
COMP 790-124 - MACHINE LEARNING, FINAL PROJECT, DECEMBER 2012 1

Anomaly Detection in Network Traffic Traces
Using Latent Dirichlet Allocation

Benjamin D. Newton

Abstract—The detection of anomalies in network traffic can
assist network operators in controlling and securing computer
networks. Latent Dirichlet Allocation can be applied to com-
puter network traffic, where word counts are replaced with
packet counts, and documents, with user sessions. I describe the
processing of network traces collected at UNC, and the results
of running LDA on these traces. The resulting model can be
used to detect anomalies in other network traces on the UNC
network. Variational inference is run on a second trace, and
three anomalies are detected and analyzed. A simulated Denial
of Service Attack is also detected by the model.

Index Terms—Latent Dirichlet Allocation, Computer Networks

I. INTRODUCTION

DETECTING and correcting certain anomalies in network
traffic is an important task for network operators who

seek to ensure that computer networks run smoothly and
efficiently. Malicious attacks must be detected and stopped, but
the detection of anomalies which do not pose a direct security
threat are also of interest. These anomalies may indicate areas
of misuse in the network. Traditional systems for detecting ma-
licious anomalies such as SNORT [1] and Bro [2] rely on rules
written by security experts. These systems are, therefore, bad
at detecting new threats. Latent Dirichlet Allocation (LDA)
[3] may be able to help. LDA is a machine learning technique
originally used for natural language processing, which can
be applied to computer network data. Once a model of the
traffic on a network is generated, it can be used to identify
anomalous network traffic. The goal of this work is to use
Latent Dirichlet Allocation to generate a model of the traffic
between UNC clients and external external servers, and then
to use this model to detect anomalies in other traces from the
network.

A. Previous Work

Anomaly detection in computer networks is an active re-
search area. Various systems have been proposed and im-
plemented, including those which detect anomalies based on
packet bytes [4], and behavioral distance [5].

Cramer and Carin [6] also use LDA for computer network
traffic analysis. They used LDA to analyze traffic on the
network of a small business. They obtained good results by
analyzing the packet counts and connection initiation counts
on various ports. This work differs from their work in three
important ways. First, our data set is much larger, including
over 17,000 client machines, compared to their 10-40. Second,
they analyze the raw packets, whereas I analyze a higher-level

representation inferred from the packets. Lastly, although part
of the motivation of their paper is intrusion detection, they
leave the use of their models for that purpose as a future work.

The organization of the remainder of this paper is as follows.
In Section II I give an overview of the approach I used to
obtain my results, and information about the data. Next Section
III describes the LDA algorithm, and Section IV lists the
results. I conclude and describe possible future work in V.

II. THE APPROACH

It will be helpful to understand the networking data, and
how it is processed, before giving an overview of the approach.

A. Network Data

The networking group at the University of North Carolina at
Chapel Hill (UNC) has collected various TCP/IP header traces
over the course of several years [7]. For these traces a monitor
records the header of every TCP message flowing between
the high-speed link connecting UNC to the router of its ISP.
To overcome privacy concerns, the results are anonymized
in a consistent manner, replacing every occurrence of each
IP address with the a “random” IP address. The raw traces
include the following for each TCP message: timestamp for
the message, source and destination IP addresses and ports,
flags set in the TCP message, sequence numbers (optional),
ACK number (optional), window size, and occasionally some
extra information for various TCP features. No application
layer data is stored in the traces, and therefore, it is impossible
to know explicitly what type of application layer data is being
carried in each TCP message.

Each TCP message transmits data from a client to a server,
or from a server to a client. TCP is connection oriented, which
means that before a client and server can exchange messages
they must go through a three message handshake procedure.
This procedure establishes a connection between a specific
client and server. Once a connection is established packets
can be sent back and forth. Clients always initiate the TCP
connections. A TCP connection can remain open for only a
fraction of a second, or for several minutes. A connection can
support the transfer a single TCP packet, or thousands. Further
a connection can be categorized as either synchronous or
concurrent. If messages are exchanged between the client and
server in a ping-pong fashion, the connection is synchronous.
If TCP messages are sent and received by either side at the
same time, the connection is concurrent. A simple interaction
with a web server is an example of a synchronous connection.
The web browser sends a request to the server and then



COMP 790-124 - MACHINE LEARNING, FINAL PROJECT, DECEMBER 2012 2

waits for the response, and only sends the next request after
the response is received. The request and response can each
be made up of many individual TCP packets, which are
re-assembled on the receive side, into a single request or
response. The request response interchange of a sequential
connection has been defined as an epoch. A single epoch
can take the place of may individual TCP messages. For web
activity, an epoch can be thought of as the combination of
a request for an “object” from the server, and the servers
response including that object. I define a new term, sub-epoch,
which can be thought of as just the request or response portion
of an epoch.

B. a-b-t Model

A TCP/IP header trace can be ”reverse compiled” into a
higher-level representation. For every TCP/IP connection in
the trace a connection vector is generated. The connection
vector represents an entire single connection between ”a”,
the connection initiator, and ”b”, the connection acceptor.
The connection vector also stores the start time ”T” of the
connection.

The network traffic is characterized as a set of request
response interactions between ”a” and ”b”. Each request or
response transfers one application-data unit (ADU), which
is a generic term for the object or protocol element being
transferred. As described above, each exchange (request then
response) is called an epoch, and includes the sizes of the
ADUs transferred, and the requester side ”think” or processing
time, ”t”.

A network trace contains n connection vectors C1...n,
starting at times T1...n. Each connection vector includes a
set of k epochs, Ci =< E1, E2, ..., Ek >, where each epoch
is defined by Ei = (ai, bi, ti). Each epoch includes ai, the
size of the ith ADU sent from the connection initiator to
the connection acceptor, bi, the size of the ith ADU sent
from the connection acceptor to the connection initiator, and
ti, the ”think” or processing time between the receipt of the
ith “response” ADU and the transmission of the (i + 1)st

”request”.

Fig. 1. An overview of the proposed use LDA to detect anomalies in network
header traces.

C. Overview

The input to my method is a raw network header trace
in pcap format. This is the training data set, which is now

processed by a set of scripts and C programs resulting in
the higher-level representation described above. I then process
this data further to arrive at a set of sub-epochs associated
with internal clients. These sub-epochs represent all of the
traffic exchanged between internal clients and external servers,
in both directions. Each sub-epoch is associated with an
external client and port, and an internal client and port. All
the sub-epochs associated with a certain internal client and
port are grouped together. These sub-epochs represent the
Internet session of a specific IP address internal to the UNC
network. The “documents” in traditional LDA application are
equivalent to the session of a specific IP address, and “words”
are equivalent to the full external IP address and port number
combinations. The “words” in each “document” are counted
and then this data set is processed by LDA to yield a compact
model of the data.

New network data can now be processed in a similar fashion
obtaining “words” and “documents” as described above, but
variational inference is now used to determine the bound on
log likelihood for each document in the new dataset. This
output is tested against a threshold, and any session with log
likelihood less than the threshold is identified as anomalous.
Figure 1 gives an pictoral overview of the proposed method.

III. ALGORITHM

The algorithm used is the original Latent Dirichlet Alloca-
tion proposed by Blei et al. [3]. As described above, LDA is a
method for automatically discovering a given number of topics
in a data set. It was originally used to determine the topics of
text documents, but generalizes well to other domains. The
graphical model representation of LDA is displayed in Figure
2.

N

z wθ

M

α

β

Fig. 2. The graphical model for LDA.

LDA assumes that the data being processed was generated
as follows:

• Pick N, the number of sub-epochs in the Internet session.
(assumed to be drawn from a Poisson distribution)

• Pick θ, the distribution of topics in this Internet session,
from a Dirichlet distribution parametrized by α.

• For each the N sub-epochs in the generated document:
– Pick a topic from the multinomial distribution

parametrized by θ
– Pick a sub-epoch given the distribution of sub-epochs

for the chosen topic



COMP 790-124 - MACHINE LEARNING, FINAL PROJECT, DECEMBER 2012 3

The remainder of the algorithm details can be found in [3].

IV. RESULTS

A. 2008 trace

The data analyzed here is a trace of the traffic to and from
UNC on Thursday January 10th, 2008. The trace is one hour
in length and was taken between 2:00 to 3:00 p.m. This was
a day at the very beginning of spring semester after classes at
UNC had commenced. Table I contains a list of some of the
statistics from this trace. This dataset was divided in half. The
first half hour trace was used for training the topic model, and
the last half hour of the trace was analyzed to detect anomalies.

External to internal combined header data size 22 Gigabytes
Internal to external combined header data size 19 Gigabytes
External to internal TCP and UDP packets 292 Million
Internal to external TCP and UDP packets 248 Million
Unique internal client IP addresses (sessions/documents) 17,463
Unique IP/Port combinations (words/unique sub-epochs) 51,266

TABLE I
STATISTICS OF 2008 UNC NETWORK TRACE

LDA was run on the first half hour trace, with N = 5.
It is difficult to decipher the clear meanings of the topics
found because the IP addresses are anonymized, so only the
ports have meaning. Table II shows the ports of the port IP
combinations which were most popular in each topic.

Topic 1 HTTP only
Topic 2 HTTP only
Topic 3 POP, SMTP, and HTTP
Topic 4 POP3 over SSL, HTTPS, and HTTP
Topic 5 HTTP and HTTPS

TABLE II
DISCOVERED TOPICS

The prevalence of HTTP data in the training data causes the
HTTP port to be seen in each topic. It appears, however, that
one topic includes a lot of secure mail activity, while another
focuses on regular mail, and a third on secure HTTP.

To determine what anomalies exist in the last half hour
of the trace I ran variational inference on the last half hour
data given the model learned from the first half hour data.
Figure 3 shows a graph of the results. I consider any spike on
the graph which extends below −1.5x106 to be an anomaly.
Figure 4 shows the same plot, but with the sessions sorted by
log likelihood. It is easy to see that most sessions in the second
half hour of the trace match well with the trained model, and
there are only a handful which have very low log likelihoods.

I analyzed each of the anomalies detected in the last half
hour of the trace. Table III lists the anomalies, and their details.

session id details
17181 sending/receiving to/from 2,680 different external servers
12746 299,502 sub-epochs to a single SMTP server (every 6ms)
17170 sending/receiving to/from 2,400 different external servers

TABLE III
LIST OF ANOMALIES DETECTED

Fig. 3. The bound on log likelihood for the sessions in the last half hour of
data.

Fig. 4. The bound on log likelihood for sessions in the last half hour of
data, but sorted by log likelihood

The first and third anomalies seem similar, each with
connections to over 2,000 servers during the half hour trace.
There is likely some sort of a web crawler running on these
machines, and contacting tons of servers. It may be harmless,
but probably still something a network administrator would
want to be aware of. The second anomaly with nearly 300
thousand messages exchanged with an SMTP server, is a bit
more troubling. It is possible that this was actually a malicious
client participating in a Mailbomb attack. According to the
DARPA Intrusion Detection Attacks Database [8] a Mailbomb
attack “is one in which the attacker sends many messages to
a server, overflowing that server’s mail queue and possibly
causing a system failure”

B. Denial-of-service Injection

To test whether the model would detect a threat I simulated
a denial-of-service attach (DoS) emanating from a client at



COMP 790-124 - MACHINE LEARNING, FINAL PROJECT, DECEMBER 2012 4

UNC, by adding a new user session which was similar to other
sessions except that it had 200,000 sub-epochs sent towards
a single server. This simulates what I expect a SYN flooding
denial-of-service attack would look like. Running variational
inference on the model again yielded a log likelihood of
−2.4x106, for that session. This is below the chosen threshold,
and would be flagged as an anomaly.

V. CONCLUSION

Latent Dirichlet Allocation has proven itself to be useful
at modeling network traffic. I have shown that a model
learned using LDA on a network trace can detect anomalies
in other network traces. As future work I would consider
training on more data, and using traces from different days
and times. More detailed analysis of the anomalies, would
also be beneficial. As attacks become more prevalent and
sophisticated, the application of machine learning to computer
networking will be extremely important.

REFERENCES

[1] M. Roesch, “Snort - lightweight intrusion detection for
networks,” in Proceedings of the 13th USENIX conference on
System administration, ser. LISA ’99. Berkeley, CA, USA:
USENIX Association, 1999, pp. 229–238. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1039834.1039864

[2] V. Paxson, “Bro: A system for detecting network intruders in real-time,”
in Computer Networks, 1999, pp. 2435–2463.

[3] D. M. Blei, A. Y. Ng, M. I. Jordan, and J. Lafferty, “Latent dirichlet
allocation,” Journal of Machine Learning Research, vol. 3, p. 2003, 2003.

[4] M. V. Mahoney, “Network traffic anomaly detection based on packet
bytes,” in Proceedings of the 2003 ACM symposium on Applied
computing, ser. SAC ’03. New York, NY, USA: ACM, 2003, pp.
346–350. [Online]. Available: http://doi.acm.org/10.1145/952532.952601

[5] H. Sengar, X. Wang, H. Wang, D. Wijesekera, and S. Jajodia, “Online
detection of network traffic anomalies using behavioral distance.” in
IWQoS. IEEE, 2009, pp. 1–9.

[6] C. Cramer and L. Carin, “Bayesian topic models for describing com-
puter network behaviors,” in Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on, may 2011, pp. 1888
–1891.

[7] F. D. Smith, F. H. Campos, K. Jeffay, and D. Ott, “What tcp/ip
protocol headers can tell us about the web,” SIGMETRICS Perform.
Eval. Rev., vol. 29, no. 1, pp. 245–256, Jun. 2001. [Online]. Available:
http://doi.acm.org/10.1145/384268.378789

[8] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das,
“The 1999 darpa off-line intrusion detection evaluation,” Comput.
Netw., vol. 34, no. 4, pp. 579–595, Oct. 2000. [Online]. Available:
http://dx.doi.org/10.1016/S1389-1286(00)00139-0


