Algorithm design techniques
- divide and conquer
- incremental
- Dynamic Programming & Greedy
Use Graph Algorithms (esp. shortest paths) as examples

- Graph Representation

Graphs

6 1
1
SE—

2

G = (V,E)
V the vertices of the graph {v,, v,, ..., v}
E the edges; E a subset of Vx V
A cost function —¢; is the cost/ weight of the edge (v, v))

Graph G=(V,E): representation

1. Adjacency Matrix—a |V| x | V| matrix, with the [i,j]’th entry representing the edge from
the i"th to the j'th vertex

2. Adjacency List — an array of linked lists of length |V]|, with the i"th entry denoting the

edges from the i'th vertex

Graph G=(V,E): representation

1. Adjacency Matrix —a |V| x | V| matrix, with the [i,j]’th entry representing the edge from
the i'th to the j'th vertex
2. Adjacency List — an array of linked lists of length |V]|, with the i"th entry denoting the

edges from the i'th vertex

1 1 2 3 4 5 6 7
1ﬂ 1 1 1 o0 O N

2 o o o 1 1 o0 o

@ 3 o o o o o 1 O

4] o o 1 o0 0 1 1

s\ o o o 1 o0 o0 1

6 6] o o o o o0 o0 O
7Q o 0 o0 o0 1 y

Graph G=(V,E): representation

Adjacency Matrix —a |V| x |V | matrix, with the [i,j]"th entry representing the edge from
the i'th to the j'th vertex
Adjacency List — an array of linked lists of length | V|, with the i’th entry denoting the

edges from the i'th vertex

Weighted graph: the matrix entries denote the edge-weights

Some sentinel value (depends on application) for non-existent edges
- E.g., shortest-path problems: o

Values along the diagonal

Undirected graph: symmetric along diagonal

Memory requirement: O(|V|?)
-OK for dense graphs; too much for sparse graphs

-Road networks; social n’works; etc. tend to be sparse

Graph G=(V,E): representation

1. Adjacency Matrix—a |V| x | V| matrix, with the [i,j]’th entry representing the edge from
the i"th to the j'th vertex

2. Adjacency List — an array of linked lists of length |V]|, with the i"th entry denoting the

edges from the i'th vertex

1| S T T
2 >4 | e—5

3 > 6

4 o6 | o7 | >3
5 | JomTaun

6

7 s

Graph G=(V,E): representation

Adjacency Matrix —a |V| x |V| matrix, with the [i,j]"th entry representing the edge from
the i'th to the j'th vertex
Adjacency List — an array of linked lists of length | V|, with the i’th entry denoting the

edges from the i'th vertex

Weighted graph: the list entries contain the edge-weights as well
The order of the edges within a list is irrelevant

Undirected graph: each edge appears in two lists

Memory requirement: O(|V| + | E|)

- linear in the size of the graph

Graphs

G =(V,E)
V the vertices of the graph {v,, v, ..., v, }
E the edges; E a subset of VxV
A cost function —¢; is the cost/ weight of the edge (v, v;)

Adjacency Matrix
1 2 3 4 5

ig o o6l 3] 1| {3]6 | {43
2 3 0 o o o 2 1 |3
3 00 00 0 2 o0 3 N P
4 00 1 1 0 ©

4 2 |1 —» 3 |1
5 00 4 o0 2 0 5
= _______ ______ M > 4 2 ¢ > 2 4

Graphs

Memory —O(|V]?) vs O(|V]| + | E|)
Does a particular edge exist? - 0(]1]) vs O(min(|V],|E|))
Outdegree of a particular vertex —O(|V]|) vs O(min(|V],|E|))

Indegree of a particular vertex = 0O(|V]) vs O(max(|V]|,|E]))

Adjacency Matrix

Adjacency List
1 2 3 4 5

0 0o 6 3 00 1 >3 |6 | |4
3 0 o o o 2 1 |3
0 0 0 2 oo 3 N R
o 1 1 0 o0

4 2 |1 ——» 3
00 4 o 2 0 5
—————,—— T4 |2 > 2

Graphs

22.1-5

The square of a directed graph G = (V, E) is the graph G? = (V, E?) such that
(u,v) € E?if and only G contains a path with at most two edges between u and v.
Describe efficient algorithms for computing G? from G for both the adjacency-
list and adjacency-matrix representations of G. Analyze the running times of your
algorithms.

Is there an edge between vertices 3 and 2 in G2?

Is there an edge between vertices 3 and 5 in G2?
1 2 3 4 5

1 0 00 6 3 oo

