
COMP 790-099 - ROBOTICS, FINAL PROJECT, DECEMBER 2012 1

Executing RRT Paths with the AR.Drone Quadrotor
Benjamin D. Newton

Abstract—Quadrotors have become a popular micro aerial
vehicle (MAV) for research, and entertainment. Unfortunately,
they are often remote controlled by a human user. Numerous
other applications would be possible if a greater level of autonomy
could be reached. As a first step toward a more autonomous
quadrotor, I implement a rapidly exploring random tree which
computes a path through a maze. The generated path is then
used to control a real quadrotor in a real environment, using a
freely available state estimation framework.

Index Terms—Quadrotor, AR.Drone

I. INTRODUCTION

THE popularity of Unmanned Aerial Vehicles (UAVs) has
increased significantly over the last ten years. UAVs

are no longer used only for military activities, but also for
many varied applications including movie production, and live
entertainment. Micro UAVs (MAVs), those which have a mass
of less than about 1 kilogram and a diameter of less than
about 1 meter, are leading this growth. Especially popular are
quadrotors(aka quadcopters), which are MAVs with 4 rotors
mounted at the ends of a crossmember.

The hardware and low-level control systems for quadrotors
have improved and matured, but high level software is now
needed to make them more autonomous. To reach their full
potential these systems must be fully autonomous, and have
the ability to plan and execute paths through any environment.
One path planning algorithm which works well at finding paths
through difficult environments is Rapidly Exploring Random
Tree (RRT) [1]. The goal of this research is to implement
RRT to plan paths for a quadrotor through a simple maze,
and execute those paths on a real quadrotor.

The remainder of this paper is organized as follows, Section
II gives some historical information on quadrotors, and an
overview of quadrotor research. Next, Section III describes
the AR.Drone platform and the inputs and outputs of my
implementation of RRT. Section IV then details the implemen-
tation, and Section V describes the results. Finally, Section VI
describes the conclusions and potential future work topics.

II. RELATED WORK

A. Quadrotor History

Quadrotors may seem like a new idea, but surprisingly
the first quadrotor flew in the early 1920s. The huge flying
machine was built for a US Army Program by Jerome-de
Bothezatd, and saw several short flights before the program
was canceled. The Flying Octopus, as it was nicknamed only
moved forward with a favorable wind, and suffered from
control difficulties and a high pilot workload. It seems not

B. Newton is with the Department of Computer Science,University of North
Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA e-mail: bn@cs.unc.edu.

a coincidence that the quadrotor has re-emerged now that we
a computer can take care of the low level control. Despite
its shortcomings, the machine was quite an achievement, and
predates the first traditional helicopter by more than 14 years.

B. Quadrotor Research

Numerous papers have been published recently related to
quadrotors. It is outside the scope of this paper to give a
full account, but some highlights include the work done at
the University of Pennsylvania in trajectory generation [2],
building structures as a team [3], and flying in formations [4].
Also worth mention are the juggling [5] and cooperative ball
throwing and catching quadcopters [6] at ETH Zurich.

C. Research using the AR.Drone

Several systems also exist for conducting research using the
AR.Drone Dijkshoorn [7] has developed a framework for more
sophisticated development and simulation of the AR.Drone,
but this framework requires an understanding of the Unreal
game engine, and is not well documented or easy to set up.

Engel, et al. [8] from the Technische Universitt Mnchen
(TUM) have recently released a state estimation and con-
trol framework they have developed for the AR.Drone. The
framework is built upon Robot Operating System (ROS), and
includes a module which implements Parallel Tracking and
Mapping (PTAM) for state estimation.

III. OVERVIEW

A. The AR.Drone Platform

As mentioned above, quadrotors are now becoming afford-
able and simple enough for consumers. The AR.Drone is one
of the first widely available and affordable Micro UAVs on
the consumer market. The AR.Drone, developed and sold by
Parrot based in France, is marketed as a platform for playing
augmented reality games, but it is also a great platform for
robotics research. It is especially attractive because of its
reasonable price of about $300 USD.

The AR.Drone consists of four rotors attached to a cross
shaped body frame, with sensors and a processor housed at
the center. It is furnished with several sensors, including an
accelerometer, an ultrasonic altimeter, and two cameras (one
facing forward, and the other facing down). Using the sensor
data and its onboard intelligence, it can automatically takeoff,
land, and hover at a given distance above the ground. User
input is then required to move the quadrotor from this default
position. Adjusting the pitch down causes the quadrotor to
move forward, and rolling to the right, causes the quadrotor to
move right. In addition, a user is able to independently adjust
the yaw, and the height above the ground. Communication

COMP 790-099 - ROBOTICS, FINAL PROJECT, DECEMBER 2012 2

with the quadrotor is via WiFi, with the quadrotor acting as a
wireless access point to which a laptop, smartphone, or tablet
can connect. Figure 1 shows a picture of an AR.Drone.

Fig. 1. A photo of the AR.Drone.

Parrot recently introduced version 2.0 of the AR.Drone
with extra sensors and higher resolution cameras, however this
work was done using the original version of the AR.Drone.
Parrot includes an SDK [9] and API with limited functionality
enabling control of both versions of the quadrotor from a PC.
Unfortunately I found this API and its examples difficult to
compile and get working. I instead chose to use the framework
[8] developed by Engel, et al. at the Technische Universitt
Mnchen (TUM).

B. Inputs and Outputs

The framework to control the quadrotor implements a
simple scripting language. A script describing the desired
path of the quadrotor through the environment is generated
offline, and then imported and executed at run time by the
control framework. This script is the output from my RRT
path planner.

The inputs to the RRT path planner include the details
about the environment, the size of the quadrotor, and the start
and goal locations. These inputs, and their default values are
detailed in Table III-B. Their meaning will become more clear
after reading the next section.

Environment witdh 500 cm
Environment height 500 cm
RRT increment 50 cm
Sub-increment 1 cm
Drone max width 64 cm
Buffer 20 cm
Objects (see figure)
Start position 0,0
Goal position -150, -325

TABLE I
INPUTS TO RRT PATH PLANNER

IV. METHODS

The first step was to repair my AR.Drone, which had been
damaged badly by a crash. This involved dismantling the entire
drone and replacing the cross member and gears. This gave
me an opportunity to see the guts of the hardware, and learn
how everything fits together. Next I updated the firmware and
the control application for the AR.Drone and flew the drone
to ensure that it was fully functional after the repairs.

A. Failed attempts

I downloaded the recently released version 2.0 of the
AR.Drone SDK. The example application failed with an
segmentation fault, so I had to modify it to get it working.
I created a Linux application to enable control of the drone
through a GUI. I was able to get the drone to take off and
land, but never move in a lateral direction. There is limited
documentation and example code, and many of the comments
are in french. Upon further investigation I found that there
were issues with the new version of the SDK.

I downloaded version 1.8 of the SDK, and after solving
some build issues I was able to finally get the drone to move
from it’s hovering position.

B. AR.Drone TUM

As mentioned above, I finally settled on using the AR.Drone
TUM framework developed in Germany. It is built on the
Robot Operating System (ROS). To install ROS I ended up
having to install a different version of Linux. After installing
ROS and setting up a workspace I then installed the AR.Drone
TUM framework. After solving a few build issues, it finally
compiled, and ran. It was a bit tricky to make sure the envi-
ronment was set correctly and all the components were started
in the correct order, so I created a script to start everything
automatically. It is important to have the AR.Drone turned on,
and have network connection before starting AR.Drone TUM.

The system includes three components: the state estimation
module, the controller module, and the GUI. On start-up
three windows appear. The first is a 3D map showing a
point cloud of the detected features in the environment and
current estimated position of the quadrotor. Figure 2 shows a
screenshot of this window.

Fig. 2. Screenshot of the PTAM map window.

The next window is a live view from the front facing camera
on the AR.Drone. Figure 3 shows a screenshot of this window.
The colored dots on the image represent the currently detected
features.

COMP 790-099 - ROBOTICS, FINAL PROJECT, DECEMBER 2012 3

Fig. 3. Screenshot of the live camera feed with features.

The final window is the GUI, which is used to control the
system.

At start-up PTAM must be initialized by pressing the space
bar and then moving the quadrotor vertically and pressing the
space bar again. This allows the system to obtain an initial set
of features. This set is then expanded as the drone sees more
of the environment. Once initialized the system continually
estimates and refines the position of the drone. It is important
to have the front camera facing a scene with features. A large
solid colored wall with no texture will not work well.

While the drone is flying, the system can be in one of two
different modes. Manual mode, where the user controls the
drone using the keyboard or joystick, and autopilot mode. In
autopilot mode the system executes a specified script. The
following is an example of a simple script which sets up some
parameters, commands the quadrotor to take off, move through
the environment, and then land.

takeoff

setReference $POSE$
setMaxControl 1
setInitialReachDist 0.2
setStayWithinDist 0.5
setStayTime 1

goto -1 0 0 0
goto -1 1.5 0 0
goto 1 1.5 0 0
goto 1 3 0 0
goto -1.5 3 0 0

land

C. RRT Path Planner

In order to generate a script for the TUM system which
will move drone through a maze, I implemented the Rapidly

Exploring Random Tree (RRT) algorithm. This algorithm
creates a random tree rooted at the starting position, which
randomly expands throughout the free space until the goal is
reached.

Fig. 4. Screenshot of the RRT path planner and discovered path.

My implementation begins by setting the goal, start, and
object positions. I assume the robot is a point robot, ignoring
orientation. To ensure there are no collisions I expand the
objects by half the maximum width of the quadrotor, plus a
small buffer distance. A tree is initialized with a single vertex,
at the start position. I use the boost graph library adjacency
list container to store the tree. Each vertex in the tree has a
position associated with it. I use OpenGL to display the objects
and their expanded shapes.

Each time OpenGL calls the idle function I call the
growTree() method which randomly picks a free position in
the environment. A free position is one which is not inside
any expanded object. Next I find the vertex in the current tree
which is nearest the random position. The tree grows from
this vertex towards the free position by a certain increment.
For example, if the increment is 50, a new vertex is placed
50 units along the line from the vertex in the tree towards
the random position. To ensure no obstacles are overlooked,
the positions along the increment are tested at a given sub
increment (for example every 1 unit), to ensure none are inside
of the objects. If the path is free, an edge is added to the
tree and assigned a weigh which equals the Euclidian distance
between the vertices. This procedure of adding new edges and
verticies to the tree continues until the tree nearly reaches the
goal.

If the new position is near the goal, a final edge to the
goal is added to the tree. At this point I use the boost graph
library’s implementation of Dijkstra’s shortest path to find the
shortest path through the tree from the start node to the goal

COMP 790-099 - ROBOTICS, FINAL PROJECT, DECEMBER 2012 4

node. This path is then output to a file with the appropriate
header and footer to make it match the script format for the
AR.Drone TUM system. Figure 4 shows a screenshot of the
path planner and the path discovered using RRT.

V. RESULTS

To test my path planner I created a simple maze with narrow
passages, once the objects are expanded. The orange lines in
figure 4 represent thin walls, while the yellow lines represent
the expanded objects. I then mapped the same map with tape
on the floor of a gym. Figure 5 shows the map on the real
floor. The blue lines are the limits of the 5m x 5m square
environment map, and the orange lines are the walls. The other
lines should be ignored.

Fig. 5. Picture of the testing environment.

After some initial bugs were worked out, I flew the quadro-
tor through the environment, but it overshot all of it’s target.
This was because the scale was being estimated incorrectly,
which is a common issue with vision systems. I manually
adjusted the input script distances by a scaling factor, and
then got good results. See the video attached with my code
submission.

Figure 6 shows a planned RRT path, and Figure 7 shows
the execution of that path in the real world.

There is good agreement between the two paths. I also
added poles at the corners of the walls to ensure the quadrotor
went through the door openings. The drone would sometimes
rub up against the poles or encroach on the boundaries, but in
general it stayed within the limits of the environment.

I ran about 20 separate tests on one of 5 different maps.
I also adjusted the parameters to make the drone fly more
exact and slowly, or faster, and less accurate. The slow more
accurate flights yielded fewer errors.

VI. CONCLUSION AND FUTURE WORK

Several improvements can be made to this system. First, I
could expand the RRT to 3 dimensions. This would allow for
more interesting paths. I would also like to determine a way
to allow the TUM system to be calibrated for accurate scale,
given movements of a known distance in the real world.

In conclusion, I have developed a RRT implementation and
run the paths it planned on a real quadrotor. The AR.Drone
successfully moved through the maze many times with only
minimal errors. This is one small step towards making a
autonomous quadrotor.

Fig. 6. Trajectory following path through maze.

Fig. 7. Trajectory following path through maze.

ACKNOWLEDGMENT

The author would like to thank the researchers at TUM for
making their system publicly available, the church for allowing
me to use their gym for my testing, and my family for their
love and patience.

REFERENCES

[1] S. M. Lavalle, J. J. Kuffner, and Jr., “Rapidly-exploring random trees:
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions, 2000, pp. 293–308.

COMP 790-099 - ROBOTICS, FINAL PROJECT, DECEMBER 2012 5

[2] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in ICRA’11, 2011, pp. 2520–2525.

[3] Q. Lindsey, D. Mellinger, and V. Kumar, “Construction of cubic structures
with quadrotor teams,” in Robotics: Science and Systems’11, 2011, pp.
–1–1.

[4] A. Kushleyev, V. Kumar, and D. Mellinger, “Towards a swarm of agile
micro quadrotors,” in Proceedings of Robotics: Science and Systems,
Sydney, Australia, July 2012.

[5] M. Muller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball juggling.”
in IROS. IEEE, 2011, pp. 5113–5120.

[6] R. Ritz, M. Mueller, and R. D’Andrea, “Cooperative quadrocopter ball
throwing and catching,” in IEEE/RSJ International Conference on Intel-
ligent Robots and Systems. IEEE, 2012, pp. 4972–4978.

[7] N. Dijkshoorn, “Simultaneous localization and mapping with the
AR.Drone,” Master’s thesis, Universiteit van Amsterdam, July 2012.

[8] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a low-
cost quadrocopter,” in Proc. of the International Conference on Intelligent
Robot Systems (IROS), Oct. 2012.

[9] S. Piskorski, N. Brulez, and P. Eline, AR.Drone Developer Guide, 1st ed.,
Parrot, May 2011.

