Photo credit: Sam Kittner

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

UNDERGRADUATE BULLETIN

Formal specification and verification of programs. Techniques of
algorithm analysis. Problem-solving paradigms. Survey of selected
algorithms.

COURSE DESCRIPTION

1. Concepts, notation, and terminology for reasoning quantitatively about the
efficiency of algorithms

2. Important data-structures and algorithms

3. Fundamental techniques for algorithm design

Administrative matters

COURSE WEB-PAGE
* Monitor frequently! —assignments, test dates, etc. announced here

* Accessible off dept web-page (Academics -> Course home-page links)
e Directly at http://www.cs.unc.edu/~baruah/Teaching/2016-1Sp/

GRADES are maintained on sakai

Piazza for discussions

<<Tour of course web-page>>

Administrative matters

READING ASSIGNMENTS
e Sections of the text — on the course web-site
* You must read these — covered in the tests

* May discuss interactively at the start of the next class

PROBLEM ASSIGNMENTS
* Not graded, but covered in the tests
* Suggestion: form study-groups
ATTENDANCE
* You are expected to attend most lectures (although no roll call)
* QOccasional pop-quizzes for extra credit

<<Roll call and background survey>>

Topics to be covered

* Introduction. The role of algorithms in computer science
* Asymptotic notation

e Solving recurrences

e Sorting and Order statistics

e Search structures: red-black trees

* Introduction to graphs

e Algorithm design: Dynamic Programming

e Algorithm design: the Greedy strategy

* NP-Completeness

* Linear Programming

1.Concepts, notation, and terminology for reasoning quantitatively about efficiency of algorithms
2.Important data-structures and algorithms

3.Fundamental techniques for algorithm design

Introduction to Algorithms

What is an algorithm?

Informally, an algorithm is any well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set of values, as
output. An algorithm is thus a sequence of computational steps that transform the
mput into the output.

We can also view an algorithm as a tool for solving a well-specified computa-
tional problem. The statement of the problem specifies in general terms the desired
put/output relationship. The algorithm describes a specific computational proce-
dure for achieving that input/output relationship.

Why study algorithms?

Important in all other branches of computer science

Sec 1.1 — Internet; e-commerce; manufacturing; cryptography

Prime enabler of innovation
E.g., search algorithms (pagerank)

Read Sec 1.2

“Everyone knows Moore’s Law — a prediction made in 1965 by Intel
co-founder Gordon Moore that the density of transistors in integrated
circuits would continue to double every 1 to 2 years....in many areas,
performance gains due to improvements in algorithms have vastly
exceeded even the dramatic performance gains due to increased

processor speed.”

* Excerpt from Report to the President and Congress: Designing a Digital Future,
December 2010 (page 71).

Why study algorithms?

Important in all other branches of computer science

Sec 1.1 — Internet; e-commerce; manufacturing; cryptography

Prime enabler of innovation

E.g., search algorithms (pagerank)

Read Sec 1.2

Ideas have been applied to other domains

e.g., economics — auctions and mechanisms
Develops problem-solving skills

Often fun (for some of us)

