:

erfc(x) = 1− erf(x) =
2√
π

∫
∞

x
e−y2

dy. (14)

This defines the probability of observing an extracted damping value,
given the material damping and probability distribution parameters.
This is the complete generative model for damping values, encom-
passing multiple sources of damping and error. Since only the modes’
frequencies and damping values are needed for this model, we do not
need to assume that the mode shapes remain unchanged. The full set of
parameters θ is (θd ,σ ,η), which together define the distribution.

4.4 Parameter Estimation
With the generative model established, we now describe the estimation
of damping parameters. We estimate the parameters θ through maxi-
mum likelihood estimation (MLE). The generative model above uses
known parameters to produce probability data. MLE is an optimization
method that serves to reverse the process: use known data to produce
optimal parameters. Given a set of extracted (λi,di) pairs as data and
a set of parameters, we can use the generative model to compute the
log-likelihood of the data given the parameters:

log p(d|λ ,θd ,σ ,η) = ∑
i

log
(

η

2

)
+ηc(λi,θd)+

η2σ2

2
−ηdi + log(erfc(si)) . (15)

Using the log-likelihood simplifies computation, removing expo-
nentiation and turning a product of probabilities into a sum of log
probabilities. We want to find the parameters which maximize this log-
likelihood—and hence also maximize the original probability. These
maximizing parameters are those which best explain the extracted data,
“fitting” the probability distribution to the data. We compute the analyt-
ical gradient of the log-likelihood function and perform gradient ascent
to find these optimal parameters.

The gradient is constructed from the partial derivatives with respect
to each parameter. We compute the full average derivative for the n
(λi,di) samples. We define a term ti to simplify notation:

ti =
−2

erfc(si)
√

π
e−s2

i =
−2

erfcx(−si)
√

π
. (16)
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The derivatives for η and σ must be computed for all damping
models. Their derivatives are as follows:

∂ log p
∂η

=
n
η
+nησ

2 +∑
i

c(λi,θd)−di + ti
σ√

2
, (17)

∂ log p
∂σ

= nλ
2
σ +∑

i
ti

(
ησ2 +di− c(λi,θd)√

2σ2

)
. (18)

The derivatives for θd will depend on the damping function itself. We
will present the derivatives for Rayleigh damping here; derivatives for
alternative models are not difficult to compute. For Rayleigh damping’s
linear c = α1 +α2λ function, the derivatives for α1 and α2 are:

∂ log p
∂α1

= ηn+∑
i

ti√
2σ

, (19)

∂ log p
∂α2

= ∑
i

ηλi +
tiλi√

2σ
. (20)
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Fig. 6. Parameter estimation on sound features. Each feature consists of
an eigenvalue λi and its corresponding damping coefficient di. Estimated
Rayleigh damping curves are plotted, with the variation from the curve
caused by external factors. Our method, MLE, provides the closest fit to
the data and is relatively unaffected by features with abnormally high or
low damping.

With the derivative established, we can perform standard gradient
ascent until convergence. The final damping parameters in θd are the
optimal parameters for the material of the struck object. Figure 6(a)
shows features extracted from 19 impact sounds on a metal plate, while
Figure 6(b) shows synthetic features generated from modal synthesis
(see Section 3.2). The figure shows three estimated material damping
curves estimated using least squares fits (LSQ), an lower bound fit (LB)
and the maximum likelihood estimation method (MLE, ours). The

Fig. 7. Three objects from our impact sound dataset: a porcelain cup
(left), a small glass tile (center), and a wood block (right). Note the ways
that each object is supported. These supports interfere with damping
parameter estimation.

points that fall along the line are features like any others, but are partic-
ularly informative for parameter estimation. When performing sound
synthesis for an object of the same material, the extracted damping
parameters can be plugged in to recreate the damping effects of that
material.

The effect of a support cannot be entirely removed, and in real-
world situations the extracted damping values may all be much higher
than the material damping function alone. As a result, this estimator
is positively biased: assuming the extracted (λ ,d) features faithfully
represent the input sounds, the estimated parameters will be larger than
the ground truth. By accounting for the external factors, this estimator
has less bias than, say, a least-squares estimate of the parameters, and
is therefore a more accurate estimator. In the case of Figure 4.4, our
estimator, MLE, provides the best fit to the majority of the data, while
LSQ is heavily affected by increased external damping factors and LB
is heavily affected by single features with abnormally low damping.
See supplementary material for additional examples.

4.5 Sound Synthesis with Estimated Values
The estimated damping parameters should be relatively accurate, having
accounted for the effect of the support. However, using them directly in
modal synthesis may produce sounds which are slightly too reverberant.
Modal sound synthesis assumes free vibrations (i.e. no support) when in
most cases there will be something supporting the object. An additional
step is needed to apply support damping to synthesize contact sounds
due to support.

We adopt a contact model for modal sound synthesis introduced by
Zheng and James [37]. This model is physically-based and uses the
contact forces and modal displacements at each timestep to generate re-
alistic viscous support damping values. The method uses an additional
damping matrix G to model the additional damping resulting from each
contact point k in the set of contact points C :

G = ∑
k∈C

ckΦ
T
k (µI+(1−µ)nknT

k )Φk, (21)

where ck is the magnitude of the contact force for contact k, Φk is the
set of eigenvectors corresponding to the point at contact k, µ is the
coefficient of friction, and nk is the normal direction at that point. Some
mode coupling is introduced since G is not diagonal, but this coupling
was found to be perceptually minor. Therefore, each damping model
may be augmented by adding the corresponding diagonal component
of G.

5 RESULTS

We have implemented the audio material reconstruction algorithm de-
scribed in this paper and tested its efffectiveness through both numerical
analysis and perceptual validation.

To verify its effectiveness, we have created a new dataset of impact
sounds on rigid objects, where the hit point and method of support are
documented for each impact. Fifteen objects covering a broad range of
rigid materials were struck to produce the impact sounds in this dataset.
Overall, there are 698 impact sounds sampled from these fifteen objects.
These impact sounds were designed to be representative of possible
real-world support situations, so all objects were supported by hand,
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Fig. 8. Plot of log-likelihood maximization converging over the course of
parameter estimation. Optimization was performed on 752 frequency-
damping points extracted from porcelain plate impact sounds, and con-
verged after 39,009 iterations for a total of 16.3s in an one-time prepro-
cessing.

often either with an edge being pinched between two fingers or the
center resting on a few fingertips.

Audio was recorded using a Zoom H4 in a padded sound record-
ing booth which reduced, but did not eliminate, acoustic effects and
background noise. Objects were struck with a small metal wrench,
the wrench itself being tightly gripped to minimize its own vibrations.
Figure 7 shows a sample of these objects, with various hit locations and
methods of support.

We implemented the parameter optimization algorithm in Python
and NumPy. On a laptop with a dual core 2.53 GHz Intel Core i5-540M
processor, optimization over thousands of features from tens of input
sounds and hundreds of thousands of iterations takes 1-5 minutes to
complete. In many cases, convergence is achieved within 20 seconds.
See Figure 8 to see an example of convergence behavior. Note that we
are attempting to maximize the log-likelihood, as the parameters which
maximize the log-likelihood also maximize the underlying probability.
However, the log-likelihood values themselves are not as intuitively
understood as probability, for example, it is not bound between 0 and 1.

The eigenvalues and damping values are each normalized, but the
data are not shifted or centered. With this normalization, the estimated
damping values need to be unnormalized for application to other ma-
terials. Although we cannot guarantee that the optimization problem
in this context is always convex, especially for higher order damping
functions, in multiple runs from different starting points on multiple
datasets, all optimization processes have converged on the same param-
eters. The optimal value of σ tends to be very small, indicating that
the distributions of damping values tend to be closer to exponential
distributions than to normal distributions. σ and η are used to guide
optimization of the damping parameters, but they are not needed for
sound synthesis.

Table 1 contains results from extraction on some of the objects
in the dataset. As previously mentioned, when γ3 = 1, the model is
identical to Rayleigh damping. Even small changes in γ3 can have a
large impact on the resulting damping. For example, a 10 kHz mode on
the Porcelain plate has a damping coefficient d = 20 with the provided
parameters (γ3 = 1.027), but changing γ3 to exactly 1 reduces the
damping coefficient to d = 12.

In general for these damping models, larger parameters create virtual
materials with more damping and shorter sounds. For example, the
two objects with the most damping are the wood block and plastic
bowl, whose materials are known to be naturally heavily damped. The
porcelain plate, travertine tile, and glass tile all had similar estimated
parameters, reflecting their similar molecular compositions.

Fig. 9. A simulated porcelain bowl is struck in multiple locations, with and
without a supporting grip.

5.1 Real-time Synthesis and Rendering
Each sounding object must be preprocessed (see Section 3.1) before
running any interactive application. Preprocessing time depends pri-
marily on the number of tetrahedra in the input mesh; a mesh with
2,000 tetrahedra takes under a minute to preprocess while a mesh with
30,000 tetrahedra can take many minutes. Once each sounding object
has been preprocessed, modal synthesis is performed in real time at 44
kHz. The supplementary video contains example videos and sounds
generated using our method.

Like previous work [26], we are able to synthesize sound using
an interactive rigid-body physics simulation in real time. We have
implemented our method for sound synthesis with support damping in
C++ as a module for Unreal Engine 4. Figure 1 shows multiple scenes
from our real-time demo, with multiple objects of various shapes and
materials. Our demos have been integrated with an HTC Vive headset
and Leap Motion controller. The user’s hands were tracked with the
Leap Motion, with the Vive controllers used to represent tools that
could be picked up and used to strike objects. Users can walk in
the virtual environment and strike objects, immediately hearing the
resulting synthesized sound. Figure 9 shows another scene, where
a bowl is supported by either strings or a hand, producing different
sounds depending on the hit point and support type.

5.2 Comparisons with Ren et al. [26]
The most closely-related prior work to our own is that of Ren et al. [26],
which operates by minimizing the difference between a recorded sound
and a synthesized sound while optimizing the parameters for synthe-
sized sound. Both works attempt to estimate material damping param-
eters using recorded sounds as input, but Ren et al. use a somewhat
different set of inputs and outputs. Ren et al. use a single recorded
sound, the known geometry and size of the object, and the hit location
on the object to produce the material damping parameters and ratio of
Young’s modulus to density. Our work can use one sound but multiple
recorded sounds improve the results. It does not assume knowledge
of geometry, size, or hit location to produce the material damping
parameters.

The algorithm by Ren et al. [26] and its effectiveness heavily depends
on the implementation. A complete copy of the code by Ren et al. [26]
is not available to perform numerical comparisons with this work. As a
result, direct comparisons between re-synthesized sound are infeasible.
However, a list of estimated parameters for a number of materials is
given in their paper [26] and a set of input audio recordings are available
in its supplementary video. Significant variation exists within each
category of material, e.g. our wood block is not directly comparable
to the wooden plate used in previous work. Perceptual comparisons
against Ren et al. are performed in the auditory perception user study
(Section 6). The following synthetic validation study evaluates accuracy
instead, by comparing against other possible alternative methods.

5.3 Synthetic Validation
Synthetic validation provides a numerical comparison against ground-
truth damping parameters. We synthesized a variety of sounds with
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Porcelain Plate Travertine Tile Wood Block Steel Wrench Plastic Bowl Glass Tile

Rayleigh α1 3.9 1.3 39.0 2.3 39.8 2.0
α2 1e-8 2.5e-8 1.3e-7 6.9e-8 1.3e-7 7.8e-8

Hybrid
γ1 3.9 1.3 39.0 2.4 34.83 1.9
γ2 5.2e-9 2.5e-8 2.1e-7 5.5e-8 4.1e-7 1.5e-7
γ3 1.027 1.001 0.978 1.011 0.95 0.974

Table 1. Damping parameters estimated using our technique. The listed objects are a subset of those used in our impact sound dataset. These
parameters are described in Section 3.3. When γ3 = 1, the remaining hybrid damping parameters are equivalent to their Rayleigh damping
counterparts. These parameters can be used to virtually recreate the material of the real-world object.
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Fig. 10. As the number of sounds used for parameter estimation increase,
error in Rayleigh damping parameter α1 decreases while error in α2
does not change much. Relative error for α1 is low, while error for α2
is somewhat overfit. Overall, our method ourperforms the other two
alternatives.

known damping parameters and passed the resulting sounds through the
parameter estimation process to see if the original ground-truth values
could be recovered using our algorithm. Sounds were synthesized
from the geometry of 18 models, ranging from small, hollow cups
to desktop vases and large sculptures. Five materials were chosen
by randomly sampling material parameters from a range of realistic
values. For each object, ten support points were sampled at random
on the surface of the object, each with a random amount of contact
force ranging from a light support to a moderate support. Then, 100
sounds were synthesized for each combination of object and material.
Each sound sampled its impact point randomly on the exterior surface
and picked one support point to be active. The resulting sounds were
passed through the feature extraction process for Rayleigh damping,
and extracted features from a varying number of sounds were used to
estimate the original parameters.

Parameter estimation was performed with three different estimators:

• Our maximum-likelihood method (MLE),

• A least squares fit to the data (LSQ), and

• A lower bound fit to the data by selecting a line along the lower

convex hull (LB).

We compared the error between the ground-truth parameters and the
estimated parameters while using a varying number of input sounds.
For each tested number of impact sounds, 30 different sets of sounds of
that cardinality were sampled, and the resulting errors averaged.

5.3.1 Discussion
Figure 10 shows the relative error for each parameter and each estimator.
For all materials in this synthetic data, both the MLE and LB estimators
significantly outperformed the LSQ estimator (p < .05). With real-
world data, the MLE and LB estimators more frequently decouple, as
the MLE estimator’s statistical model better adapts to noise and other
artifacts of recording. These synthetic sounds without noises and other
effects are the ideal situation for the LB estimator, and do not leverage
the full capabilities of the MLE estimator.

α1 scales well to larger amounts of data, but α2 demonstrates some
overfitting and relatively higher error. There are multiple sources of
bias that could introduce error, for these purely synthetic sounds. The
effect of the support cannot be entirely eliminated, and as a result the
estimators often slightly overestimate the material parameters. The
MLE estimator expects a certain amount of normally-distributed error,
and when the data is unrealistically clean (as it is in synthetic data) the
parameters may be inaccurate. The feature extraction step introduces
its own error which is more difficult to quantify as positive or negative
bias. Therefore, some error may be unavoidable, and the amount of
unavoidable error is difficult to quantify.

While the error in α2 is relatively higher, no prior work has per-
formed a similar validation for comparison. Prior work uses optimiza-
tion metrics based on the squared difference between spectrograms.
This would produce results most similar to the LSQ estimator, which
was outperformed by our method. In light of this, our method provides
a significant benefit when input sounds are affected by external factors,
while not requiring any information about object geometry. Finally, the
error is mostly important as it affects users’ perception of the material.
The perceptual evaluation below provides an analysis of whether our
estimated parameters are accurate when evaluated by humans.

6 PERCEPTUAL EVALUATION

Numerical comparisons against previous work are difficult since our
method is the first work to estimate damping parameters given only
input audio with no knowledge of geometry, size, or hit point. The
closely related work of Ren et al. [26] (see Section 5.2) performs a
comparison based on auditory perception of material between real and
re-synthesized audio material. To best compare against their work, we
perform a similar perceptual validation study to determine if there is
a perceptually noticeable and practical difference between estimated
parameters.

This study was designed to compare the perceived materials of
objects to one another based on their impact sounds. In a comparison
between impact sounds on two similar materials, subjects should be
able to recognize that the sounds come from the same material, even
if the geometry is different. Users should also be able to notice a
discrepancy when presented with sounds that come from objects with
different materials. If our material parameters are sufficiently accurate,
sounds synthesized from objects with the same material should sound
more similar to one another than sounds synthesized from objects with
different materials. Virtual objects of a certain material should also
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Rayleigh Hybrid Ren

Same µ 6.8 6.7 6.0
σ 3.0 3.0 3.0

Diff µ 5.1 5.4 3.5
σ 3.0 3.3 2.7

Stats p .007 .013 4e-6
d .56 .39 .93

Table 2. Population information for comparisons with a matching (same)
material or a different (diff) material. The “same” comparisons are signifi-
cantly higher than the “diff” comparisons at the p < 0.05 level. Cohen’s
effect size d is provided for each parameter set. Overall our estimated
material parameters produced similar, if not slightly better, results than
those by the state of the art [26].

compare favorably to sounds of the real-world object that was struck to
estimate the material’s parameters.

6.1 Experimental Setup

The study was conducted online through a web questionnaire, and sub-
jects were asked to wear headphones or earbuds to ensure a consistent
and high-quality auditory environment. 39 subjects participated in the
study, and more specific demographic information was not collected.

Each subject listened to 20 pairs of impact sounds, comparing one
real-world sound to a real or synthesized sound. (The supplementary
zip files userstudy subdirectory contains the sounds from the user
study, the user study results, and Python code to analyze the results.)
The subjects were asked to rate the similarity of the materials of the
impacted objects on a scale from 1 to 11, where 1 indicates a low
similarity and 11 indicates a high similarity. Since perception of sound
is highly subjective and each subject evaluates “similarity” differently,
the subjects were shown training examples alongside images of the
objects, with text explaining why one pair of sounds is highly similar
while another pair is not. These training examples may have introduced
slight bias, but this task is challenging for untrained listeners, and
based on prior work [25, 26] we believe that the benefit gained from
training outweighs the possible bias introduced. The subjects were
expected to (possibly subconsciously) use their personal similarity
metric to determine their choice of rating, and they were allowed to
re-rate previous pairs as they revise their preferences.

The recorded real-world sounds were taken from our impact sound
dataset by selecting one sound from five objects of different materials.
The synthesized sounds were created on two virtual objects: a large
vase and a decimated Stanford bunny. On each object, sound was
synthesized for each material category using estimated hybrid and
Rayleigh damping parameters estimated by our method, and estimated
Rayleigh damping parameters from the work of Ren et al. [26]. In
total, there were 30 synthesized sounds, although each subject listened
to only a subset chosen at random, each compared against a random
recorded sound—in a similar setup as described by [25].

6.2 Results and Analysis

First, we divide the results into two categories. In “same material”
comparisons, the two provided sounds are made of the same material,
and ideally should be rated with high similarity. In “different material”
comparisons, the two sounds are made of different materials, which
may sound similar in some cases (e.g. plastic vs. wood) and different in
others (e.g. wood vs. glass). We test the hypothesis that the ratings for
the “same material” comparisons have a different mean than the ratings
for the “different material” comparisons, assuming normally distributed
populations. During study design, we did not assume that the number
of comparisons or their variances would be identical across categories.
Therefore, these categories are compared using a two-sample Welch’s
unequal variances t-test. See Table 2 for population and statistical data.

For each of the three material sets—our Rayleigh parameters, our hy-
brid parameters, and the Rayleigh parameters from Ren et al.—subjects
rated the similarity of “same material” comparisons significantly higher

(p < 0.05) than they rated the similarity of “different material” com-
parisons. This indicates that synthesized sounds tended to sound more
like the material they were based on. Each material set’s “same mate-
rial” and “different material” comparisons had high standard deviations.
This is to be expected: perception of sound can vary significantly be-
tween individuals. However, in aggregate the subjects demonstrated
they could tell the difference between “same” and “different” material
comparisons despite the large variance.

We now look specifically at similarity results for “same material”
comparisons, where a real recording is compared to a synthesized sound
on an object of the same material. A consistently high similarity score
here indicates that the reconstructed material parameters accurately
capture the audio characteristics of the real-world sounding materials.
The mean similarity score was 6.83 out of 11 for Rayleigh parameters
using our methods on “same material” comparisons, 6.7 for our hybrid
parameters, and 6.05 for Ren et al.’s estimated parameters [26]. The
difference between these scores is not statistically significant as deter-
mined by one-way ANOVA (p > 0.05). This indicates that our method
performs at least equally well (and possibly better) as the prior state of
the art at reconstructing the object’s audio materials, despite the rather
limited input information.

6.2.1 Discussion of Perceptual Study
1. In general, our estimated material parameters produced similar, if

not slightly better, results than those of the state of the art.

2. Synthesized sounds across all material sets were consistently
reported to be most similar to objects of the material from which
they were derived.

3. In each of the tests, none of the material sets were statistically
more accurate than another set.

In contrast to prior work [26], our estimation technique does not require
knowledge of the geometry or the size of the struck object, the hit
location, or the mechanism of support. Therefore, we are able to
produce synthesized sound of similar quality with little assumption on
the input information. It is able to automatically take into account the
additional damping due to support without needing an elaborate setup
to minimize the effects of support.

7 CONCLUSION

We have presented a method for estimating material damping param-
eters using only recorded impact sounds as input. We have validated
these contributions through parameter estimation on a new dataset of
impact sounds on rigid objects, using both an auditory user study and
synthetic validation. These methods can extract real-world material
parameters from audio recording and recreate virtualized materials
and their rich sound effects arising from dynamic interaction in virtual
environments.
Limitations and Future Work: For parameter estimation, there ex-
ists a tradeoff between the amount of assumptions on the required
inputs and the quality of outputs. This work assumes that only a given
set of audio recordings would be provided. We do not assume prior
knowledge on the object geometry, size, material parameters, or the
impact location—just audio is sufficient. However, this technique can-
not estimate Young’s modulus, Poisson’s ratio, density, or geometric
properties of the object. The damping parameters estimated are the
most difficult to obtain through alternative means (e.g. values from
handbooks), but a method that can optimize all parameters simultane-
ously simplifies the pipeline from recording to synthesis. Future work
may explore if some small amount of additional inputs can result in a
much greater increase in the number of estimated parameters.

There are some limitations of the method. A single sound is not
enough to estimate parameter α1 with sufficient accuracy; upwards of
10–20 sounds may be needed. In synthetic validation, estimated α2
values had relatively larger error, but it is unclear to what extent this is
a limitation of the method or a fundamental limitation of the external
factors allowed in the input sounds.
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The damping parameters estimated with our technique may be useful
as input to estimation of other parameters. Deep learning may also
be able to extend the predictive power of a small number of inputs,
identifying patterns and correlations that are otherwise difficult to
discover.

Finally, the recording and feature extraction process produces fea-
tures which are not fully independent and identically distributed. Fur-
ther evaluation and design of feature extraction algorithms may make
the features more independent, while mixture models may help account
for spurious features.
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