A QUICK INTRODUCTION TO PROBABILITY

(Appendix C: you don't need to know all of Appendix C, but whenever confused look there.)

- A random process: One outcome from some set of outcomes (called the sample space for the random process) is sure to occur, but it is impossible to predict with certainty which outcome that will be.
- An event is a subset of the sample space
- The Kolmogorov Axioms of Probability: Let S be a sample space. A probability function P from the set of all events in S to the real numbers satisfies the following three axioms. For all events A and B in S

1) $0 \leq P(A) \leq 1$
2) $\quad P(\})=0$ and $P(S)=1$
3) If $A \cap B=\{ \}$ then $P(A \cup B)=P(A)+P(B)$

A useful consequence (not an axiom - can be derived):

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- A random variable ($R V$) is a function from a sample space to the real numbers

Suppose the possible values of a random variable are $a_{1}, a_{2}, \ldots, a_{n}$, which occur with probabilities $p_{1}, p_{2}, \ldots, p_{n}$. The expected value (or expectation) of the random variable is

$$
\sum_{i=1}^{n} a_{i} p_{i}
$$

(Illustration: three coin tosses. RV is number of heads.)

- Indicator variables: a convenient method for converting between probabilities and expectations. For an event A

$$
I(A)= \begin{cases}1 & \text { if the event } A \text { occurs } \\ 0 & \text { otherwise }\end{cases}
$$

- Lemma 5.1 (p 118):

Given a sample space S and an event A in S. Let $X_{A}=I(A)$ Then $E\left(X_{A}\right)=P(A)$.

- Linearity of expectation (stated in Appendix C - page 1198):

$$
E(A+B)=E(A)+E(B)
$$

A "proof by diagram" - columns are all the outcomes in the sample space, labeled by their probability of occurrence. One row each for events A and B. LHS sums down the columns, and then across. RHS sums across the rows, and then down the columns.
Linearity of expectation is a very simple but extremely useful concept.

