
2	perspec(ves:	
1.  To	show	that	some	problems	are	(probably)	hard	to	solve	
2.  A	rich	topic	in	theore(cal	computer	science	

To	show	a	language	is	in	NP:	
2-input	verifica(on	algorithms	with	polynomial	running	(me	

Examples:		
LHAM	=	{G	|	G	has	a	Hamiltonian	cycle}	
LCOMPOSITE	=	{n	|	n	is	a	composite	number}	

What	about	
LPRIME	=	{n	|	n	is	a	prime	number}?	
LNOT-HAM	=	{G	|	G	does	not	have	a	Hamiltonian	cycle}?	

	
A	language	L		is	in	the	complexity	class	co-NP	if	its	complement	is	is	NP	

	

NP-completeness	

The	circuit	sa(sfiability	problem	CIRCUIT-SAT	
A	combinatorial	circuit	of	and/	or/	not	gates	
Represented	as	a	directed	acyclic	graph	
LCIRCUIT-SAT	=	{C	|	C	is	a	sa(sfiable	combinatorial	circuit}	

Lemma	34.5.		LCIRCUIT-SAT	is	in	NP	
Lemma	34.6.	LCIRCUIT-SAT	is	NP-hard	
Proof		-	the	standard	reduc(on	
			Let	L	be	any	language	in	NP,	accepted	by	the	2-input	verifica(on	algorithm	A(x,y)	
			Given	any	input	x	(Is	x	in	L?)	

-Compute	f(|x|),	where	f(|x|)	is	the	running	(me	of	A(x,y)	
-Make	f(|x|)	copies	of	the	comb	circuit	of	a	computer,	and	f(|x|)+1	copies	
of	the	memory	of	the	computer,	and	wire	the	copies	together	
-Ini(alize	the	first	memory	copy	to	A,	x,	and	y	
-Ignore	all	bits	except	the	output	bit	on	the		f(|x|)+1	‘th	memory	copy	
	

NP-completeness	

Cook	(1971).		The	complexity	of	theorem-proving	
procedures	

