
COMP 110

Prasun Dewan1

10. Main and Console Input

It is time, finally, to remove the training wheels of ObjectEditor and try to write a complete Java

program. This means we must ourselves write a main method that implements the user-interface rather

than relying on ObjectEditor’s main method to do so. We are not quite ready to implement the point

and click user-interface provided by ObjectEditor, therefore we will implement a different, command-

line user interface, which involves use of the console window for entering information and displaying

results. We have already seen how to display data in a console window. Now we will see how to receive

input from the window. We will implement a user-interface that manipulates instances of the class

ALoanPair object we created in the last chapter, allowing us to focus on how to program a main

method and how to input from the console rather than how to create objects. Nonetheless, the code we

create will be complex enough to illustrate the use of developing an algorithm in multiple stages and

developing a library that can be called from multiple programs.

Console-based User Interface
It assumes that the user specifies the car loan in terms of its principal, and the house loan in terms of its

yearly interest. It prompts the user for these two values, displays the properties of the two loans and

their sum, and then terminates.

As we can see, this interface is fairly different from the ones we have seen so far, using the console

window for entering data and viewing results. Therefore, we will refer to such a user-interface as a

console-based user-interface (Figure 1). Such a user-interface is also called a teletype user-interface,

since it essentially models a typewriter, allowing us to edit only the current line, not the previous lines. It

is also termed a transcript user-interface, since it shows a transcript or history of our interaction with the

application.

ObjectEditor provides no help in creating such as user-interface, so we must write our own main

method for implementing it. We will put this method in its own class, which will essentially “drive” an

instance of ALoanPair, invoking methods on the object, much as ObjectEditor did in the example of

the previous chapter. This class is not quite an editor, since it does not let us edit previous lines, so we

will refer to it simply as ALoanPairDriver.

1
 Copyright Prasun Dewan, 2000.

Main Method
At an extremely high-level, the steps to be taken by the main method are:

1. Create ALoanPair instance based on the two values entered by the user in the console window.

2. Print the properties of the loan pair object in the console window.

The following main method is an encoding of this algorithm.

public static void main (String[] args) {

 LoanPair loanPair = new ALoanPair(readCarLoan(), readHouseLoan());

 print(loanPair);

 bus.uigen.ObjectEditor.edit(loanPair);

 pause();

}

Before we exactly undertsand the statements in it, let us try to see the nature of a main method. Recall

that this is the method the interpreter calls to start the program. Going back to the theater analogy, the

main method is the starting act of a performance. The interpreter invokes it on the class in which it is

defined, not on an instance of the class. Thus it must be declared as a class method. Moreover, it must

be named main and define a formal parameter of type String[]. This type is an array, which we will

study in depth later. For now, think of it as a list. The interpreter assigns to the parameter a list of string

arguments entered by the user when the program is started.

All main methods, thus, have the header shown above. The bodies of the methods, of course, differ

based on the algorithm implemented by them. In this example, the body mirrors the algorithm given

above. The first statement assumes the existence of functions, readCarLoan and readHouseLoan,

which read input from the console to create Loan objects representing a car and house loan,

respectively. The statement calls these two functions and uses the two Loan objects returned by them

to constructs a new instance of ALoanPair.

Figure 1. Console-based User Interface

The second statement assumes the existence of a procedure for printing the properties of ALoanPair

instance, and simply calls it to display the output of the program.

The third statment does not have a corresponding step in our algorithm as it has to do with displaying

our loanPair instance using ObjectEditor. The edit method of ObjectEditor accepts takes an object as

a parameter and displays the edit window for the object. The syntax of the edit method call may seem

somewhat strange. We will discuss this syntax later. For now, just read the statement as an invocation of

the edit method on ObjectEditor. The result is the same as when interactively instantiating a class and

displaying the resulting object using ObjectEditor, which is the approach we have taken so far. The

difference in our current example is that we have instantiated LoanPair programmatically, and we

want to only display the LoanPair object using ObjectEditor.

When you display an object by invoking the edit method on ObjectEditor, any updates you make to

your object programmatically will not be automatically displayed in the edit window for the object

(later, we will see how to resolve this and have the edit window always reflect the up-to-date property

values of an object, whether the properties values are modified programatically or interactively). To

display the latest property values in the edit window, you must select Refresh option from the View

menu in ObjectEditor.

The fourth statement also does not have a corresponding step in our algorithm and has to do with visual

programming environments such as Eclipse. Once a program terminates, these environments destroy its

console window2. Since a program outputs data fairly fast, a user may not get a chance to view the

output before the console window disappears. Therefore, we have put an extra statement in the

method, which makes the program pause, that is, block until the user presses a key.

In this method, the statement:

LoanPair loanPair = new ALoanPair(readCarLoan(), readHouseLoan());

might seem a bit confusing. It is an example of method chaining, where the result computed by a

method invocation is provided as an argument to another method invocation. Thus, the results of

readCarLoan and readHouseLoan are used as arguments to the constructor ALoanPair.

The statement is equivalent to the following three statements:

 Loan carLoan = readCarLoan();

 Loan houseLoan = readHouseLoan();

 new ALoanPair(carLoan, houseLoan);

Method chaining allows us to write fewer statements, but can be confusing to a beginning programmer.

It also makes single-step debugging, discussed below, less effective, since multiple actions occur in one

2
 The current version of Eclipse v3.3 does not have this problem. Instead of using the operating system’s

console/terminal window for console-based user-interfaces, Eclipse has its own console window integrated into
the overall programming environment. As a result, Eclipse does not close the console window when the
application stops running.

debugging step, thereby making it difficult to isolate the effect of individual actions. We have seen

simple examples of it earlier, with a function call being used as an actual parameter of another method.

This example is more complicated because two function calls are used as actual parameters. Whether

you use it depends on how comfortable you feel with it.

We have implemented the main method in terms of four methods, readCarLoan, readHouseLoan,

print, and pause, that we have not yet declared. This is classic top-down programming. Let us go

down a level and see how we can implement these methods.

Reading Input
The algorithm for readCarLoan is straightforward:

1. Prompt the user for the car loan principal.
2. Return an instance of ALoan constructed from the principal.

It is implemented directly by the following code:

 public static Loan readCarLoan() {

 System.out.println("Please enter car principal:");

 return new ALoan(readInt());

}

Like the main method, this is a class method. Since a class method cannot invoke an instance method, all

methods called directly or indirectly by the main method must also be declared as class methods. In this

method, we have used the ALoan implementation of Loan since it allows us to construct a Loan object

from the principal.

The method readHouseLoan is very similar, except that it reads the yearly interest and thus returns an

instance of AnotherLoan (which, recall, constucts a Loan object from the yearly interest):

public static Loan readHouseLoan() {

 System.out.println("Please enter house yearly interest:");

 return new AnotherLoan(readInt());

 }

The two methods assume the existence of an as yet undefined method, readInt, that reads an int

value from the console window and returns it as the result. In most languages, such a function would be

predefined, but not so in the case of Java. Therefore, we must develop an algorithm for this function as

the next level of our program development.

1. Wait for the user to enter a digit sequence on the next line.

2. Return the int represented by the digit sequence.

3. In case the user makes an error or terminates input before entring a valid int, print an error

message and return 0.

The third step requires some explanation. In the interaction shown in the console window, we assumed

that the user does indeed enter a digit sequence for each number. What if the user does not do so, and

enters, for instance:

one thousand

Our program is not prepared to parse a string containing non digits and considers this entry an error.

Similarly, what if the user (by entering a special character, called the end of file mark) signals that no

more input will be given? Again, this is an error. In general, error recovery is a tricky issue and beyond

the scope of this book. Here, we take the simple approach of assuming the value 0 in the case of either

of these two errors.

The code of readInt is given below:

static BufferedReader inputStream = new BufferedReader(

new InputStreamReader(System.in));

public static int readInt() {

try {

return Integer.parseInt(inputStream.readLine());

} catch (Exception e) {

 System.out.println(e);

 return 0;

 }

 }

 This code uses several features of Java we have not yet seen.

BufferedReader
The function invocation:

inputStream.readLine()

returns the input string entered by the user on the next line. As we see in the console window, a user

does not need to put quotes around the input string. The method inputStream.readLine expects

only strings, and considers the beginning and end of the input line as the string delimiters. Each time the

method is called, it collects the next line from the user. Here inputStream is a class variable declared

as follows:

BufferedReader inputStream = new BufferedReader(

new InputStreamReader(System.in));

Thus, inputStream is assigned an instance of the class BufferedReader, which is provided by Java

for reading input. Java also provides the object, System.in, for reading input, which is counterpart of

the object System.out provided for printing output. However, this object treats the console input as a

sequence of characters and not a sequence of lines; inputStream converts the character sequence

passed to its constructor to a line sequence.

In this example, we have used a class, BufferedReader, not defined by us. Thus, we do not completely

understand how our example works. This is not a problem, since, in order to use a class, all we really

need to know is how to instantiate it and what its public methods do. Thus, we can treat

BufferedReaderas simply a “black box” that reads lines for us.

While BufferedReaderknows how to read strings from the console, it does not know how to convert

these strings to int values. This is the task of another class, Integer3, which provides a class method,

parseInt, for doing this conversion. Therefore, readInt invokes this method, passing it the string

returned by inputStream.readLine and returns the int computed by it.

Importing from a Package
BufferedReaderis a short name for the full name, java.io.BufferedReader. We can use the short

name in a class only if, before the class declaration begins, we import the long name, that is explicitly

specify its name in a declaration beginning with the keyword import:

import java.io.BufferedReader;

public class ALoanPairDriver { … }

Thus, in any class that must read lines from the console, be sure to insert this import declaration and the

dataIn declaration we saw above.

The reason why there is a difference between the short name and long name of BufferedReader is

that it, unlike the types (classes and interfaces) we have created, this class has been put in a package.

Think of a package as a directory of types and other packages. In fact, for each package, Java creates a

separate operating system directory. The full name of a type, T, defined in some package, p, is of the

form:

p.T

just as the name of a file, F, in a Windows directory d is of the form:

d\F

Thus, in the full name:

java.io.BufferedReader

java.io is the package name and BufferedReader is the class name within the package.The current

convention is to start package names with a lower case letter – in fact the practice seems to be to use

only lower case letters, as we see in this example.

3
 Integer is related to but not the same as int. Both are types represent Mathematical integers. However,

Integer is a class while int is a primitive type. We will later study in more depth the relationship between the
two.

If we do not explicitly put a class in a package, then it is put in a nameless default package predefined by

Java. All classes created by us were put in this package. Classes in the default package have the same

short and full names.

Different packages can have classes with the same name, just as different directories can have files with

the same name. The full name is therefore essential to distinguish these classes. When we use an import

declaration to specify at the beginning of a class or interface definiton the full name of a type we are

intested in, we can use the short names subsequently in the remaining code. It is illegal to import two

types with the same short name because it would then not be clear to which type the short name refers.

Exceptions
As mentioned above, two kinds of errors can occur when reading an int: a user may prematurely end

input or enter a non-digit sequence. The method inputStream.readLine detects the first error and

the method Integer.parseInt detects the second one. Before we see how these particular methods

process these errors, let us try to answer the general question: What should a method do when it

detects an error? There are two choices.

1. It can handle the error in some application-specific way. This is the approach taken in the design of

readInt. In case of errors, it returns the value 0.

2. It can “pass the buck” to the method that called it, letting it handle the error. This is the approach

taken by inputStream.readLine and Integer.parseInt.

Java provides an elaborate mechanism for “passing the buck,” which we will not study in depth here.

We will study just enough of it necessary to use some standard methods provided by Java.

In Java, an error is represented by an object called an exception. The class of the object indicates the

kind of error represented by it. For example, an input or output error such as premature end of file is

represented by an instance of IOException; using a wrong representation for a number is represented

by an instance of NumberFormatException; and an attempt to invoke a method on a null pointer is

represented by an instance of NullPointerException, which we saw earlier encountered.

To pass the buck, a method throws an exception of the appropriate class, which can be caught by the

method that calls it. For now, let us ignore how exceptions are thrown; instead, let us look at a simple

approach to catch exceptions. The following code fragment how this is done:

try {

return Integer.parseInt(inputStream.readLine());

} catch (Exception e) {

System.out.println(e);

return 0;

}

This is an example of a try-catch statement, consisting of a try block and a catch block. It indicates,

through the try keyword, that the method is only attempting to execute the statements in the try

block – there is no guarantee that it will execute all of these statements because of exceptions. If an

exception is thrown by a method invoked in the try block, the exception is “caught” by terminating the

try block and transferring control to the catch block. The parameter, e, in the header of the catch block

contains the value of the thrown exception, which can then be examined by the body. In this example,

the body simply prints the exception and returns the value 0.

If we do not enclose the statement

return Integer.parseInt(inputStream.readLine());

within a try-catch statement, the Java compiler will complain. It will ask us to either catch the exception

by putting a try catch block around it or declare a throws clause in the method header. For now, ignore

the throws clause; always react to the message by putting a try-catch block around the statement about

which the compiler issues this complaint.

The following definition of pause illustrates another use of try-catch block:

public static void pause() {

try {

 System.in.read();

 } catch (Exception e) {

 System.out.println(e);

 }

 }

The purpose of this method is to stop the main method from terminating until the user enters some

character. The method System.in.read is much like inputStream.readLine in that it waits for

user input – the difference is that it returns the next character rather than the next line. Thus, by calling

it, we achieve our goal of blocking the program until the user enters a character. As in readInt, there is

the chance that the user may enter an end of file character, causing an IOException. Therefore, we

have enclosed the method call within a try-catch block. Notice that unlike the previous catch block, the

catch block above does not return any value. This is because pause is a procedure rather than a

function. It does not really care about the value of the character returned by System.in.read,

therefore it does not store its value in any variable or return it.

Writing a complete try-catch statement whenever we want to receive input from the user is, of course,

tedious. We will soon relieve this tedium by writing a reusable library that does this for us.

Programmer-defined Overloading
To complete our description of main, we need to look at the print procedure called by:

print(loanPair);

We can implement this method by asuming that a print exists to display a Loan, and call it three times

for printing the three Loan properties of its LoanPair argument:

public static void print(LoanPair loanPair) {

 System.out.println("****Car Loan*****");

 print(loanPair.getCarLoan());

 System.out.println("****House Loan****");

 print(loanPair.getHouseLoan());

 System.out.println("****Total Loan****");

 print (loanPair.getTotalLoan());

 }

The implementation of the method for printing a Loan is similar, printing all the properties of its

argument, except that this time, System.out.println can be used directly to print the primtive

properties:

public static void print(Loan loan) {

 System.out.println("Principal:" + loan.getPrincipal());

 System.out.println(

"Yearly Interest:" + loan.getYearlyInterest());

 System.out.println(

"Monthly Interest:" + loan.getMonthlyInterest());

 }

Thus, we have created two new implementation of print in this class, one for printing a Loan, and

other for printing a LoanPair. As mentioned before, such overloading of a method name is allowed in

Java. When we use the name of an overloaded method in a call, Java determines which implementation

to invoke based on the types of the actual parameters of the invocation. Thus, when it sees:

print(loanPair)

it calls the print whose formal parameter is of the type of the actual parameter of this call, LoanPair;

and when it sees:

print(loanPair.getCarLoan());

Figure 2. Multi-level Algorithm/Code

it calls the print whose formal parameter is type Loan. Java will not let us define two implementations

of a method that take the same types of arguments.

Multi-level Algorithm
We have seen here an example of an algorithm, and the code that implements it, developed in multiple

stages. Figure 2 shows the levels of the algorithm and the code.

In this figure, we see only the methods defined in ALoanPairDriver, not those we defined earlier in

ALoanPair and ALoan. If we were to include calls to the latter also, we would have even more levels.

In general, the more levels in an algorithm, the easier it is understand and get right, since each level can

be developed independently of other levels. In this chapter, we have illustrated the kind of top-down

thinking required to do a multi-level decomposition.

The complete code of LoanPairDriver is given below, showing how the various levels work together.

import java.io.BufferedReader;

public class ALoanPairDriver {

 static BufferedReader inputStream = new BufferedReader(

new InputStreamReader(System.in));

 public static void main (String args[]) {

 LoanPair loanPair = new ALoanPair(

readCarLoan(), readHouseLoan());

 print (loanPair);

 pause();

 }

 public static Loan readCarLoan() {

 System.out.println("Please enter car principal:");

 return new ALoan(readInt());

 }

 public static Loan readHouseLoan() {

 System.out.println("Please enter house yearly interest:");

 return new AnotherLoan(readInt());

 }

 public static int readInt() {

 try {

 return Integer.parseInt(inputStream.readLine());

 } catch (Exception e) {

 return 0;

 }

 }

 public static void print (LoanPair loanPair) {

 System.out.println("****Car Loan*****");

 print(loanPair.getCarLoan());

 System.out.println("****House Loan****");

 print(loanPair.getHouseLoan());

 System.out.println("****Total Loan****");

 print (loanPair.getTotalLoan());

 }

 public static void print(Loan loan) {

 System.out.println(

"Principal:" + loan.getPrincipal());

 System.out.println(

"Yearly Interest:" + loan.getYearlyInterest());

 System.out.println(

"Monthly Interest:" + loan.getMonthlyInterest());

 }

 public static void pause() {

 try {

 System.in.read();

 } catch (Exception e) {

 System.out.println(e);

 }

 }

}

Running Main
Now that we understand how a main method is written, let us see how it is invoked. Recall that the class

in which it is defined takes the place of ObjectEditor. Thus, if we are using the command interpreter,

instead of typing the command:

java ObjectEditor

we should now type the command:

java <Main Class>

where <Main Class> contains the main method. In this example, we should enter:

java ALoanPairDriver

The class following the java command is the one in which the interpreter looks for the main method.

If we are using Eclipse, all we have to do is execute the Debug command in the Run menu. Alternatively,

you can right-click on ALoanPairDriver in the Package Explorer window and select Java

Figure 3. Console-based User Interface

Application from the Debug As menu (Figure 3). We can also execute the Run command, but it will

not give us Eclipse debugging support. We advocated the use of it when running ObjectEditor to speed

up performance. Our main methods, being far less complex than the main method of ObjectEditor,

should not create any performance problems, and thus the Debug command is the better option for

them.

Tracing Using a Debugger
We saw earlier the use of print statements to trace the execution of a program. Debuggers provide an

alterantive mechanism to do the same, which does not require the overhead of adding/deleting print

statements in order to start/stop tracing the program. Let us look at the Eclipse debugger to illustrate

this mechanism.

In order to trace a program, place a break point on the second statement of the main method. To do

this, double-click, at the height of the second statement of main, on the column that is furthest to the

left from the code in the code window (Figure 4). When running in debug mode, the debugger stops

program execution when it encounters (hits) a break point on a statement (Figure 5). In Figure 5, we see

the result of hitting the first break point. At this point, the debugger is ready to invoke the print method.

Execute the Step Over command from the Run menu. In this execution mode, the debugger executes

one statement at a time, instead of executing the whole program at once. Each subsequent invocation

of the Step Over command executes one more statement. An arrow displayed on the sidebar indicates

the next statement to be executed.

While a program is stopped at some statement, we can inspect the variables visible to that statement by

selecting Variables from the Show View menu item in the Window menu. Figure 6 shows what

Figure 4. Placing a breakpoint in Eclipse

Figure 5. Eclipse debugger view when the debugger hits a break point

happens when we make this selection. A special window, called variables, is created to display the

formal parameter, args, and the local variable, loanPair, which are the two variables visible to

statements in the main method.

As we can see, the window shows the entire physical structure of each of the displayed variables. It

shows that args is assigned an empty array of String values and loanPair is assigned an instance of

ALoanPair, which consists of two instance variables, carLoan and houseLoan. The variable

carLoan is assigned an instance of ALoan and the variable houseLoan is assigned an instance of

AnotherLoan. The instance of ALoan consists of the the instance variable principal, whose value is

15000. The instance of AnotherLoan consists of a single instance variable, yearlyInterest, whose

value is 12000. As we step through the statements of the program, this window is updated

automatically to reflect changes made to the displayed variables by the executed statements. The

display does not show the values of the properties of an object, for which you must rely on ObjectEditor.

Figure 6. Inspecting variables during pause in execution of program in Eclipse

Figure 7. Executing the Step Over debug command when stopped at the print statement in main

Figure 8. Executing the Step Into debug command when stopped at the print statement in main

When execution is stopped at some method call, such as the print statement in Figure 5, what is the

“next” statement the debuger should stop at. There are two possible answers : (1) the next statement in

the calling method, main, (Figure 7), or (2) the first statement in the called method, print (Figure 8).

The Step Over command chooses the first alternative, allowing us to remain at the same level in our

algorithm. If we wish the second alternative so that we can go down one level in the algorithm, we must

execute another command, the Step Into command. The converse of this command, Step Out, lets

us return to the previous level.

Function vs. Procedure Invocation Again
Now that we have a basic understanding of how ALoanPairDriver is written and executed, let us try

to understand some subtle points illustrated by it. Compare the ways in which we invoked the function
readInt

return new ALoan(readInt());

 and the procedure print:

print(loanPair);

The function invocation is used an expression, while the procedure invocation is used as a statement. As

we saw before, a procedure invocation cannot be used as an expression, since it does not produce a

value. Thus, the following is illegal:

System.out.println(print (loanPair));

What about a function invocation? Should it be allowed to be used as a statement:

readInt();

As it turns out, a function invocation is indeed a legal statement in Java, but a program that uses this

feature is probably erroneous, since it is ignoring the return value. In fact, beginning programmers have

a tendency to make the mistake of ignoring a function return value they need, so it is unfortunate Java

does automatically catch this error.

When is it possible to write "working" programs that ignore the return value of a function? Sometimes,

the return value is an error code, that is, a special value signifying an error. In languages that do not

support exceptions, error codes are the only way for a called method to indicate to its caller that an

error occurred. A lazy programmer, hoping there are no errors, may ignore such codes, creating

programs that "work" in the absence of errors. This kind of programming is not recommended, and,

therefore, many programming languages such as Pascal disallow it.

An example of a defendable use of this feature is the following function invocation in pause:

System.in.read();

Recall that the purpose of this method invocation is to block a program until we provide some input,

giving us a chance to view the output. Since the program does not process the character we enter to

terminate the program, it can safely ignore it instead of doing a spurious assignment:

char c = (char) System.in.read();

However, uses such as these are unusual. If your program is not working, be sure to check that you are

using all function invocations as expressions.

Returning Vs Printing a Result
Beginner programmers, when asked to write a function that produces a certain result, tend to print the

result instead of, or in addition, to returning it to the calling method:

public static int readInt() {

 int retVal;

 try {

 retVal = Integer.parseInt(dataIn.readLine());

 } catch (Exception e) {

 System.out.println(e);

 retVal = 0;

 }

System.out.println(retVal);

 return retVal;

}

The feeling is that the result will be “lost” if it is not printed. It is important to realize that every function

has a caller, who will be responsible for processing the return value. Thus, we should not print the

return value of a function unless there are special reasons for doing so, such as debugging it.

Side Effects

Printing in a function is a side effect. We normally think of the effect of a function as computing a return

value. A “side effect” is any other effect of the function that can be observed by the user or another

method after the function has terminated. Examples of side effects are:

1. Writing output to the console window.

2. Advancing the read cursor in the console window (which is shared by all methods) by reading

input.

3. Changing the value of a global variable, which is also shared with other methods in the class.

Side effects can be confusing, and therefore should be avoided as much as possible. Some side effects

are more confusing than others: the three side effects above have been listed in the order of their

potential for causing harm. Writing output is perhaps the most benign side effect, and is something we

often need to do in a function to debug it or report errors. In Java, reading input is also acceptable, since

a method that returns a result based on processing the input stream of characters must be a function4.

This is the reason that the predefined Java input methods we used in this program, dataIn.readLine

and System.in.readChar, and the three we defined, readInt, readCarLoan, and

readHouseLoan, are all functions.

The most dangerous is the last one, and as it turns out, is easily avoided in most cases without

significantly reduce programming flexibility. Therefore, you should not change global variables in

functions. We will see one exception to this rule later, when we look at an enumeration interface. An

exception is allowed in the case of an enumeration interface because, as we will see later, it is very

much like the read cursor case.

Some programmers feel that even procedures should never change the values of global variables, since

it makes them less self-contained. However, this rule unduly reduces the flexibility of what we can

program, since, as we have seen, global (instance or class) variables are necessary to code several

modem applications such as the spreadsheets.

ObjectEditor-Influenced Decomposition
We have seen in ALoanPairDriver our first example of a full program, that is, a program with a main

method written by us. Though we did need the need any help from ObjectEditor to execute our code, its

nature was in fact influenced by it. Had we been asked to write the program from scratch, chances are

that we would have written one monolithic main class performing all the computation done by the

program, both the user-interface and the loan processing; instead of, a main class that implements the

user-interface and delegates loan processing to ALoanPair (which in turn delegates to ALoan and

AnotherLoan). This decomposition of the program was, in some ways, forced on us by the

ObjectEditor, because it is based on the principle that at least two classes should be involved in the

running of a program, a class written by the programmer, and another, ObjectEditor, responsible for

providing a main method that drives the programmer-defined class. When we decided to replace

ObjectEditor with our own main class, we retained this basic decomposition, as shown in Figure 9.

In some respects, the monolithic class is easier to develop in that we do not have to bother defining the

interfaces between the classes of a decomposed program. In particular, it does not require us to export

properties from one class to another. However, as we saw in the previous chapter, program

decomposition has long-term benefits, since it encourages the development of reusable code. For

instance, as shown in Figure 9, we have used ALoanPair for implementing two different user-

interfaces, the spreadsheet-based one implemented by ObjectEditor and the console-based one

implemented by ALoanPairDriver. Thus, even when we develop programs from scratch, we should

retain the decomposition forced by ObjectEditor, with the main class mainly serving as a driver for one

or more other classes. The main challenge for us will be to identify as many such classes as possible to

support a high degree of componentization.

4
 In some languages such as Pascal, it can be a procedure that returns results through its parameters.

Library Class for Console Input
We can, in fact, further decompose our program into independent components. The method readInt

is a general purpose method, and really belongs in a separate class that can be used by any class that

needs to read an int value from the console window. In this class also belong methods to read values of

other standard types such as double and boolean. Let us call this class, Console. Its code is given

below:

import java.io.BufferedReader;

import java.io.InputStreamReader;

public class Console {

 static BufferedReader inputStream = new BufferedReader(

new InputStreamReader(System.in));

 public static int readInt() {

 try {

 return Integer.parseInt(inputStream.readLine());

 } catch (Exception e) {

 System.out.println(e);

 return 0;

 }

 }

 public static double readDouble() {

 try {

 return Double.valueOf(

inputStream.readLine()).doubleValue();

 } catch (Exception e) {

 System.out.println(e);

 return 0;

 }

 }

Figure 9. Monolithic vs. Decomposed Main Class

public static String readString() {

 try {

 return inputStream.readLine();

 } catch (Exception e) {

 System.out.println(e);

 return "";

 }

 }

 public static boolean readBoolean() {

 try {

 return new Boolean(

inputStream.readLine()).booleanValue();

 } catch (Exception e) {

 System.out.println(e);

 return true;

 }

 }

 public static void pause() {

 try {

 System.in.read();

 } catch (Exception e) {

 System.out.println(e);

 }

 }

}

Each of these methods parses the string the read by inputStream.readLine to a value of the

appropriate type, using existing methods of existing Java classes for doing so and taking care of

exceptions thrown by these methods. Since ALoanPair now no longer defines readInt, it must name

the defining class when invoking the class method:

Console.readInt());

Unlike the other classes we have written so far, this class is application-independent –it can be used to

read Console input by any application. It is like some of the application-independent classes provided by

Java that we have used, such as Math and BufferedReader. Such classes are called library classes or

simply libraries.

By building this library class, we have further reduced the size of the main class and added components

to our program. We will stop this process now, and later, when we look at the model-view-controller

framework, identify additional ways to find reusable components.

Multi-Class Programs
Writing multi-class programs offers the same kinds of benefits as writing multi-method programs at the

granularity of classes rather than the smaller granularity of methods. Thus, it allows us to understand,

design, browse, and optimize each class independently. For instance, in this example, we can

understand the class Console without worrying about or even knowing all the classes that use it.

Developing a multi-class program requires more work. As mentioned before, we must create each class

in a separate file. For now, we will put all library classes in the same directory as the classes that use

them5. A library class must be compiled before a class that uses it. Thus, in the example above, if we

were to use the command window, we would execute:

javac Console.java

javac ALoanPairDriver.java

To run the program, as before, we simply need to name the main class:

java ALoanPairDriver

When the main class calls a method in some library, Java automatically finds it and dynamically links it

with the main class.

Working with multi-class programs is much easier if we use an interactive programming environment

such as Eclipse. In this case, all we have to do is add the library class to the project in which it is used -

the build command compiles all project files in the right order.

Summary
 A main method is a class method invoked by the Java interpreter to start a program. It must be

named “main” and accept a String array as a parameter.

 The algorithm implemented by a complex method should have as many levels as possible.

 A program should have as many classes as possible. In particular, the main class should not be

monolithic, that is, solve all aspects of the program. Like ObjectEditor, it should drive at least

one other class.

 A method can throw an exception to indicate an error, which can later be caught by the caller of

the method to report or recover from the error.

 Function calls should be used as expressions and procedure calls as statements.

 A function can have the side effect of displaying output, processing input, or changing global

variables.

 A function should never change global variables.

 A debugger can be used to single-step through the various levels of the program.

5A library class in another directory can be accessed by listing the directory in the CLASSPATH.

Exercises
1. What are the advantages of tracing a program using a debugger rather than print statements?

2. What are the advantages of creating as many levels as possible in an algorithm?

3. What are the advantages of creating as many classes as possible in a program?

4. Implement a console-based program that stores and then displays the temperatures recorded

during some weekend. It takes as input the temperatures, in centigrade, of the three days of the

weekend, and shows each of these temperatures, together with their average, in both

centigrade and Fahrenheit. You should use the classes you created as part of your solution to

problems of the previous chapters. However, even though it is convenient to do so, do not use

the class representing the weekend temperature. Instead use directly the two implementations

of temperature. The reason is that this way your program will extend more easily to extensions

of this problem given in the next two chapters.

You can use the Keyboard class presented in this chapter.

5. Inspect the values of the local variables of the main method of this class before and after the

user has input the temperatures. To show your instructor that you did so, print the local-

variables window before and after the input. The easiest way to capture a Microsoft window is

to select it, click on the Print Screen Keyboard button while holding down the Alt keyboard

button. This puts the window in the clipboard. Now you can insert it into a Word or other kind

of document, which can then be printed.

6. Consider the following class:

public class PureImpure {

 static int counter = 3;

 static public int getCounter() {

 return counter;

 }

 static public void setCounter(int newVal) {

 counter = newVal;

 }

 static public int getAndSetCounter(int newVal) {

 int oldVal = counter;

 counter = newVal;

 return oldVal;

 }

 static public int square (int arg) {

 return arg*arg;

 }

 static public void main (String[] args) {

 System.out.println(square (getCounter()));

 setCounter (3);

 System.out.println (getAndSetCounter(4));

 System.out.println (getAndSetCounter(4));

 }

}

a) What are the local and global variables of getAndSetCounter()?
b) Which of the functions are impure functions?
c) Which of the impure functions have undesirable side effects?
d) What is the output of the main method?

