

Automatically Identifying that Distributed Programmers are Stuck

Jason Carter and Prasun Dewan

Department of Computer Science, University of North Carolina, Chapel Hill

{carter_jl,dewan} @ cs.unc.edu

Abstract

We hypothesize that it is useful and possible to

automatically identify that distributed programmers

are stuck by extending existing software development

environments using a general architecture.

.

1. Motivation

Often programmers get “stuck” while coding,

unable to make much progress despite all efforts to

address some issue. It would be useful if an interested

remote party could become aware of this situation.

For example, instructors could use this information to

(a) offer help to student programmers who are too

shy to ask for it, (b) determine how much progress

they are making, and (c) identify difficult problems.

An educational setting provides particularly

compelling applications of this idea because an

important goal is to help students and monitor their

progress. In fact, the true benefits of this idea could

actually occur in industry. A manager of a team could

use this information to identify problematic software

components and better estimate completion times.

Even more interesting, based on recent research, it is

possible to argue that this information could

significantly improve programmer productivity.

In a study comparing co-located and distributed

software development, Herbsleb found [2] that the

productivity of co-located teams was significantly

higher than that of distributed teams primarily

because co-located developers were more apt to help

each other finish their tasks. A related study by

Teasley et al [4] found that the productivity of a team

located in a single “war-room” was much higher than

that of one spread out in different cubicles. A major

reason, was that if someone was having difficulty

with some aspect of code, another developer in the

war-room “walking by seeing the activity over their

shoulders, would stop to provide help” [4]. Thus, the

two studies above show that the greater the distance

between developers, the more difficult it is to

determine if they need help.

One approach to help distributed teams is

described in [1]. Developers use a programming

environment that allows them to be aware of the

methods on which their team members are working.

They could use this information together with project

and user-specific information to determine if some

team member is stuck.

It would be much more attractive if this deduction

could be made automatically by logging developers’

interaction with the system. An important step in this

direction is made in [3], which describes a logging-

based tool for monitoring student progress. Student

teams use a wiki to interact with several tools

including CVS, newsgroups, and a metrics module

that analyzes students’ data. The wiki allows students

to track their development tasks and analyzes tasks

such as file modifications to measure the workload of

teams. We are extending this idea to automatically

determine when distributed programmers are stuck.

2. Acknowledgements

This research was funded in part by NSF grants IIS

0312328, IIS 0712794, IIS-0810861, and
HRD-0450099 UNC-Chapel Hill AGEP Program.

3. References

[1] Hedge R. and Dewan P. Connecting Programming

Environments to Support Ad-Hoc Collaboration in 23rd

IEEE/ACM International Conference on ASE. 2008.
[2] Herbsleb, J.D., et al. Distance, dependencies, and delay

in a global collaboration. in Proc. CSCW 2000.

[3] Liu, Y. and Stroulia, E., A Lightweight Project-

Management Environment for Small Novice Teams, in

Proc. of 3rd International Workshop on Adoption-Centric
Software Engineering, 2003, pp. 42-48.

[4] Teasley, S., et al. How does radical collocation help a
team succeed? in Proc. CSCW 2000.

