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14. Arrays 

A string is one kind of sequence. In this chapter, we will see how we can create arbitrary sequences 

using arrays. We will use arrays to create several new kinds of types including sets, histories, and 

databases. Some of these types can be considered as special cases of other types. To get experience 

with processing arrays, we will study another kind of loop statement, called the for loop. The for loop 

has a different syntax than the while loop, but we will see that in fact they are equivalent – whatever 

you can do with a for loop, you can do with a while loop, and vice versa. 

For Loop 
The following program fragment illustrates string manipulation, printing the characters of a string on 

separate lines: 

// String s declared and initialized earlier 

 

int i = 0; // initialization of loop variables 

while (i < s.length()) { // continuation condition 

    System.out.println (s.charAt(i)); // real body 

    i++; // resetting loop variables 

} 

This is an example of a counter-controlled loop, since the variable i serves as a counter that is 

incremented in each iteration of the loop. It is also an example of an index-controlled loop, which is a 

special case of a counter-controlled loop in which the counter is an index. 

Let us look at this code in more depth to grasp the general nature of a loop. We can decompose it into 

the following components: 

1. Continuation condition: the boolean expression that determines if the next iteration of the loop 

should be executed.  

2. Initialization of loop variables: the first assignment of variables that appear in the continuation 

condition and are changed in the loop body. 

3. Resetting loop variables: preparing for the next iteration by reassigning one or more loop 

variables.  

4. Real body: the rest of the while body, which does the "real-work" of each iteration. 
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The while loop separates the continuing condition from the rest of the components, thereby ensuring 

we do not forget to enter it. However, it does not separate the remaining components – we have added 

comments to do so in the example above. As a result, we may forget to create one or more of these 

components. For instance, we may forget to reset the loop variables, thereby creating an infinite loop. 

Java provides another loop, the for loop or for statement, illustrated below, which explicitly separates all 

four components: 

for (int i = 1; i < s.length(); i++) 

    System.out.println (s.charAt(i));  

This loop is equivalent to the program fragment above. In general, a for statement is of the form: 

for (S1;E;S2) 

S3 

It is equivalent to: 

S1; 

while (E) { 

S3; 

S2; 

} 

In other words, the for loop first executes S1 and then essentially executes a while loop whose condition 

is E and whose body is S3 followed by S2. S1 and S2 are expected to initialize and reset, respectively, the 

loop variables. 

In comparison to a while loop, a for loop is more compact. More important, its structure reminds us to 

enter S1 and S2, that is, initialize and reset the loop variables.  

Any of the three parts of a for loop, S1, E, and S2 can, in fact, be missing. A missing S1 or S2 is considered 

a null statement, while a missing E is considered true. Thus: 

for (;;) { 

S3; 

} 

is equivalent to: 

 while (true) { 

 S3; 

} 

A break statement can be used to exit both kinds of loops. We will learn about break statements later. 



Arrays 
A string is a sequence of values of type char. What if we wanted a sequence of other types of values 

such as int, double, or String values? One could imagine restricted solutions to this problem. Java 

could provide an IntSequence type for defining sequences of int values. Similarly, it could define the 

types DoubleSequence, StringSequence, and so on. The problem with this approach is that no 

matter how many predefined sequence types we have, we might want a kind of sequence that was not 

anticipated by Java. For instance, what if we wanted a sequence of instances of the type Loan we 

defined earlier? This is not a type known to Java, so it cannot predefine such a sequence. 

Therefore, instead, it lets us, as programmers, define our own indexable sequences, called arrays, which 

can contain elements of some type specified by us. Like other values, they can be stored in variables of 

the appropriate type. The following declaration illustrates how an array variable and array value are 

created: 

String[] names = {"John Smith", "Jane Doe"}; 

Let us decompose this declaration to better understand it: 

1. The variable definition: 

String[] names 

declared a new array variable, called names, whose type is String[]. String[] denotes the 

string-array type, that is, it is the type of an array with String elements. Thus the definition says 

that the variable names can store string-arrays. 

2. The expression: 

{"John Smith", "Jane Doe"}; 

creates a new string-array consisting of the two strings, “John Smith” and “Jane Doe”. This 

expression can be considered as an array literal; like other literals we have seen before, it directly 

indicates a value rather than identifying a variable storing the value.  

3. The initialization assignment: 

names = {"John Smith", "Jane Doe"}; 

assigns the string-array value on the RHS to the string-array variable on the LHS. 

String[] is the type of all string arrays, regardless of their size. A string-array variable, thus, can be 

assigned string arrays of different sizes. For instance, we can reassign to names a 3-element array: 

names = {"John Smith", "Joe Doe", "Jane Doe"}; 

Similarly, we can create and initialize other types of arrays: 

int[] scores = {45, 32, 68}; 



Loan[] loans = {new ALoan(100000), new AnotherLoan (100)}; 

Like String, an array type is a variable but not a dynamic type, that is, its instances can have different 

sizes but the size of a particular array is fixed during its lifetime. Thus, when we reassigned names 

above, we did not extend the size of the array to which it was assigned; instead, we assigned it a new 

array with a larger size. 

Like other variables, array variables need not be initialized when they are created. Instead, we can 

assign to them later in a separate assignment statement, as shown below2
 

String[] names; 

names = {"John Smith", "Jane Doe"};  

In fact, we have already seen the syntax for declaring uninitialized array variables while declaring a main 

method: 

public static void main (String[] args) 

The formal parameter, args, is declared as an uninitialized string array. When a user enters a list of 

string arguments, Java stores the list in a string array, and assigns this value to the formal parameter. 

Accessing and Modifying Array Elements 
Like strings, arrays can be indexed, but the syntax for doing so is more convenient. Even though arrays 

are objects, we do not invoke a method such as charAt to index an array. Instead, we simply enclose 

the index within square brackets. Thus the 1st element of names is: 

names[0] 

and the nth element is 

names[n-1] 

The size of the array is given by: 

names.length 
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The legal indices of the array, thus, are: 

0..names.length - 1 

If we use an index that is not in this range, Java will raise an ArrayIndexOutOfBoundsException.  

Note that unlike the case of a string, length is not an instance method, and thus is not followed by 

parentheses. Instead, it is essentially a public instance variable of the array. Though we can read the 

value of this variable, we cannot assign to it, because the size of an array is fixed during its lifetime. It 

should be regarded as a special instance variable of an array that cannot be modified after it has been 

assigned the first time. 

Uninitialized Array Elements 
Unlike a string, an array can be modified. For instance, the following statement: 

names[0] = “Johnny Smith” 

assigns a new value to the first element of the array. Recall that it is not possible to similarly modify an 

element of a string. 

In fact, when an array is created, typically, we do not know what the values of its elements would be. 

Often, as we will see later, they are assigned based on the user input. Therefore, Java allows us to create 

an array with uninitialized elements. For instance, the expression: 

new Loan[MAX_LOANS] 

creates a new loan array of size MAX_LOANS whose elements are uninitialized.  

Since the size of a Java array is fixed during its lifetime, when it is created, we must tell Java how many 

elements it has, even if we do not know then what the values of these elements will be. Thus, the 

square brackets after an element type must enclose a size or dimension when an array instance is 

created, since the instance is fixed-size, but not when an array type is specified, since the type is 

variable-sized.  

An array with uninitialized elements can be used to initialize an array variable: 

Loan[] loans = new Loan[MAX_LOANS]; 

Here, the array variable, loans, is initialized with an array of size MAX_LOANS. This means that the value 

of the variable is a collection of MAX_LOANS slots that can store values of type Loan. However, these 

slots are themselves uninitialized, that is, have no values assigned to them.  Later, we can initialize them: 

loans[0] = new ALoan(2,3); 

loans[1] = new AnotherLoan(3,1); 

Thus, think of the array elements, loans[0] and loans[1], as themselves variables, which should be 

initialized before accessing their values. 



Accessing Uninitialized Variables 
Arrays must often be created with uninitialized array elements. There is the danger, thus, of accidentally 

accessing an uninitialized array element. What exactly happens when we try and access an uninitialized 

array element? Actually, let us try and answer the more general question: What exactly happens when 

we try and access any uninitialized variable?  

There are three cases: 

 Compiler error: if the variable is a local variable, then the compiler flags such an access as an 

error, and refuses to generate executable code. 

 Default value: if the variable is a global (class or instance) primitive-variable, then a default value 

of the type is stored in the variable. Therefore when we access this variable, we get this value. 

The default value, in the case of numeric types, is 0, and in the case of other primitive types, is a 

value whose computer encoding is 0. This means in the case of char, it is the null character, and 

in the case of boolean, it is false.  

 Special value: if the variable is a global object-variable, Java does not store a default object of 

that type. Instead, it stores a special value, called null. If we try and access the variable, we get 

a NullPointerException. Beware of this exception - it is very easy to write programs that 

access uninitialized object variables!  

The first approach of generating a compiler error seems the best because before we even run the 

program we are told about the mistake. Why does Java not use it also for global variables? The reason is 

that these can be accessed by multiple methods, and it is difficult, and sometimes impossible, to know, 

when compiling a class, whether these variables have been initialized before access. 

Why use different approaches for primitive and object global variables, and which approach is better? 

The approach of storing a special value is probably better because it allows the program to know (at 

 

Figure 1. an uninitialized loan-array variable, loans 

 

Figure 2. an initialized loan-array variable, loans, with first two elements initialized and the rest uninitialized 



runtime) that it has accessed an uninitialized variable. In the other approach, if the default value is one 

of the expected values of a variable in a particular program, then the program may not even know it has 

accessed an uninitialized variable. Storing and checking a special uninitialized value for too much of a 

cost to pay for primitive types, which are used extensively in programs. Therefore, all values that can be 

stored in a primitive variable are considered legal. 

Let us return to array variables, and better understand what it means for them to be uninitialized. 

Figure 1 and Figure 2 illustrate the two forms of uninitialization in a program with arrays. Figure 1, the 

array, loans, itself is uninitialized. In Figure 2, the array is initialized, but its 3rd and 4th elements are 

uninitialized. 

Thus, if you get a NullPointerException in a program that uses arrays, you may have forgotten to 

initialize either an array variable or an array element. 

Fixed-Size Collections 
Arrays can be used to implement a variety of collections such as databases, histories, sets, and ordered 

lists. Consider the implementation of a simple, fixed-size, database shown in Figure 3. 

It collects a series of input strings entered by the user, and prints them on request. The number of 

strings in the collection is specified before the first element is input. 

 

 

Figure 3. A fixed-size collection 



We have done problems before that processed a list of items such as the problem of computing the sum 

of a list of input numbers. We did those problems without using arrays; so why do we need arrays here?  

In the previous problems, after the sequence of input values was processed, it was not needed again. 

This is not the case here, because we might want to print the input values multiple times. Therefore, the 

values must be stored in memory in some variable. The type of the variable cannot define a fixed-size 

because the number of elements in the collection is specified at runtime. The only variable-size types we 

have seen so far are String and the array types. Since the items being collected are strings and not 

characters, we should use the array type, String[], as the type of the collection. 

We are now ready to give the top-level of our algorithm. This level invokes methods to get an instance 

of the database type and print it: 

public static void main(String[] args){ 

String[] names = getStrings(); 

String command = Console.readString(); 

while (command.length() > 0 && command.charAt(0) != 'q') { 

if (command.charAt(0) == 'p') 

// print database if user enters „p‟ 

print(names); 

String command = Console.readString(); 

} 

} 

The main method first calls getStrings, which returns the list of lines entered by the user as a string 

array. The program assigns this value to the string array-variable, names. It then processes each 

command string entered by the user. If the string is:  

1) the quit command, that is, the first character of the string is ‘q’, then the program terminates. 

2) the print command, that is, the first character of the string is ‘p’, then the program calls the 

print method to print the string-array collection.  

3) any other string the program simply ignores it. 

Before looking at the first character of the command, the program checks that it has at least one 

character. It is possible for it to have no characters – if the user presses the Enter key without entering 

anything in the line, then the readString method returns the null string. If the length check is not 

made, then the Java will throw a StringIndexBounds exception if we try to access the first character 

of a null string. 

To complete this implementation, we must define the print and getStrings methods. 



Processing Arrays of Different Sizes 
The method, print, simply prints all elements of its argument. Since the argument can be a string array 

of arbitrary size, it uses the length variable to determine how many elements there are:3 

static void print(String[] strings) {  

System.out.println("******************"); 

for (int elementNum = 0; elementNum < strings.length; elementNum++)  

System.out.println(strings[elementNum]); 

System.out.println("******************"); 

} 

Runtime Array-Size 
The method, getStrings, is a dual of print. Instead of receiving an array as an argument from its 

caller, it returns an array to its caller. 

static String[] getStrings() { 

System.out.println("Number of Strings:"); 

int numElements = Console.readInt(); 

System.out.println("Please enter " + numElements + " strings"); 

String[] strings = new String[numElements]; 

for (int elementNum = 0; elementNum < numElements; elementNum++)  

strings[elementNum] = Console.readString(); 

return strings; 

} 

It reads the number of elements entered by the user, and uses this value in  

String[] strings = new String[numElements]; 

to create an array of the right size. As we see here, the array dimension specified in new does not have 

to be a constant. Even though an array is a fixed-sized instance, the size is not determined at compile 

time. It is determined when the array is instantiated. 

After instantiating the array, this method stores each input value in the array and returns when the 

array is completely full. It does not access the length field of the array since it knows the array size 

(stored in numElements) having created the array itself. 
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Pascal with fixed-size array types. In such languages, we would need a separate method for each array-

size. Thus, we see here an important benefit of variable-sized array types. 

 



Variable-Sized Collections  
Let us consider a more interesting variation of the problem above, shown in Figure 4. In this problem, 

users do not specify the number of collection elements at the start of the interaction. They keep 

entering strings until they quit the program. Moreover, they do not have to wait for the entire database 

to be entered before printing it. They can print the database after a subset of it has been entered.  

This is a more complicated problem. As before, we must collect the strings in memory so that they can 

be printed multiple times. But after they have been printed, a user can enter additional items. Thus, we 

need to create a collection in memory that can grow dynamically.  

It is, in fact, possible to use a fixed-size array to store a variable-size collection, much as we write 

variable-sized lists in fixed-size pages. As the following figure illustrates, such a collection can be 

 

Figure 4. A variable-size collection 

 

Figure 5. 

 



simulated using an array and two int variables. The size of the array is the maximum size of the 

collection, given by one of the int variables. The filled part consists of elements of the variable-sized 

collection and the unfilled part consists of the unused elements of the array. The size of the filled part, 

thus, ranges from 0 to the array length. We store this value in the second int variable, and update it 

whenever we add or delete a collection element.  

Thus, changing the size of the collection involves changing the boundary between the filled and unfilled 

parts of the array. Since the length of an array cannot change once it has been instantiated, the 

“variable” storing the value of the maximum size of the collection is usually declared as final to make 

it readonly. 

Encapsulating Related Variables 
 

It is considered good programming practice to relate the names of the three variables defining the 

variable-sized collection. The popular approach (used in most textbooks) is to declare these variables in 

the class that needs the collection, and name the current and maximum size variables aSize, and 

A_MAX_SIZE, respectively, if the array is named a.  

final int A_MAX_SIZE = 50; 

String[] a = new String[A_MAX_SIZE]; 

int aSize = 0; 

//process collection a 

… 

If the class needs another collection of this kind, it similarly creates another three variables: 

final int B_MAX_SIZE = 50; 

String[] b = new String[B_MAX_SIZE]; 

int bSize = 0; 

//process collection b 

… 

We can, in fact, do better than this, since each time we need a group of related variables, we should 

declare them as instance variables of a new class. Here is one way of doing so: 

public class AVariableSizedStringCollection { 

public final int MAX_SIZE = 50; 

 public String[] contents = new String [MAX_SIZE]; 

 public int size = 0; 

} 

In this declaration, the three variables are declared as public instance variables of the class. Each time 

we need a new dynamic collection of strings, we can create a new instance of this class and store it in 

some variable: 

AVariableSizedStringCollection a = new AVariableSizedStringCollection(); 



AVariableSizedStringCollection b = new AVariableSizedStringCollection(); 

We can then refer to the array and size components of it, as shown below: 

a.MAX_SIZE 

a.contents 

a.size  

b.MAX_SIZE 

 …. 

This approach is superior to creating separate variables, such as aSize and a, because it creates a new 

type that better matches the problem than the separate array and int types do individually. As a result, 

it gives us the advantages of defining high-level types such as reuse of the declarations defining the 

variable size collection and allowing a dynamic collection to be returned by a function. However, it does 

not meet the principle of least privilege. Because both the non-final instance variables have been 

declared public, users of this class can manipulate them in arbitrary ways. For instance, they can add a 

new element to the array without incrementing the size field; or make the size field become larger than 

MAX_SIZE. 

History  
Therefore, we should encapsulate the variables, that is, make them non-public and provide access to 

them through public methods. These methods depend on the nature of the collection we want. In the 

problem of Figure 5, we need operations to: 

 add an element to the collection, 

 examine each element of the collection so that we can print it. 

We do not need operations to modify or delete elements. Thus, the collection we need is really a history 

of strings – as in the case of a history of past events, its filled portion cannot be overwritten.  

The following interface defines these operations:  

public interface StringHistory { 

public void addElement(String element); 

public String elementAt (int index);  

public int size(); 

} 

Like String, the interface provides a method to access an element at a particular index. It is, of course, 

more convenient to index a collection like an array using the square brackets, [ and ]. Unfortunately, in 

Java, such indexing cannot be used for programmer-defined types, requiring special support from the 

programming language.  

 



Like String, this interface also provides a method to find the size of the collection. Finally, unlike the 

immutable String, it provides a method to add an element to the collection. 

The three variables creating a variable-size storage for the history elements are defined, not in the 

interface, but in its implementation, AStringHistory: 

public class AStringHistory implements StringHistory { 

public final int MAX_SIZE = 50; 

String[] contents = new String[MAX_SIZE]; 

int size = 0; 

public int size() { 

return size; 

} 

public String elementAt (int index) { 

return contents[index]; 

} 

boolean isFull() { 

return size == MAX_SIZE; 

} 

public void addElement(String element) { 

if (isFull()) 

System.out.println("Adding item to a full history"); 

else { 

contents[size] = element; 

size++; 

} 

}     

} 

Unlike AVariableStringCollection, AStringHistory does not make these instance variables 

public. As a result, it supports encapsulation – all access to these variables is through the public methods 

of the class. As a result, there is no danger these variables will be manipulated in an inconsistent manner 

from outside the class. Moreover, if we were to change the variables by, for instance, renaming them, 

increasing the maximum size, or replacing an array with another data structure (such as Vector, 

discussed later), the users of the class would not know the difference and thus could be reused with the 

new implementation. 

Most of the methods of this class are trivial. The method size returns the current size, elementAt 

indexes the array to return its result, and isFull returns true if the current size has reached its 

maximum value.  

The method addElement requires some thought. If the collection is not full, the value of size is the 

index of the first element of the unfilled part of the array. In this case, it simply assigns to this element 

the new value, and increments size. The tricky issue here is what should happen when the collection is 

full? If we have guessed the maximum size right, this condition should not arise. Nonetheless, we must 

decide how to handle this situation. Some choices are: 



 Subscript Exception: We could ignore this situation, and let Java throw an 

ArrayIndexOutOfBoundsException when the method accesses the array beyond the last 

element. However, this may not be very illuminating to the user, who may not know that the 

implementation uses an array (rather than, say, a vector, discussed later). 

 Specialized Exception: We could define a special exception for this situation, 

CollectionIsFullException, and throw it. However, defining new exceptions is beyond 

the scope of this course. 

 Print Message: We would print a message for the user. Unfortunately, the caller of addElement 

gets no feedback with this message. 

 Increase Size: If it is not an error to add more elements than the original array can 

accommodate, we could increase the size of the collection by creating a larger array, add all the 

elements of the previous array to it, and assign the new array to the contents field.  

Our program assumes it is an error to add to a full collection and simply prints a message. As the 

discussion above points out, had we known how to define one, a specialized exception would have been 

a better alternative under this assumption. 

The following main method illustrates how StringHistory and its implementation AStringHistory, 

are used to solve our problem: 

public static void main(String[] args) { 

StringHistory names = new AStringHistory(); // create an empty history 

while (true) { 

 String input = Console.readString(); 

 if (input.length > 0) 

if (input.charAt(0) == 'q')  

// exit loop if user enters „q‟ 

break; 

                 else if (input.charAt(0) == 'p')  

// print database if user enters „p‟ 

print(names); 

else // add input to history 

names.addElement(input); 

} 

} 

It is much like the main we used for the fixed-size collection with two main differences. Instead of the 

array type String[], it uses our new type StringHistory. Second, instead of gathering all database 

entries before starting the command loop, it gathers database entries incrementally in the loop. If a 

non-null input line does not begin with any of the recognized commands, the loop assumes it is a 

database entry, and calls the addElement method to add it to the StringHistory instance. 

 



Similarly, the print method is like the one we saw for a fixed-size collection except that it invokes 

StringHistory methods rather than the corresponding array operations. 

static void print(StringHistory strings) { 

System.out.println("******************"); 

for ( int elementNum = 0; elementNum < strings.size(); elementNum++)  

System.out.println(strings.elementAt(elementNum)); 

} 

PointHistory 
Suppose we wish to enter and view a series of points in some two-dimensional space. For instance, we 

wish to enter and view points on the trajectory of a rocket or the points in an exam curve. Figure 7 

shows a user-interface that allows us to perform this task. 

It provides an operation, addElement (Figure 6) for adding a new point whose x and y coordinates are 

arguments of the operation. Each added point is displayed in the ObjectEditor graphics window.  

 

Figure 6. AddElement of APointHistory 

 

Figure 7. APointHistory with 5 points 

 



As before, we would like to create an object responsible only for creating and manipulating the shapes, 

leaving the details of displaying and editing the shapes to ObjectEditor. To create a point on the screen, 

we can use our Point interface and ACartesianPoint and APolarPoint classes, which, as we saw 

before, represent a point that is automatically displayed by ObjectEditor as a small, filled circle. In this 

example, we must create a dynamic number of points. We have seen how to create a dynamic collection 

of textual elements. We can create a dynamic number of graphics elements in much the same way. 

Let us, then, derive the interface of the object being edited in Figure 7. From Figure 6, we can directly 

derive one of the methods of this interface:  

 public void addElement (int x, int y);  

If this object is not going to actually display the points, it must expose them to another object, in this 

case ObjectEditor, that performs this function. As we discussed in above for StringHistory, it cannot 

use getter and setter methods to expose these elements, since they work only for objects with a static 

number of elements. To identify how a dynamic list of elements can be exposed, consider the 

StringHistory interface we defined to expose a dynamic collection of strings: 

interface StringHistory { 

public void addElement(String element); 

public String elementAt (int index);  

public int size(); 

} 

The methods elementAt and size, together, allow an external object to determine all the strings in 

the history. We can define the exact same method headers for this example, with the only difference 

that instead of strings we would expose values of type Point. Since this generalizes to indexable 

collections of arbitrary types of elements, ObjectEditor looks in an object for (a) a method named 

elementAt taking a single int parameter, and (b) a parameter-less method named size to determine 

if the object encapsulates an indexable dynamic collection; and uses these methods to access the 

elements of the collection. This is in the spirit of looking for methods whose names start with get to 

determine and access the static properties of an object. In fact, we will refer to methods such as 

elementAt and size that retrieve dynamic components of a collection as getter methods, and 

methods such as addElement that change the dynamic components of a collection as setter methods. 

Even though their names do not begin with get and set, they do perform the task of getting and 

setting components of an object.  

Thus, our interface becomes: 

public interface PointHistory { 

 public void addElement(int x, int y); 

 public Point elementAt(int index);  

     public int size(); 

} 



We have named the interface PointHistory to because, like StringHistory, it also defines a 

history, allowing elements to be appended but not inserted in the middle or deleted. After 

implementing StringHistory, these three methods do not present any new implementation 

challenges. Instead of repeating the code we used in StringHistory, however, we could have used 

Java vectors, which make the implementations of these methods trivial. We will learn about vectors 

later. 


