Algorithm design techniques

- divide and conquer
- incremental
- Dynamic Programming & Greedy

Use Graph Algorithms (esp. shortest paths) as examples

- Graph Representation


```
G = (V,E)

V the vertices of the graph \{v_1, v_2, ..., v_n\}

E the edges; E a subset of V x V

A cost function – c_{ij} is the cost/ weight of the edge (v_i, v_j)
```

- 1. Adjacency Matrix a $|V| \times |V|$ matrix, with the [i,j]'th entry representing the edge from the i'th to the j'th vertex
- 2. Adjacency List an array of linked lists of length |V|, with the i'th entry denoting the edges from the i'th vertex

- 1. Adjacency Matrix a $|V| \times |V|$ matrix, with the [i,j]'th entry representing the edge from the i'th to the j'th vertex
- 2. Adjacency List an array of linked lists of length |V|, with the i'th entry denoting the edges from the i'th vertex

	1	2	3	4	5	6	7	
1	0	1	1	1	0	0	0	\
2	0	0	0	1	1	0	0	
3	0	0	0	0	0	1	0	
4	0	0	1	0	0	1	1	
5	0	0	0	1	0	0	1	t
6	0	0	0	0	0	0	0	
7	0	0	0	0	0	1	0	

- 1. Adjacency Matrix a $|V| \times |V|$ matrix, with the [i,j]'th entry representing the edge from the i'th to the j'th vertex
- 2. Adjacency List an array of linked lists of length |V|, with the i'th entry denoting the edges from the i'th vertex

Weighted graph: the matrix entries denote the edge-weights

Some sentinel value (depends on application) for non-existent edges

- E.g., shortest-path problems: ∞

Values along the diagonal

Undirected graph: symmetric along diagonal

Memory requirement: $\Theta(|V|^2)$

- -OK for dense graphs; too much for sparse graphs
- -Road networks; social n'works; etc. tend to be sparse

- 1. Adjacency Matrix a $|V| \times |V|$ matrix, with the [i,j]'th entry representing the edge from the i'th to the j'th vertex
- 2. Adjacency List an array of linked lists of length |V|, with the i'th entry denoting the edges from the i'th vertex

- 1. Adjacency Matrix a $|V| \times |V|$ matrix, with the [i,j]'th entry representing the edge from the i'th to the j'th vertex
- 2. Adjacency List an array of linked lists of length |V|, with the i'th entry denoting the edges from the i'th vertex

Weighted graph: the list entries contain the edge-weights as well

The order of the edges within a list is irrelevant

Undirected graph: each edge appears in two lists

Memory requirement: $\Theta(|V| + |E|)$

- linear in the size of the graph

V the vertices of the graph {v₁, v₂, ..., v_n} E the edges; E a subset of V x V

A cost function – c_{ij} is the cost/ weight of the edge (v_i, v_j)

Adjacency Matrix

	1	2	3	4	5
1	0	8	6	3	8
2	3	0	8	8	8
3	8	8	0	2	8
4	8	1	1	0	8
5	8	4	8	2	0

Adjacency List

Memory –
$$O(|V|^2)$$
 vs $O(|V| + |E|)$

Does a particular edge exist? – $O(|1|)$ vs $O(\min(|V|,|E|))$

Outdegree of a particular vertex – $O(|V|)$ vs $O(\min(|V|,|E|))$

Indegree of a particular vertex – $O(|V|)$ vs $O(\max(|V|,|E|))$

Adjacency Matrix
1 2 3 4 5

22.1-5

The *square* of a directed graph G = (V, E) is the graph $G^2 = (V, E^2)$ such that $(u, v) \in E^2$ if and only G contains a path with at most two edges between u and v. Describe efficient algorithms for computing G^2 from G for both the adjacency-list and adjacency-matrix representations of G. Analyze the running times of your algorithms.

Is there an edge between vertices 3 and 2 in G²?

Is there an edge between vertices 3 and 5 in G²?

