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13. Loops 

Conditionals allow us to create branches in the program execution path by allowing us to determine 

whether or not a statement is executed, that is, whether a statement is executed once or not at all. We 

will study here more sophisticated branching mechanisms, called loops, that allow us to execute a 

statement an arbitrary number of times – zero, one, or even infinity. Like conditionals, loops correspond 

to actions we perform in ordinary life such as “taking five steps forward” or “driving north on a 

particular road until we see a restaurant.” However, it will take far more practice to master them. In 

fact, one chapter is not enough to understand the various ways in which they are used; therefore, in this 

chapter we will identify the basics of loop usage leaving other chapters to cover the more advanced 

looping techniques. We will look at two kinds of loops, counter-controlled and event-controlled, and 

show how they can be used to compute an important class of problems in which a series of values is 

folded into a single value. It is easy to make errors while writing loops; we will identify common errors 

programmers make in using loops. 

Variable Execution  
To understand why we might execute a statement more than once, consider a simple method that 

prints “hello” n times, where the value n is an argument to the method. 

Before looking at the computer solution to this problem, let us try to find an algorithm we humans 

might use. To print “hello” n times, we might start counting from 0 using our fingers as a counter. Before 

we increment the counter, we would check if we have already counted to n. If we have, we stop. If we 

have not, we increment the counter, utter “hello”, and repeat this process, as shown in Figure 1. 

The arrow indicates that we want to repeat the if statement. Java does not allow such an arrow to be 

attached to an if statement (though some languages, termed “visual languages”, do) but it provides 

equivalent constructs to specify repetition. 

While Loops 

The while statement is perhaps the most intuitive. It looks, syntactically, much like the if statement 

(without an else). Recall that an if statement has the syntax: 

if (<boolean expression>)  

<statement> 
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A while statement has the syntax: 

while (<boolean expression>)  

<statement>; 

As in the case of an if conditional, <statement> can be any statement including a compound statement. 

Moreover, like an if conditional, a while loop executes <statement> in case <boolean expression> is 

true, and skips it otherwise. Unlike the former, however, after executing <statement>, it checks 

<boolean expression> again and repeats the process until <boolean expression> is false. <statement> is 

called the while body and <boolean expression> the condition of the loop. Each execution of the loop 

body is called an iteration through the loop. 

The following code illustrates the use of a while loop. 

public static void greetRepeatedly(int n) { 

int counter = 0; 

while (counter < n) { 

counter = counter + 1; 

System.out.println (“hello”); 

 } 

} 

It implements the algorithm above for printing “hello” n times. 

 
Figure 1. 

 

Figure 2. The while loop 

 



Developing and Testing a Loop 

Let us try a more challenging problem, a variation of the loan problem of the previous chapters. Instead 

of summing a pair of loans, as we did before, we wish to sum up a list of loans, where the list can 

contain an arbitrary number of elements. The user specifies a loan by entering its principal value, and 

the end of the list by entering a negative integer. When list has been completely entered, the program 

prints the total principal, yearly interest, and monthly interest, as in Figure 3. 

A value such as –1 that marks the end of a list is called the sentinel of the list. 

Like the previous problem, this one also requires the program to execute a variable number of steps. If 

we can identify a pattern that is repeated in these steps, we can write a loop that executes this pattern 

in its body.  

In the previous problem, the pattern was simple, consisting of a single statement that was repeated 

multiple times. This problem requires more work to identify the pattern. Try doing this problem on your 

own. To some of you the correct solution will be obvious. 

For those of you who had difficulty writing the loop, it might help to first see how we might solve the 

problem for a fixed number of values. 

 Loan loan1 = readLoan(); 

 Loan loan2 = readLoan(); 

 Loan loan3 = readLoan(); 

 Loan loan4 = readLoan(); 

 Loan sumLoan = ALoan.add( 

loan1, ALoan.add(loan2, ALoan.add(loan3, loan4))) 

 print(sumLoan); 

Recall that the method add of class ALoan returns a Loan object that is the sum of the two Loan 

objects passed to it as parameters. Here we assume methods readLoan and print  for reading the 

next Loan and printing a Loan, respectively. We saw how such methods could be written in the 

previous chapter. Therefore, we will focus on the summing problem. 

 

Figure 3. Sentinel-controlled summation 

 



Unfortunately, our solution for 4 loans does not generalize to a variable number, N, of loans. Consider 

the statement to sum the loans. We cannot simply write: 

print (ALoan.add(loan1, ALoan.add(loan2,  …, ALoan.add(loanN-1, loanN)))); 

because we do not know N when we write this expression. The exact number depends on how many 

values the user input when the program runs. But we have to commit to this expression earlier, when 

the program is written. Loops can execute a statement multiple times, but not part of an expression.2 

Instead of writing a single statement that does multiple additions, we can write multiple statements, 

each of which does a single addition: 

Loan sumLoan = ALoan.add(loan1, loan2); 

 sumLoan = ALoan.add(sumLoan, loan3); 

 sumLoan = ALoan.add(sumLoan, loan4); 

Thus, we keep a running total of the loans in variable, sumLoan, and add each subsequent input loan to 

the running total. This solution can be generalized to N values: 

Loan sumLoan = ALoan.add(loan1, loan2); 

 sumLoan = ALoan.add(sumLoan, loan3); 

 … 

 sumLoan = ALoan.add(sumLoan, loanN); 

It requires the computer to execute a variable number of statements, but we have seen that loop can be 

used for this purpose. 

However, to write such a loop, we would have to create N Loan variables to store the list of Loan values 

entered by the user. When we study arrays and vectors, we will see that we can, in effect, create an 

arbitrary number of variables. However, for this problem, we do not really need to read each input value 

into a different variable. That would be necessary only if we needed to access all of these values 

simultaneously. Once we have added a variable to the running total, we no longer need its value, and 

can thus use it to read the next value. The following alternative implementation of the fixed-size 

problem illustrates this algorithm: 

 1. Loan loan1 = readLoan(); 

 2. Loan loan2 = readLoan(); 

3. Loan sumLoan = ALoan.add(loan1, loan2); 

4. loan1 = readLoan(); 

 5. sumLoan = ALoan.add(sumLoan, loan1); 

 6. loan1 = readLoan(); 

 7. sumLoan = ALoan.add(sumLoan, loan1); 

 8. print(sumLoan); 
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We can see a pattern developing after statement 3 – statements 6 and 7 are repetitions of statements 4 

and 5 respectively. We can actually write a more elegant solution with fewer variables in which the 

pattern develops earlier.  

1. Loan sumLoan = readLoan(); 

 2. Loan nextLoan = readLoan(); 

3. sumLoan = ALoan.add(sumLoan, nextLoan); 

4. nextLoan = readLoan(); 

 5. sumLoan = ALoan.add(sumLoan, nextLoan); 

 6. nextLoan = readLoan(); 

 7. sumLoan = ALoan.add(sumLoan, nextLoan); 

 8. print(sumLoan); 

Now the pattern develops after line 2. Thus, all statements after it can be executed as part of a loop that 

terminates when we read a negative sentinel value: 

1. Loan sumLoan = readLoan(); 

 2. Loan nextLoan = readLoan(); 

 2’. while (nextLoan.getPrincipal() >= 0) { 

 3. sumLoan = ALoan.add(sumLoan, nextLoan);    

 4. nextLoan = readLoan(); 

 5. } 

 6. print(sumLoan); 

Lines 1, 2, 3, and 4 are the same as before. However, by adding the loop, we make sure that after 

executing line 4, the program goes back and executes line 3, which is essentially line 5 of the original 

solution. Since line 4 is the same as line 6 of the original solution, we seem to have captured the desired 

pattern in this loop. 

Whenever we write a loop we must check the boundary conditions to see what it does with them. We 

expect the user to add at least two loans, but our problem specification allows the user to enter an 

arbitrary number of loans.  

Let us see, first, what happens if the user enters no number at all? The program will block forever, 

waiting for input, which seems acceptable. 

What if the user enters a single negative number to end the interaction with the program? The program 

will block for ever, waiting for the second value, which does not seem acceptable. 

We can fix this problem by initializing sumLoan to a loan of 0 dollars, rather than the first loan read. 

Loan sumLoan = new ALoan(0); 

Loan nextLoan = readLoan(); 

 while (nextLoan.getPrincipal() >= 0) { 

  sumLoan = ALoan.add(sumLoan, nextLoan);    

  nextLoan = readLoan(); 

 } 

 return sumLoan; 



This looks right. To test whether this is indeed the case, we would try it for the boundary conditions, lists 

of less than two elements, and also some lists of two and more elements (Figure 4). 

The program works on our test data. There are techniques to formally prove its correctness, but we will 

not study them in this book, relying on the kind of process we went through to convince ourselves that it 

works. 

Sentinel-Controlled Folding  
What we have seen here is general technique for solving a whole class of problems. For instance, 

multiplying N numbers entered by the user has a very similar solution: 

 int product = 1; 

 int nextNum = Console.readInt(); 

 while (nextNum >= 0) { 

    product = product*num; 

    nextNum = Console.readInt(); 

} 

print(product); 

Here we assume, as we do in Mathematics, that the product of an empty list of numbers is 1. As we can 

see, there is a one-to-one correspondence between the statements of the two programs. 

In general, the technique used in these two programs works for problems with the following properties: 

 We are given a binary operation, f, with the signature: 

T, T  T 

 

Figure 4. Testing the loop: (top-left) sentinel is the first entry; (bottom-left) a single valid entry; (right) 

multiple valid entries 

 



 For instance, in the summation problem, the binary operation was + and in the product 

example, it was *. The operation may be specified using infix or function syntax. In our general 

solution, will assume the method invocation syntax, though the pattern will also apply to infix 

syntax. 

 We wish to apply f, pair-wise, to a sequence of n values, as shown in Figure 5 

 The function has an identity, I. That is, there exists a value I such that: 

f (aj , I) == aj 

for any item aj in the list. In the summation problem, I = new Loan(0), and in the product 

example, I = 1. 

 If the list is empty, the result is I. 

 If the list has one element, the result is that element. 

 The end of the list is indicated by a sentinel whose type is the same as the type of the arguments 

and result of f. 

A general solution to such problems is: 

T result = I; 

T nextValue = getNextValue() 

while (!isSentinel(nextValue)) { 

   result = f(result, nextValue); 

   nextValue = getNextValue(..); 

} 

where getNextValue is a function that gets the next value in the list and isSentinel is a boolean 

function or expression that checks if its argument is a sentinel.  

We will call a binary function, f, with the signature, T,T -> T, a folding function, and problems that apply 

it cumulatively to a list as folding problems, since we essentially fold the result of the scanned list into a 

 

Figure 5. Applying a function, in a pair-wise fashion, to a sequence of n values 

 



single result. Folding problems do not require arrays or vectors to store the list elements, as we have 

seen here. Of course, not all list-processing problems are folding problems. For instance, as you will see 

in later courses, if we wanted to sort the list, we would need to keep all elements in memory 

simultaneously. 

Cumulative Assignment 
The assignment pattern used above to fold values: 

result = f(result, value); 

where the new value assigned to the LHS side is the result of performing some operation on its current 

value, appears in many problems. To save us the trouble of typing the LHS twice,3 for predefined infix 

operator, Java supports a short hand for making such assignments. If o is such an operator, it supports 

the cumulative assignment statement of the form: 

<variable>  <operator>=  <expression> 

which is equivalent to: 

<variable>  = <variable> <operator> <expression> 

Thus: 

sum += nextValue 

is equivalent to: 

sum = sum + nextValue 

and 

product *= nextValue 

is equivalent to: 

product = product*nextValue 

Counter-Controlled Folding 
To get some more practice with while loops, let us consider a variation of the product problem, shown 

in Figure 6, in which the user inputs the number of elements to be input instead of entering a sentinel. 

This problem combines elements of the problems of printing “hello” n times and summing a sentinel-

based list. As in the first problem, the number of steps is known before we execute the loop, and as in 

the second problem, the loop involves summing a list of values: 
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int product = 1; 

 int n = readNumElements(); 

 int counter = 0; 

 while (counter < n) { 

  int nextNum = readNum(); 

  product *= nextNum;     

  counter += 1; 

 } 

Therefore, as in Figure 2, we maintain a counter, which determines how many times the loop is 

executed, and as in Figure 3, we fold the input values into a list product. 

Off –by-One Errors 

Yet another variation of this problem is to write a loop that finds the product of the first n positive 

integers: 

 1*2*3* … n 

which is referred to as the factorial of n. We no longer need to read user input, since the program can 

create a counter-based loop to generate the numbers. The same counter also determines when the loop 

is done. Thus, we may write: 

int product = 1; 

    int counter = 0;  

    while (counter < n) { 

         product *= counter; 

         counter += 1; 

    } 

    System.out.println (product); 

However, this solution will always give the answer 0, since it computes the product: 

 1*0*1*2* .. n-1 

We could start the counter from 1: 

 

Figure 6. Counter-controlled Folding 

 



int product = 1; 

    int counter = 1;  

    while (counter < n) { 

         product *= counter; 

         counter += 1; 

    } 

    System.out.println (product); 

However, this solution also does not work, since it omits the n in the multiplication, computing: 

 1*1*2* .. n-1 

We can fix this problem by changing the termination condition of the loop: 

int product = 1; 

    int counter = 1;  

    while (counter <= n) { 

         product *= counter; 

         counter += 1; 

    } 

    System.out.println (product); 

We seem to have finally got our solution. The “off-by-one” errors we made in our two attempts above, 

where the execution includes or omits an extra iteration, are common. Therefore, it is very important to 

make the extra effort of checking that the loops we write do not have them. 

Sometimes off-by-one errors are made because of two possible interpretations of a counter. In general, 

a counter keeps track of how many loop iterations have occurred. It can do so by storing, at loop entry: 

 the number of next iteration. 

 the number of the previous iteration. 

Off-by-one errors occur when we one interpretation in one part of our code and the other in another 

part. For instance, in the second erroneous solution, we initialized the counter to 1, which means that 

(when the loop is entered) it is intended to store the number of the next iteration. However, our loop 

condition assumes it is stores the number of the previous iteration, terminating the loop if the counter 

has the value n. Similarly, the first erroneous solution combines both interpretations. 

  



Since it is easy to make such mistakes, we should make the exact role of the counter explicit in the 

program. For instance, in this example, based on whether it stores the value of the previous or next 

iteration, we could call it previousMultiplier or nextMultiplier. Consider the first erroneous solution with 

the change in the counter name: 

int product = 1 

    int previousMultiplier = 0;  

    while (previousMultiplier < n) { 

         product *= previousMultiplier 

         previousMultiplier += 1; 

    } 

    System.out.println (product); 

Now the error is more obvious, because in each loop iteration we are multiplying the previous value of 

the multiplier. To correct it, we should increment the counter before multiplying it: 

int product = 1 

    int previousMultiplier = 0;  

    while (previousMultiplier < n) { 

previousMultiplier += 1; 

        product *= previousMultiplier; 

    } 

    System.out.println (product); 

Similarly, if we rewrite the second solution with the change in the counter name: 

int product = 1 

    int nextMultiplier = 1;  

    while (nextMultiplier < n) { 

        product *= nextMultiplier; 

        nextMultiplier += 1; 

    } 

    System.out.println (product); 

it is easier to see that the termination condition does not include n in the multiplication. This approach 

makes us give more thought to the name of the counter, but makes the program clearer and easy to 

debug. 

Most of you are probably more comfortable with the second solution, in which the counter keeps track 

of the number of the next iteration. Therefore, it is best to use this approach, incrementing the counter 

at the end rather than the beginning of the loop. 

Avoiding Infinite Loops 
Consider the following loop to find the product of the first n numbers: 

int product = 1 

    int nextMultiplier = 1;  



    while (nextMultiplier < n) { 

       product *= nextMultiplier; 

    } 

    System.out.println (product); 

 

The loop executes its body an infinite number of times, that is, it does not terminate. The problem here 

is that in the loop body we did not change any variable on which the loop condition depends. 

Here is another kind of an infinite loop: 

int product = 1 

    int nextMultiplier = 1;  

    while (nextMultiplier < n) { 

        product *= nextMultiplier; 

nextMultiplier -= 1; 

    } 

    System.out.println (product);    

The problem here is that even though the counter is being updated, it will never get a value that makes 

the loop condition false. In other words, the loop condition does not converge to a false value. 

Thus, we must be careful that: 

1) In the loop body the variables affecting the loop condition are updated. 

2) These variables will take values that will make the expression false after some finite number of 

steps. 

We know we are in an infinite loop if the Java program freezes, that is, it does not respond to any 

commands, lets us enter data, or select a menu. If this happens, you can kill the program by typing CTRL-

C in the console window. 

Decrementing the Counter 
So far, all of our counters have been incremented during each iteration of the loop. It is also possible to 

write loops that decrement the counter. Consider again the problem of finding the sum of the first n 

numbers. We essentially did a forward multiplication, multiplying increasing numbers to the product: 

1 * 2 * 3 * … * n 

Instead, we could have also done a backwards product, multiplying decreasing numbers to the product: 

n * .. * 3 * 2 *1 

 

 



The following loop implements a backwards product, starting a counter at n and decrementing it by 1 it 

until it reaches 0. 

int product = 1; 

while (n > 0) { 

product *= n; 

n -= 1; 

} 

System.out.println (product);; 

Notice that we are using the variable n as also the counter, since we do not need its value at the end of 

the loop.  

Increment/Decrement Assignment 
Incrementing and decrementing of a variable occurs so often in assignment statements that Java 

provides short hands for entering such statements. It provides the increment statement of the form: 

<variable>++ 

which is equivalent to: 

<variable> = <variable> + 1 

It also provides a decrement statement: 

<variable> -- 

which is equivalent to: 

<variable> = <variable> - 1 

Counter-controlled vs. Event-controlled Loops 

We can classify the loops we have seen here into two categories: counter-controlled and event-

controlled. In both kinds of loops, the number of times the loop body is executed is variable, that is, 

determined when the program is executed and not when it is written. In the case of a counter-controlled 

loop, the number of loop iterations is known before the loop is executed, while in case of an event-

controlled loop, it is determined while the loop is executing. 

Counter-controlled loops have the following properties: 

1) They initialize a counter to some value. 

2) They change the counter by some step (1, 2) at the beginning or end of the loop body. As 

mentioned before, it is best to change the counter at the end of the loop body. 

3) They terminate execution when the counter goes up/goes down to some limit that was 

computed before the loop was started. 



Event-controlled loops, on the other hand, test for one or more events that occurs while the loop is 

executing (such as input of a sentinel value) and make the loop condition false. 

Guarding Against Limits of the Wrong Sign 
We were implicitly assuming in all of our counter-controlled loops that the upper limit, n was not 

negative. This may not be guaranteed, especially if the value is input by the user. Therefore, we must 

take this into consideration when we write loops. Consider again the loop that does a forward sum of 

the first n numbers: 

int product = 1 

    int nextMultiplicand = 1;  

    while (nextMultiplicand <= n) { 

         product *= nextMultiplicand; 

         nextMultiplicand += 1; 

    } 

    System.out.println (product); 

Instead of this solution, we might have written: 

int product = 1 

    int nextMultiplicand = 1;  

    while (nextMultiplicand != n) { 

         product *= nextMultiplicand; 

         nextMultiplicand += 1; 

    } 

    System.out.println (product); 

These two solutions are the same as long as n is not negative. If n is negative, however, the test: 

nextMultiplicand <= n 

will fail in the first iteration while the test: 

nextMultiplicand != n 

will always succeed, resulting in an infinite loop. In general, using the != operator to compare a counter 

with its limit is a signal that we might not have taken into account limits that have an unexpected sign. 

Nested Loops 
Consider an extension of the problem of finding the product of the first n numbers, that is, finding the 

factorial of n. Assume that the value of n is input by the user. Suppose also that we are interested in 

finding the factorial of a list of numbers that is terminated by a negative sentinel, as shown in Figure 7. 

In the above interaction, we need a loop to process the list of n’s entered by the user. In addition, we 

need the loop is we have been using to multiply the first n numbers. The multiplying loop must be 

nested in the loop that reads the list, as shown below: 



int n = Console.readInt(); 

 while (n >= 0) { 

  int product = 1; 

  int nextMultiplicand = 1; 

  while (nextMultiplicand <= n){ 

   product *= nextMultiplicand; 

   nextMultiplicand++; 

  } 

  System.out.println("factorial = " + product); 

  n = Console.readInt(); 

 } 

The outer loop is much like the loop we saw in sentinel-controlled folding. It repeatedly executes its 

body until a sentinel is found. In each iteration, the body of the outer loop prints the value of factorial 

computed by the inner loop, and sets n to the next input integer. The rest of the body of the outer loop 

is identical to the forward product solution we saw in Figure ?. It initializes the values of the product and 

counter variables and executes the loop for multiplying the first n values. 

It is instructive to write a nested loop that uses the backward product solution show here: 

int n = Console.readInt(); 

 while (n >= 0) { 

  int product = 1; 

  while (n > 0){ 

   product *= n; 

n--; 

  } 

  System.out.println("factorial = " + product); 

  n = Console.readInt(); 

 } 

Here, instead of grafting Figure 7 into the outer loop, we have grafted Figure 16. Though economical in 

how many variables it uses, this solution is potentially more dangerous, since both loops change the 

value of n., potentially interfering with each other. It actually works, since changes made to n by the 

outer loop do not depend on its previous value. As a result, the variable can be safely modified by the 

inner loop without interfering with the assumptions made by the outer loop. However, it is difficult to 

convince ourselves that this solution indeed works. 

 

Figure 7. Factorials of a list of input numbers 



In general, nested loops can be hard to read. Moreover, they are error-prone since two counters or 

sentinel variables may be created, and it is easy to give them the same names, which may cause them to 

interfere with each other. 

Moreover, because the inner loop has two levels of indentation, the statements in it often wrap around 

the screen, making them hard to read. 

It is best to write a separate method for each loop, which makes the solution clearer, as shown below:  

 public static void listFactorial() { 

int newVal = Console.readInt(); 

 while (newVal >= 0) {   

  System.out.println("factorial = " + factorial(n)); 

  newVal = Console.readInt(); 

 } 

} 

 public static int factorial (int n)  { 

int product = 1;     

while (n > 0) {             

product *=  n; 

n--; 

} 

return product; 

} 

Here we do not need to worry about the two changes to n interfering with each other since each 

method gets its own private n. Separating each loop in a separate method also increases reusability 

since the method can be called from multiple code fragments. For instance, the factorial function 

can be used in this problem and the simpler problem of computing the factorial for a single n. In 

contrast, an inner loop can be used only in a single outer loop. 

break 
Our event-controlled loops had an annoying feature: we had to write two statements to receive the 

events that control the loops, once at the beginning of the loop and once inside. For instance, in 

listFactorial, we repeated the statement: 

 newVal = Console.readInt(); 

that received the input value. But the whole point of loops is to input a statement once and have the 

loop execute the statement the required number of times! 

Unfortunately, we cannot prevent such repetition using just the while loop. The reason is that the event 

must be received before the while condition is first tested, and must also be received inside the loop, for 

subsequent iterations.  

 



Fortunately, Java provides a special mechanism, the break statement, which allows us to solve this 

problem. This statement can be enclosed inside a loop. When it is executed, it causes termination of the 

loop, regardless of the loop condition. The following code shows how it can be used to avoid repeating 

the input statement: 

public static void breakingListFactorial() { 

  while (true) { 

   int newVal = Console.readInt(); 

   if (newVal < 0) break;  

   System.out.println("factorial = " + factorial(n)); 

  } 

 } 

Here, two conditions are tested to check if the loop should be terminated, (1) the while condition: 

true  

and the breaking condition: 

n < 0 

The while condition is always true, and thus never causes loop termination. The real terminating 

condition, then, is the breaking condition. This condition, unlike the while condition, does not have to be 

tested at the beginning of a loop iteration. It can be tested anywhere in the loop. In this example, it is 

checked after the user value is read, thereby allowing the same input statement to be used to receive 

the first and subsequent input values. To write such concise programs, many programmers prefer to 

make the real loop termination condition as a break condition rather than a while condition.  

Animating Shuttle 
As a more interesting example of loops, consider again the shuttle location object we created earlier. 

Suppose we create a variation of it, AnAnimatingShuttleLocation, that provides an additional 

method, animateFromOrigin (Figure 8), that animates the path the shuttle took from the origin to its 

current position. As we don’t know actually know this exact path, we will make the simplifying 

assumption that the shuttle first went vertically up to its current Y position (Figure 9), and then 

horizontally went to its current X position (Figure 10). 

Before we try to code this object, let us first define what exactly it means for a method to animate the 

shuttle from one location to another one. It could imply that the method: 

1) moves the shuttle a distance, D, in a straight line towards the destination. 

2) checks if the shuttle has reached its destination. If yes, the method terminates; otherwise it 

repeats the above two steps. 



However, this algorithm does not work as the computer will execute the steps so fast that the user will 

not see the intermediate positions of the shuttle – the shuttle will seem to reach its destination 

instantly. Thus, we need the method to pause for some time after step 1. 

 In summary, the method: 

1) moves the shuttle a distance, D, in a straight line towards the destination. 

2) pauses for some time T to make the shuttle stays at its current location. 

3) checks if the shuttle has reached its destination. If yes, the method terminates; otherwise it 

repeats the above three steps. 

We will assume that D is given by a named constant and time T is specified by the user-defined property, 

AnimationPauseTime. 

int animationPauseTime; 

 public int getAnimationPauseTime() { 

  return animationPauseTime; 

 } 

  

 public void setAnimationPauseTime(int newVal) { 

  animationPauseTime = newVal; 

 } 

 

Figure 8. Instance of AnAnimatingShuttleLocation 



  

 

 

Figure 9. Animating the vertical shuttle motion 



  

 

 

Figure 10. Animating the horizontal shuttle motion 



In the remainder of this discussion, we will assume that time is specified in milliseconds. Thus, in Figure 

8, the AnimationPauseTime specifies a pause time of 5000 milliseconds or 5 seconds. The large pause 

time gave us enough time to take a screen dump of each intermediate position of the shuttle. For the 

animation to appear smooth, the pause time should be about 30 milliseconds.  

The repetition of the three steps shows the role loops play in solving this problem. However, what we 

have learnt so far is not sufficient to completely code it. How do we make the program pause, that is, do 

nothing for some period of time, pauseTime?  The following is one way to do so: 

void sleep(int pauseTime) { 

int numberOfAssignments = pauseTime; //ASSIGNMENT_TIME 

  for (int i = 0; i < numberOfAssignments; i++) { 

  int dummy = 0; // nonsense assignment 

} 

We could repeatedly make an unnecessary assignment in a loop until we have made enough to take 

time pauseTime. This “solution” has two problems. First, we would have to change our code each time 

we execute it on a computer of different power. Second, and more important, we unnecessarily use the 

computer executing the loop. It is for this reason that such a loop is called busy waiting. 

What we really need is an operation that asks the operating system to suspend or put to sleep our 

program for pauseTime so that it can execute some other applications during this time. Java provides 

such an operation, Thread.sleep(pauseTime), and the following recoding of our sleep method 

shows its use: 

void sleep(int pauseTime) { 

try { 

  Thread.sleep(pauseTime); 

 } catch (Exception e) { 

// program may be forcibly interrupted while sleeping 

e.printStackTrace(); 

   } 

}; 

A sleeping method may be woken up not only when its regular alarm goes off, but also because of some 

unexpected condition such as the user terminating the program. To signal an abnormal waking up, 

Thread.sleep(pauseTime) throws an InterruptedException. We have therefore enclosed the 

call to it in a try-catch block. 

We can now code our animation algorithm: 

public synchronized void animateFromOrigin() {   

int curX = 0; 

 int curY = 0; 

 setLabelX(windowX(curX)); 

 setLabelY(windowY(curY));       

  

while (curY < getShuttleY()) { 



// loop make sure we don’t go past final Y position 

  sleep(getAnimationPauseTime());  

  curY += ANIMATION_STEP; 

  setLabelY(windowY(curY)); 

 } 

  

// move to destination Y position 

 setLabelY(windowY(getShuttleY())); 

 

while (curX < getShuttleX()) { 

  sleep(getAnimationPauseTime());  

  curX += ANIMATION_STEP; 

  setLabelX(windowX(curX));   

 } 

 

 setLabelX(windowX(getShuttleX()));    

} 

We have a separate loop for moving in the X and Y direction. Each loop keeps track of the next X/Y 

position. In each iteration, this position is used to change the X/Y coordinate of the shuttle, and the 

position is incremented it by the distance ANIMATION_STEP. If the next X/Y position exceeds the final 

X/Y position, the loop exits, and thus does not change the shuttle coordinate. Therefore, after the loop, 

the method moves the shuttle to the final position.  

Notice the keyword, synchronized, in the header of animateFromOrigin: 

public synchronized void animateFromOrigin() 

ObjectEditor requires that every animating method have this keyword in the header. If you do not put it, 

the animation will not work. 

Concurrency and Synchronization* 
The reason for making an animating method synchronized is subtle. It has to do with sequencing of 

actions taken by ObjectEditor and the methods it calls on our behalf.  

When we ask ObjectEditor to execute a non-synchronized method, the ObjectEditor waits for the 

method to finish execution, just as any calling method waits for a called method to finish execution. 

During this period the user-interface is frozen – the display is not updated, and we cannot use any of the 

ObjectEditor menus. We have not noticed this so far because our methods returned quickly. The 

method animateFromOrigin is different because of the time-consuming loops it executes. Figure 11 

shows what happens if it was not declared to be synchronized. 

While animateFromOrigin is executing, the menu is frozen and the display is not updated. When the 

method finishes executing, the display is updated, at which point the shuttle is back at its original 

position. Thus, the effect of executing the method is a long pause as ObjectEditor suspends its activities 

for the time it takes to complete the “animation," that is, the time it takes to complete all the sleeps in 



the method. The keyword synchronized in a method declaration tells ObjectEditor to create a new 

thread or activity for executing the method. It is this new thread that waits for the method to execute 

while the original ObjectEditor thread is free to update the display and process user-commands. Thus, 

when we make animateFromOrigin synchronized, we can make a new call to animageFromOrigin 

while the previous call to it is executing, as shown in Figure 12.  As before, ObjectEditor will start a new 

thread to execute this call. This is displayed in Figure 12 (bottom), which shows Thread-3 and Thread-4 

executing the two calls to animateFromOrigin.  As we see, each thread is associated with its own 

stack of calls, with a calling method waiting for a called method to finish. The call at the top of both 

stacks is animateFromOrigin, the ones below are calls to ObjectEditor code, about which we don’t 

have to worry. Figure 12 (bottom) shows that the two calls are executing at different locations of 

animateFromOrigin. The next statement to be executed by Thread 3 is the sleep call in the first loop, 

while the next statement to be executed by Thread 4 is the very first statement of the method. 

As the thread numberings imply, these are not the only threads in the system. One of the other two 

threads is the ObjectEditor thread that processes user commands and updates the display. The others 

thread(s) are system threads that do “garbage collection,” that is, gets rid of object we no longer need 

and other book-keeping/clean-up activities. 

  

 

Figure 11. Instance of AnAnimatingShuttleLocation when keyword synchronized is omitted 

from the animateFromOrigin header 



  

 

 

Figure 12. Making a call to animateFromOrigin before the previous one has finished 



When two calls to a method are active concurrently, they can step on each other’s toes, leaving the 

instance variables they share in an inconsistent state. Figure 12 shows the problem that can occur. If 

Thread 4 is allowed to proceed, it can reset the shuttle location, thereby interfering with the animation 

of the first method! As it turns out, this problem will not actually occur because animateFromOrigin 

is declared to be synchronized. This keyword tells Java that this method should be executed serially, 

that is, only one thread should execute it at any one time. Thus, Thread-4 will wait at the first statement 

of animatreFromOrigin until Thread-3 has finished executing the method. 

Thus, the keyword synchronized in the header of a method tells: 

 ObjectEditor that a new thread should be created for executing the method. 

 Java that only one thread should execute the method at one time. 

Thus, the keyword both increases and reduces the concurrency in the system. It increases concurrency 

by allowing method to be executed concurrently with the paint method in ObjectEditor, which displays 

objects in edit windows. It reduces concurrency by making sure that the method is not executed 

concurrently by two threads. 

Even if we were not using ObjectEditor, we would need to make an animating method synchronized. 

The reason, as mentioned above, is that user-interface and animation operations must interleave 

execution, which requires multiple threads. If we were not using ObjectEditor, we would ourselves 

create a special thread for executing an animating method. We would still need to make the method 

synchronized to ensure that concurrent executions of the animating method by different threads are 

serialized so that they don’t interfere with each other.  

As it turns out, this keyword cannot be used in a method declared in an interface. Thus, in the interface 

of the class, we must declare the header of animateFromOrigin as: 

public void animateFromOrigin() 

even though, in the implementation of the interface, we declare it as: 

public synchronized void animateFromOrigin() 

Normally, Java requires matching of all components of corresponding method headers in interfaces and 

the classes implementing it, but not in this case, probably to give the implementers of an interface the 

flexibility of deciding if they want to allow for concurrency and pay the cost of synchronization. 

Incremental Display Update 
As mentioned above, normally ObjectEditor updates the display only at the execution of each method. 

In the case of an animating method, ObjectEditor should update the display after each animation step. 

On the other hand, it does not know when an animation step has completed. Therefore, after each 

animation step, the method should explicitly tell ObjectEditor that the state displayed has changed. In 

other words, the object containing the animation method should behave as an observable that allows 



ObjectEditor and other observers to be registered and informs them whenever the animated state 

changes. As we saw earlier, there are multiple ways in which observable/observer can be defined, which 

could be classified into application-specific and application-independent approaches. As ObjectEditor is 

an observable of arbitrary objects, we need to use an application-independent approach. As the state in 

which it is interested consists of JavaBeans properties, it makes sense to use the standard approach for 

supporting property observers or listeners. 

ObjectEditor implements the standard java.beans.PropertyChangeListener interface: 

public interface java.beans.PropertyChangeListener { 

public void propertyChange(PropertyChangeEvent arg) 

} 

If the class of a displayed object defines the standard method defined by JavaBeans for registering 

property listeners: 

 public void addPropertyChangeListener(PropertyChangeListener l)  

ObjectEditor calls the method to register itself as an observer. It is the responsibility of the method to 

store references to ObjectEditor and other listeners: 

PropertyChangeListenerHistory observers = 

new APropertyChangeListenerHistory(); 

public void addPropertyChangeListener(PropertyChangeListener l) { 

 observers.addElement(l); 

} 

Here APropertyChangeListenerHistory is simply a history of objects of type 

PropertyChangeListener, providing the standard history operations: addElement, size, and 

elementAt. 

A method that changes a property should notify all of the stored observers about the changed property. 

For example, the setX method in (a non-immutable version of) ACartesianPoint can notify all of its 

observers of the change to the X property: 

public void setX(int newVal) { 

int oldVal = x; 

x = newVal; 

notifyAllListeners(new PropertyChangeEvent( 

this, “x”, oldVal, newVal); 

} 

where notifyAllListeners is defined as follows: 

public void notifyAllListeners(PropertyChangeEvent e) { 

  for (int index = 0; index < observers.size(); index++) { 

  observers.elementAt(i).propertyChange(e); 

} 



notifyAllListeners calls the propertyChange method in each observer, passing it the change 

event. The implementation of this method in ObjectEditor updates the display: 

public class ObjectEditor implements java.beans.PropertyChangeListener  

{ 

public void propertyChange(PropertyChangeEvent arg) { 

 // update display of property arg.getPropertyName() 

// to show arg.getNewValue().  

            … 

 } 

} 

Let us use these ideas to complete the implementation of AnAnimatingShuttleHistory.  Consider 

how we can animates the X location – animation of the Y location is similar. 

The X location is changed by the statement: 

setLabelX(windowX(curX)); // need to update display 

in the first loop. As the statement does not directly change the shuttle location, we need to look at the 

implementation of setLabelX: 

void setLabelX(int x) { 

  Point oldLocation = shuttleLabel.getLocation(); 

  Point newLocation = new ACartesianPoint(x, oldLocation.getY()); 

  shuttleLabel.setLocation(newLocation); 

 } 

Again, the method does not directly change the shuttle location. Therefore, we need to look at the 

implementation of setLocation in class ALabel: 

public void setLocation(Point newVal) {   

  location = newVal; 

 } 

This is the method in which the shuttle location changes. Therefore, we need to make its class, ALabel, 

an observable in the fashion described above. We can add the addPropertyChangeListener and 

notifyAllListeners implementations given above without any changes to the class, as these are 

standard and do not depend on the property being changed. Now we can call notifyAllListeners 

from setLocation: 

public void setLocation(Point newVal) { 

  Point oldVal = location; 

  location = newVal; 

notifyAllListeners(new PropertyChangeEvent( 

this, “Location”, oldVal, newVal); 

 } 



Here, setLocation assigns the instance variable, location, a new instance of ACartesianPoint. 

Suppose that Point was not immutable, that is, it provided setter methods for the X and Y properties. 

In this case, if setLocation simply changed the X and Y coordinate of the existing location, we would 

need to change the setX and setY methods of ACartesianPoint class in the manner described 

above. 

Summarizing Animation 
In general, an animating method performs one or more animation steps, where an animation step 

changes one or more animating (graphical) properties such as size, location, icon of one or more 

graphical objects and then pauses execution for some time. Execution can be paused using busy waiting 

or a sleep call provided by the operating system. Busy waiting has the problem that it is platform-

specific and does not allow other activity to proceed while the animation is paused. Therefore using the 

sleep call is preferable. 

After each animation step, all displays of the animation must be updated. The observable-observer 

concept can be used to ensure these updates are made. This means that we must ensure that for each 

graphical property changed by the animation, the class of the property allows observers to be registered 

and the setter of the property informs the observers about the update. ObjectEditor requires the 

JaveBeans observer-observer approach based around the PropertyChangeListener interface. 

An animating method should be executed in a separate thread as otherwise the user-interface thread 

will wait for it to finish execution before performing any screen update. This means that it is possible to 

start multiple executions of the method concurrently. We should use the keyword synchronized in 

the declaration of the method to ensure that it is executed serially by the thread, that is, to ensure that 

if a thread is in the middle of executing the method, other threads wait for it to finish. 

The keyword synchronized also tells ObjectEditor to start a new thread to execute the method. 

Thus, an animating method should be declared as synchronized. 

In general, a method that performs the animation steps and a method that changes the value of some 

animating property may be in different classes such as AnAnimatingShuttleLocation and ALabel. 

Summary 
 A loop executes its body a variable number of times, which is determined by its condition.  

 A particularly useful application of a loop is to fold a series of values into a cumulative result.  

 A loop can be classified into a counter-controlled or an event-controlled loop depending on whether 
the number of iterations executed by it is determined before it is executed.  

 If you are having trouble writing a loop for a problem that has a variable size, it is sometimes useful 
to solve a fixed-size version of the problem, find a repeated pattern of statements, and make this 
pattern the loop body.  

 It is important to check the correctness of the loop for boundary conditions, avoiding common off-
by-one errors.  



 It is also important to avoid infinite loops by making sure that the condition for continuing the loop 
converges to a false value. 

 In a counter-controlled loop, we must also guard against receiving a counter limit of the unexpected 
sign. 

 Instead of nesting a loop directly within another loop, it is best is to define a separate method for 
the loop, which makes the program less error-prone and more reusable. 

 The break statement allows the loop termination condition to be tested in the middle of a loop 
iteration, thereby allowing us to write a single statement for receiving a loop event.  



  



Exercises 
1) What is the output of the following loops, when n is (i) 4 and (ii) –4. 

a.  

while (n >= 0)  { 

n = n –1; 

System.out.println (n); 

} 

b.  

while (n != 0)  { 

 n = n –1; 

 System.out.println (n); 

} 

2) Write a program that prints all positive odd numbers less than some limit n. 

3) All of the solutions to the problem of computing n factorial, performed the multiplication: 

1*1*2*… n 

Write a solution to avoid the extra multiplication by 1. Be sure to check the boundary 

conditions. 

4) What is the output of the following program fragments assuming the user enters the four lines:  
hello  

hello  

goodbye 

goodbye 

a.  

String inputLine = Console.readString(); 

while (inputLine.equals(“hello”))  

 System.out.println ( “ ca va”);  

b.  

String inputLine = Console.readString(). 

while (inputLine.equals(“hello”)){  

 System.out.println (inputLine + “/ca va”); 

inputLine = Console.readString(); 

}  

c.  

while (Console.readString().equals(“hello”))  

 System.out.println ( “ca va”);  

 



d.  

while (Console.readString().equals(“hello”))  

 System.out.println (“ca va”); 

e.  

while (Console.readString().equals(“goodbye”))  

 System.out.println (“Au revoir”); 

f.  

while (Console.readString().equals(“hello”))  

 System.out.println (“Ca va”);  

while (Console.readString().equals(“goodbye”))  

 System.out.println (“Au revoir”); 

g.  

while (Console.readString().equals(“hello”)) 

  ; // null statement (do nothing) 

while (Console.readString().equals(“goodbye”))  

 System.out.println (“Au revoir”);  

h.  

 String inputLine = Console.readString(). 

while (inputLine.equals(“hello”)) 

  inputLine = Console.readString();  

while (inputLine.equals(“goodbye”))  { 

 System.out.println (“Au revoir”);  

 inputLine = Console.readString();  

} 

5) Write a program that allows a user to enter a list of strings 

 s1, s2, …, sn 

and outputs a single string 

 s1 + s2 … + sn, 

Each element of the string list is entered on a separate line and the end of the list is entered by a 

special string, “end”. Thus, if the user enters  

hello 

world 

end  

the program should output:  



helloworld  

To check that two strings, s1 and s2, have the same sequence of characters, you should call the 

equals method 

s1.equals(s2)  

rather than check for equality  

s1== s2 

6) Extend your solution to problem 4 so that it processes a list of lists terminated by the special 

string, “quit”. For example, if the user enters:  

hello 

world 

end 

goodbye 

world 

end 

quit 

the program should output:  

helloworld  

goodbyeworld 


