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17. Inheritance 

We have seen how we can create arbitrary sequences, such as histories, using arrays. In this chapter, we 

will use arrays to create several new kinds of types including sets and databases. Some of these types 

can be considered as special cases of other types. We will see how a specialized type can inherit the 

code from a more general type much as a child inherits genes from a parent. 

Database  
A history, which we saw in the arrays chapter, is perhaps the simplest example of a variable-sized 

collection. Let us define a more sophisticated collection shown in Figure 1. 

In addition to the commands to add to and print the collection, this application provides commands to 

delete an entry (d), check if an entry is a member of the collection (m), and clear the whole collection 

(c). Thus, the collection forms a simple string database, providing commands for searching, adding, and 

deleting entries. The following interface describes the new type: 

public interface StringDatabase { 

    // methods of StringHistory 

    public String elementAt(int index);  

    public void addElement(String element); 

    public int size(); 

    // additional methods 

    public void deleteElement(String element); 

    public void clear(); 

    public boolean member(String element); 

} 

It retains all the methods of the StringHistory, including additional methods to delete an element, 

clear the collection, and check if an item is present in the collection. 
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Similarly, the implementation of this interface retains the variables and methods of StringHistory. 

public class AStringDatabase implements StringDatabase { 

    // code from StringHistory 

    … 

    // additional code 

    … 

} 

containing additional code for the three new operations, which is described below. 

Deleting an Entry & Multi-Element List Window 
Let us first consider the implementation of the deleteElement operation. Deleting an entry from a 

collection (implemented as an array) is more difficult than adding one. We have assumed that in a 

collection, the positions of the entries do not matter, or if they do matter, the order in which they are 

added determines their position (and not, say, the alphabetic order). Therefore, we always assigned the 

new entry at the first unfilled position of the array, and simply incremented the size field. The delete 

command allows us to remove an entry from the middle of the array. Our implementation strategy for a 

 

Figure 1. AStringDatabase 



 
  

variable-size collection assumes that all unfilled entries follow the filled entries. Thus, we cannot leave 

an unfilled “hole” in the middle of the filled area. 

A simple approach would be to take the last element and put it in the slot of the deleted element. 

However, this does not preserve the order in which the entries were added. Assuming that print 

should list the elements in this order, we must, instead, shift all the elements following the deleted item 

up one position. Figure 2 shows the contents of the array before and after “Joe Doe” is deleted from the 

collection. 

In order to do the move, we must examine successive pairs of slots in the array, starting from the 

deleted position, and store the contents of the slot at the larger index in the slot at the lower index. 

Thus, for each of these pairs, we must either perform the assignment: 

contents[index] = contents[index + 1] 

or 

contents[index – 1] = contents[index] 

Let us chose the first assignment since it allows us to start at the index at the position of the deleted 

item. We are now ready for the code required for deletion: 

public void deleteElement(String element) { 

    shiftUp(indexOf(element)); 

} 

 

void shiftUp(int startIndex) { 

    for (int index = startIndex; index + 1 < size; index++) { 

        contents[index] = contents[index + 1]; 

    } 

    size--; 

} 

 

Figure 2. Deleting the second element from a history that contains three elements 



 
  

In our previous list traversals, we examined one entry of the list at a time. In this traversal, we examine 

two consecutive list elements at a time. Both are examples of window-based list traversals, where each 

list traversal step (loop iteration or recursive step) accesses a fixed size window of neighboring elements 

in a list, and each subsequent step moves the window up or down by a fixed step as shown in Figure 3. 

In a forward (backward) list traversal, the termination condition is the last (first) window element 

becoming the last (first) list element. This is the reason that our loop for the two-element window is: 

index + 1 < size 

rather than: 

index < size 

which was the condition for the one-element window traversal. 

Searching for an Element 
Our delete operation assumes we have an operation, indexOf, to find the position of a list element. 

The operation traverses the list using a one-element window, stopping when it finds the element or 

reaches the end of the list: 

int indexOf(String element) { 

    int index = 0; 

    while ((index < size) && !element.equals(contents[index])) 

        index++; 

    return index; 

} 

To decide if the element at the current index is equal to the element being sought, the indexOf 

function uses the predefined equals operation in String. The equals operation is invoked on a String 

instance and takes a single formal parameter also of type String. The operation returns true if and only 

 

Figure 3. A 2-element window-based list traversal 



 
  

if the String instance on which it is being invoked is identical (in terms of number of characters and the 

characters themselves) to the String instance passed as the actual parameter to the formal parameter. 

Note that in the case the item exists multiple times in the collection, the indexOf function returns the 

position of the first element that matches the item for which we are searching. If the item is not in the 

array, it returns the value of the size variable. In this case, the loop in shiftUp will be skipped and no 

item will be deleted. 

With this method, we can trivially implement the member operation: 

public boolean member(String element) { 

    return indexOf(element) < size; 

} 

That leaves us the clear method. We could clear the database by deleting each item of the array: 

public void clear() { 

    while (size > 0) { 

        deleteElement(size - 1); 

    } 

} 

At each iteration of the loop, the element at size – 1 is the last element in the collection. We can thus 

clear the database by repeatedly deleting its last item until we have no more items left. 

However, it is much simpler and more efficient to make the current size 0: 

public void clear() { 

    size = 0; 

} 

Thus, clear (and deleteElement) simply adjusts the size field without explicitly removing from the 

array any element. Figure 4 shows the array contents before and after the clear operation. 

 

Figure 4. (left) before clear; (middle) after clear; (right) adding a new entry 



 
  

As we can see, the “deleted” elements still occupy space in the array. However, they will be replaced 

with any new items we add to the collection – in that sense they do not take space in the array. For 

instance, if we were to now add the string “Joe Doe” to the collection, it would replace “James Dean” in 

the first element of the array. Thus, the difference between deleted and undeleted elements is that the 

slots of the latter are in the “unfilled” space and are used to add new elements. 

When the first slot is reassigned the string, “Joe Doe”, what happens to the old value of the slot, “James 

Dean”? Clearly, it is no longer in the array, but is it also no longer in memory? This string is essentially 

“garbage” in that we are no longer interested in it; thus it should be removed from memory. Java does 

garbage collection to automatically find and de-allocate any such unused space from memory. In 

languages such as Pascal and C++ that do not do garbage collection, we would have to explicitly dispose 

of this space. It is very easy to make mistakes by either accidentally de-allocating useful space or not de-

allocating useless space. Java’s garbage collection, thus, makes our programs easier to write and more 

reliable. How Java does garbage collection is beyond the scope of this course. What is important is that, 

like garbage collection in the real world, Java’s garbage collection is not done each time some garbage is 

created, but later, according to criteria determined by the Java garbage collector, often when space is 

running low. You might see your program slow down when the garbage collector becomes active. 

Switch and Ordinal Types 
Now that we have seen how the various methods of AStringDatabase are implemented, let us 

complete the implementation of the database problem by giving the main method: 

public static void main(String args[]) { 

StringDatabase names = new AStringDatabase(); 

while (true) { 

String input = Console.readString(); 

if (!(input.length() == 0)) 

if (input.charAt(0) == 'q')  

break; 

else if (input.charAt(0) == 'p') 

print(names); 

else if (input.charAt(0) == 'd') 

names.deleteElement(input.substring( 

2, input.length())); 

else if (input.charAt(0) == 'm')  

System.out.println(names.member( 

input.substring(2, input.length()))); 

else if (input.charAt(0) == 'c')  

names.clear(); 

else 

names.addElement(input); 

}         

} 



 
  

Instead of creating an instance of AStringHistory, the method creates an instance of 

AStringDatabase. The loop of this method extends the loop of the main method we created for the 

history example by processing the additional commands for deleting an entry, clearing the database, 

and checking for membership. The clear command is processed like the other commands we have seen 

so far since it is also a one-character command. The other two commands take an operand after the 

command character. The program extracts this operand using the substring operation and passes it 

as an argument to the method for processing the command. 

Notice that we have been careful to do all the branching in the else parts of the if statements that 

discriminate among the different characters. As it turns, we can further improve the code by using an 

alternative conditional, called a switch statement, illustrated below:  

public static void main(String args[]) { 

StringDatabase names = new AStringDatabase(); 

while (true) { 

String input = Console.readString(); 

if (!(input.length() == 0)) 

if (input.charAt(0) == 'q')  

break; 

else switch (input.charAt(0)) { 

case 'p': 

print(names); 

break;  

case 'd': 

names.deleteElement( 

input.substring(2, 

input.length())); 

break; 

case 'm': 

System.out.println(names.member( 

input.substring(2, 

input.length()))); 

break; 

case 'c': 

names.clear(); 

break; 

default: 

names.addElement(input); 

} 

} 

The switch statement selects among different values of the expression following the switch keyword 

called the switch expression. Each of the listed values is a case of the switch expression, and the 

statement sequence following it is called an arm of the switch. If the value of the switch expression is 

equal to a particular case, then control transfers to the corresponding arm. 



 
  

As shown above, Java does not require us to list all possible cases for the switch expression. The default 

clause stands for all unlisted cases.  

It is possible to associate multiple cases with the same arm, as shown below: 

switch (input.charAt(0)) { 

case 'p', „P‟: 

print(names); 

break;  

case 'd', „D‟: 

names.deleteElement(input.substring(2, input.length())); 

break; 

… 

} 

The switch conditional is shorter, easier to read, and as it turns out, more efficient than an if-else 

conditional. While an if-else conditional does a two-way branch to the then or the else part, a switch 

statement does a multi-way branch to its different arms. 

A switch is, not, however, suitable for all selection problems, since the type of the switch expression 

must be an ordinal type. An ordinal type is a primitive type with the following properties: 

1) The instances/literals of the type are ordered. 

2) For each literal, there is a unique successor/predecessor unless it is the last/first literal. 

For instance, it can be used to test an int but not a String or float expression. Thus, if-else 

statements are more general but less high-level conditionals than switch statements.  

Notice that we put a break statement at the end of each arm of the switch. In general, once it finishes 

executing an arm, a switch statement executes all of the subsequent arms until it finds a break. Consider 

what happens when we forget to put break statements 

switch (input.charAt(0)) { 

case 'p': 

print(names);  

case 'd': 

names.deleteElement(input.substring(2, input.length())); 

case 'm': 

System.out.println(names.member( 

input.substring(2, input.length()))); 

case 'c': 

names.clear(); 

default: 

names.addElement(input); 

and the input character is ‘m’. The statement will executes the ‘m’ arm and all of the arms of the cases 

below it, thus executing the statements: 

 



 
  

names.deleteElement(input.substring(2, input.length())); 

System.out.println(names.member(input.substring(2, input.length()))); 

names.clear(); 

names.addElement(input); 

The break statement makes the program jump out of the immediately enclosing statement block, which 

may be a loop or a switch. It is not possible to use it to break out a statement block that is not 

immediately enclosing it. Consider the following alternative main method: 

public static void main(String args[]) { 

StringDatabase names = new AStringDatabase(); 

while (true) { 

String input = Console.readString(); 

if (!(input.length() == 0)) 

switch (input.charAt(0)) { 

case „q‟: 

break; 

case 'p': 

print(names); 

break;  

case 'd': 

names.deleteElement( 

input.substring(2, 

input.length())); 

break; 

case 'm': 

System.out.println(names.member( 

input.substring(2, 

input.length()))); 

break; 

case 'c': 

names.clear(); 

break; 

default: 

names.addElement(input); 

} 

} 

This solution is more elegant in that it avoids the if conditional that tests if the input character is ‘q’, 

replacing it with an extra arm in the switch. Unfortunately, it does not work, because the break in the 

new arm terminates the enclosing switch, not the loop. Since in this example, the main method does not 

execute any statement after the loop, we can execute return instead of break in the arm corresponding 

to ‘q’: 

switch (input.charAt(0)) { 

case „q‟: 

return; 

 … 



 
  

This solution will work since the main method will return (to the interpreter) when this arm is executed, 

terminating the program. 

Inheritance 
We have seen two kinds of collections created using arrays, a history and a database. A history is 

defined by the interface, StringHistory and implemented by the class, AStringHistory; while a 

database is defined by the interface, StringDatabase, and implemented by the class 

AStringDatabase. Figure 5 shows the members (methods and instance variables) declared in the 

interfaces and classes. 

Let us compare the database class and interfaces with the history class and interface. The database 

interface defines all the methods of the history interface, plus some more. In other words, logically, it is 

an “extension’’ of the history interface, containing copies of the methods elementAt, addElement, 

and size, and adding the methods, deleteElement, and clear. Similarly, logically, the database 

class is an extension of the history class, in that it contains a copy of all of the members defined in the 

latter – the size and contents instance variables, and the addElement, size, and elementAt 

instance methods. As a result, AStringDatabase implements a superset of the functionality of 

AStringHistory. However, physically, the database interface and class are not extensions of the 

history interface and class, because they duplicate code in the latter – each member of the history 

interface/class is re-declared in the database interface/class. 

In fact, Java allows us to create logical interface and class extensions as also physical extensions. The 

database interface can share the declarations of the history interface as shown here: 

public interface StringDatabase extends StringHistory { 

public void deleteElement(String element); 

public void clear(); 

public boolean member(String element); 

} 

The keyword extends tells Java that the interface StringDatabase is a physical extension of 

StringHistory, which implies that it implicitly includes or inherits the constants and methods 

declared in the latter. As a result, only the additional declarations must be explicitly included in the 

definition of this interface.  

Below, we see how the database class can share the code of the history class: 

public class AStringDatabase  

extends AStringHistory implements StringDatabase {     

public void deleteElement(String element) { … }         

int indexOf(String element) { … } 

void shiftUp(int startIndex) { … } 

public boolean member(String element) { … } 

public void clear() { … } 

} 



 
  

The method bodies are not given here since they are the same as we saw earlier. The important thing to 

note here is that the class does not contain copies of the methods and instance variables declared in 

AStringHistory because it now (physically) extends it. 

Given an interface or class, A, and an extension, B, of it, we will refer to A as a base or supertype of B; 

and to B as a derivation, subtype, or simply extension of A (Figure 6). 

Any class that implements an extension of an interface must implement all the methods declared in 

both the extended interface and the extension. Thus, in our example, AStringDatabase must 

 

Figure 5. Logical but not physical extensions 

 

Figure 6. Physical and logical extensions 

 



 
  

implement not only the methods declared in StringDatabase, the interface it implements, but also 

the ones declared in the interface, StringHistory, the interface extended by StringDatabase. 

Thus, the new definition of StringDatabase and AStringDatabase are equivalent to the ones 

given before.  

Why Inheritance 
There are several reasons for extending interfaces and classes, as we have done above, rather than 

creating new ones from scratch, as we did before: 

 Reduced Programming/Storage Costs: The most obvious reason is that we do not have to write 

and store on the computer a copy of the code in the base type, thereby reducing programming 

and storage costs. The programming cost, of course, is minimal if we had a convenient facility to 

cut and paste. However, the source code of the base type may not always be available, which 

does not prevent it from being sub typed. 

 Easier Evolution: Code tends to change. We may decide to change the MAX_SIZE constant of 

AStringHistory, in which case, would have to find and change all other classes that are 

logical but not physical extensions. 

 Polymorphism: Inheritance allows us to support new kinds of polymorphism, as explained 

below. 

 Modularity & Reusability: We assume above that the base class and interface already existed 

when we created subclasses of them. For instance, we assumed first that we needed string 

histories and created appropriate interfaces and classes to support them. Later, when we found 

the need for string databases, we simply extended existing software.  

What if we have not had the need for string histories, and were told to create string histories from 

scratch? Even in this case, we may want to first create string histories and then extend them rather 

than create unextended string databases, because the extension approach increases modularity, 

thereby giving the accompanying advantages. In this example, it makes us understand, code, and prove 

correct the two interfaces and classes separately. Moreover, if we later end up needing string histories, 

we have the interface and class for instantiating them. The approach requires us to design for reuse, 

something that is very difficult to do in practice. 

Real-World Inheritance 
Programming using objects, classes, and inheritance is called an object-oriented programming. In 

contrast, a programming using only objects and classes is called object-based programming. Thus, with 

the use of inheritance, we are making a transition from object-based programming to object-oriented 

programming. 

Let us go back to the real-world analogy to better understand inheritance and why it is important. Often 

physical products are extensions of other physical products. For instance, a deluxe model of an Accord 



 
  

has all the features of a regular model, and several more such as cruise control. When specifying the 

deluxe model, it is better to create an addendum to the existing specification of a regular model, rather 

than create a fresh specification. As a result, if we later decide to update the specification of a regular 

model, we do not have to go back and update the specification of the deluxe model, which is always 

constrained to be an extension of a regular model. 

Similarly, we may want to implement an extended interface by extending a factory, rather than creating 

a new factory. For instance, when we need to create a deluxe model, we may first send it to a factory 

that creates a regular model, and then add new features to this model.  

We do not have to look at the man-made world for examples of these relationships. For instance, as 

shown in Figure 7, a human is a primate, which is a mammal, which is an animal, which is a living 

organism, which is a physical object; and, a rock can be directly classified as a physical object. Thus, 

both a human and a rock inherit properties of physical objects – for instance, we can see, touch, and 

feel them.  

Thus, like objects and classes, inheritance feels “natural” and allows us to directly model the 

inheritance relationships among physical objects simulated by the computer. For example, we could 

model a human being as an instance of a Human Java type, which would be a subtype of Primate, and 

so on. Without inheritance, we would have to manually create these relationships.  

  

 

Figure 7. Logical but not physical extensions 



 
  

The Class Object 
Just as, in the real world, we defined the group, PhysicalObject, to group all physical objects in the 

universe and define their common properties, Java provides a class, Object, to group all Java objects 

and define their common methods. It is the top-level class in the inheritance hierarchy Java creates for 

classes (Figure 7). If we do not explicitly list the superclass of a new class, Java automatically makes 

Object its superclass. Thus, the following declarations are equivalent: 

public class AStringHistory implements StringHistory  

and 

public class AStringHistory extends Object implements StringHistory 

The methods defined by Object, thus, are inherited by all classes in the system. An example of such a 

method is toString, which returns a string representation of the object on which it is invoked. The 

implementation of this method in class Object simply returns the name of its class followed by an 

internal address (in hexadecimal form) of the object. Thus, an execution of: 

System.out.println((new AStringHistory()).toString()) 

might print: 

AStringHistory@1eed58 

while an execution of: 

System.out.println((new AStringDatabase()).toString()) 

might print: 

AStringDatabase@1eed58 

where “leed58” is assumed to be the internal address of the object in both cases. In fact, we did not 

need to explicitly call toString in the examples above. println automatically calls it when deciding 

how to display an object. Thus: 

System.out.println(new AStringDatabase)) 

is, in fact, equivalent to: 

System.out.println((new AStringDatabase()).toString()) 

Object defines other methods, which we will not study here, which can also be invoked on all Java 

objects.  

Despite its name, Object is a class, and not an instance. It defines the behavior of a generic Java 

object, hence the name. 



 
  

IS-A Relationships 
An inheritance relationship between a subtype and a supertype is a special case of the more general IS-A 

relationship among entities. Intuitively, we might say: 

AStringDatabase IS-A AStringHistory  

This assertion seems right since a string database is also a string history. In ordinary language, we say 

some entity e1 IS-A e2 if e1 has all the properties of e2. Thus, a primate is a mammal since it has all the 

properties of a mammal. In the context of an object-oriented programming language, the entities are 

object types (classes and interfaces) and their instances (objects), and the properties we use to 

determine IS-A relationships among them are their public members (methods and variables).  

We can now formally define the IS-A relationship among Java object types and their instances. Given 

two object types, T1 and T2, and arbitrary instances t1 and t2 of these types, respectively: 

T1 IS-A T2  

is true if 

t1 IS-A t2 

is true, which in turn, is true, if all public members of t2 are also public members of t1.  

From this definition, we can derive, that: 

T2 extends T1 => T2 IS-A T1 

 

Figure 8. IS-A Relationship 



 
  

because every instance of T2 has not only the members declared in its type T2, but also all members 

declared in the super type of T2, T1. The reverse is not true: 

T2 extends T1 => T1 IS-A T2 

since T2 can define additional public variables and methods that instances of T1 do not have.  

Inheritance is only one example of an IS-A relationship. The implements relationship between a class 

and an interface is another example:  

T2 implements T1 => T2 IS-A T1 

because every instance of T2 has all the members defined in T1 (plus, optionally, some more since a 

class is free to define public members not declared in its interface). 

Thus, some IS-A relationships defined by Figure 8 are: 

 StringDatabase IS-A StringHistory 

 AStringDatabase IS-A AStringHistory 

 AStringHistory IS-A StringHistory 

 AStringDatabase IS-A StringDatabse 

In other words, each of the arrows in the figure denotes an IS-A relationship. Figure 8 shows both 

inheritance and implements forms of IS-A relationships among some of the classes and interfaces we 

have seen.  

The IS-A rule is transitive: 

T3 IS-A T2 IS-A T1 => T3 IS-A T1 

This follows from transitivity of the inheritance relationship. Thus: 

 AStringDatabase IS-A StringHistory 

By our definition, it is also reflexive: 

T1 IS-A T1 

Thus: 

 AStringHistory IS-A AStringHistory 

which should not be surprising! 

  



 
  

Type Rules 
The IS-A relationship gives the basis for type-checking rules in Java. Consider the following declarations: 

StringHistory stringHistory = new AStringDatabase(); 

StringDatabase stringDatabase = new AStringHistory(); 

They assign to variable of type T1 an object of another type T2. Should these be allowed? 

In the first case, we are trying to assign an instance of AStringDatabase to a variable expecting 

StringHistory. Since: 

AStringDatabase IS-A StringDatabase IS-A StringHistory 

the assignment is legal. On the other hand, in the second case we are trying to assign an instance of 

AStringHistory to  a variable expecting StringDatabase. Since AStringHistory is not, directly 

or indirectly, StringDatabase, the second assignment is illegal. 

To understand what may go wrong in the second assignment, consider the following operation 

invocation: 

stringDatabase.clear(); 

Because the type of stringDatabase is StringDatabase, this invocation will be considered legal at 

compile time. However, if stringDatabase is actually assigned an instance of AStringHistory, 

the instance will not have the clear member, and we will get a runtime error. 

To understand why the first assignment is safe, consider an operation invocation on stringHistory: 

stringHistory.size(); 

If stringHistory has been actually assigned an instance of AStringDatabase, the instance is 

guaranteed to have all the publically accessible members of an instance of StringHistory, since 

indirectly AStringDatabase IS-A StringHistory. 

Given the first assignment: 

StringHistory stringHistory = new AStringDatabase(); 

 should the following be legal? 

stringHistory.clear(); 

Since stringHistory has been assigned an instance of AStringDatabase, the instance will have 

the member, clear. However, the compiler will complain. This is because, at compile time, we do not 

know the exact value of a variable, and have to take the conservative approach of assuming it has only 

those members that are indicated by its type (and no other member). However, if, at runtime, we are 

sure about the actual type of the object, we can use a cast, as shown below: 

((StringDatabase) stringHistory).clear() 



 
  

The cast assures the compiler that the type of the object stored in stringHistory is actually 

StringDatabase. Unlike other languages such as C that allow casting, Java keeps the type of a 

variable at runtime, and will throw an exception if the actual type, T2, does not match the type, T1, 

given in the cast, that is T2 is not a T1.  Thus, if we executed: 

stringHistory = new AStringHistory(); 

((StringDatabase) stringHistory).clear() 

we would get a ClassCastException.  

We can now precisely state the complete type rules used by the compiler. Assume we assign to some 

variable v of type T1 an expression e of type T2. T1 and T2 may be interfaces, classes, or primitive types. 

The assignment is legal if either of the two conditions holds true: 

 T2 IS-A T1  

 T2 IS-NARROWER-THAN T1  

where the narrow relationship was defined in the chapter on types. 

Typing an expression is ambiguous if a cast is used: 

(StringDatabase) stringHistory 

A cast creates two types for the expression being cast: a static type and a dynamic type. The static type 

is the type used for cast. Thus in the above example, StringDatabase is the static type of the 

expression. The dynamic type is the actual type of the expression being cast, which is determined at 

runtime. Thus, in the above example, it is determined by the object that has been assigned to 

stringHistory. The type checking rules above use the static type at compile time. A separate type-

checking phase occurs at runtime, which uses the actual type, T2 of the cast expression to ensure it is 

compatible with static type, T1, used for casting, that is, T2 IS-A T1, as discussed above. 

To understand these type rules intuitively, let us consider again the real world. The following is legal: 

ARegularModel myCar = new ADeluxeModel(); 

myCar.accelerate(); 

If our rental or buying plan assumes a regular model, and we are upgraded to deluxe model, that is safe, 

because all operations on a regular model such as accelerate are also applicable on a deluxe model. 

However, the following is not legal: 
ADeluxeModel myCar = new ARegularModel(); 

myCar.setCruiseControl(); 

If our plan assumes a deluxe model, and we are downgraded to a regular model, we will be unhappy, 

and potentially unsafe, because some operations such as setCruiseControl are applicable only to 

deluxe models. However, the following is safe: 

ARegularModel myCar = new ADeluxeModel(); 



 
  

ADeluxeModel hisCar = (ADeluxeModel) myCar; 

In other words, we should be able to perform operations of the upgrade that could not be performed on 

the car we reserved, as long it can be assured that we did indeed get an upgrade, that is, the cast is 

successful. 

Thus, compile-time type checking is equivalent to checking that our plan for driving the car is consistent 

with the car we have reserved, while runtime checking is equivalent to checking that it is consistent with 

the actual car we obtained. It is important to note that both checks occur before we use the car in an 

inappropriate way, for instance, before we actually try to set the cruise control.    

Inheritance and Polymorphism 
A consequence of our type rules is that the method we defined for printing StringHistory: 

static void print(StringHistory strings) { 

System.out.println("******************"); 

int elementNum = 0; 

while (elementNum < strings.size()) { 

System.out.println(strings.elementAt(elementNum)); 

elementNum++; 

} 

System.out.println("******************"); 

} 

will also work for printing instances of StringDatabase. That is, we can safely invoke: 

print(stringDatabase); 

This is because the following assignment is made during parameter passing: 

StringHistory strings = stringDatabase; 

which is allowed by the assignment rules. The only member of the argument accessed by print is 

elementAt, which is also a member of stringDatabase. 

 

Figure 9. AStringSet 



 
  

Recall that a method such as print that takes arguments of multiple types is called polymorphic. Recall 

also that creating IS-A relationships via the implements relationships allowed us to write such methods. 

Here we see that creating IS-A relationships through inheritance also supports such methods. The type 

checking rules described above have been designed to support polymorphism. 

Overriding Inherited Methods 
Returning to the database application, suppose we did not want to print or store duplicates in the 

database, and instead wanted the output shown in Figure 9. To support this application, we need the 

collection to behave like a mathematical set, which allows no duplicates. To define such a collection, we 

do not need to add to the operations we defined for a database. Instead we can simply re-implement 

the addElement operation inherited from AStringHistory so that does not add duplicates to the 

collection: 

public class AStringSet extends AStringDatabase implements 

StringDatabase {     

public void addElement(String element) { 

if (isFull()) 

System.out.println("Adding item to a full history"); 

else if (!member(element)) {// check for duplicate 

contents[size] = element; 

size++; 

} 

} 

} 

What we have done here is to replace or override an inherited method implementation. When you 

study super, we will see a more efficient way of overriding methods. We have not implemented a 

new interface, only provided a new implementation of an existing interface, StringDatabase. 

To implement the above application, the main method remains the same as the one we used for the 

database application, except that we replace the line: 

StringDatabase names = new AStringDatabase(); 

with: 

StringDatabase names = new AStringSet(); 

When the addElement method is invoked on name: 

names.addElement(input); 

the implementation defined by the class of the assigned value (AStringSet) is used since it overrides 

the inherited  implementation of the operation from AStringDatabase. 



 
  

The above collection does not completely model a Mathematical set in that it does not define several 

useful set operations such as union, intersection, and difference, which we did not need in this problem. 

Question 6 motivates the use of a more complete implementation of a set. 

To gain more practice with overriding methods, let us override in AStringSet the toString method 

inherited from class Object: 

public String toString() { 

 String retVal = “”; 

 for (int i = 0; i < size; i++) 

  retVal += “:” + contents[i]; 

 return retVal; 

} 

The method returns a “:” separated list of the elements of the collection: 

 stringSet.toString()  “James Dean:John Smith” 

Recall that the implementation inherited from Object gives us the class name followed by the memory 

address: 

 stringSet.toString()  “AStringSet@1eed58” 

Many classes override the toString method, since the default implementation of it inherited from 

Object is not very informative, returning, as we saw before, the class name followed by the object 

address. Recall also that println calls this method on an object when displaying it. The reason why 

println tends to display a reasonable string for most of the existing Java classes is that these classes 

have overridden the default implementation inherited from Object. 

Summary 
 An array is an indexable fixed-size collection of elements of the same type. 

 An array type defines a variable structure, that is, different instances of it can have different 
sizes. The size of an array instance is specified at runtime when it is created. 

 An array variable may be initialized or uninitialized, and an array assigned to an initialized array 
variable may have elements that are themselves uninitialized.  

 A dynamic collection can be simulated by a named constant specifying the maximum size of the 
collection, a variable specifying the current size of the collection, an array for storing the 
elements of the collection. 

 These three components of the collection should be encapsulated in a class and protected from 
direct external access by public methods. 

 Deleting an element of an ordered collection involves moving a two-element window along the 
array, assigning the second element of the window to the first one. 

 A deleted element does not have to be explicitly removed from memory since Java 
automatically garbage collects unused memory space. 

 Java allows classes and interfaces to inherit declarations in existing classes and methods, adding 
only the definitions needed to extend the latter. 



 
  

 An inherited method can be overridden by a new method. 

 Inheritance and implementation are examples of IS-A relationships. 

 If T2 IS-A T1, then a value of type T2 can be assigned to a variable of type T1. 

  



 
  

Exercises 

1) What is encapsulation and why is it important? 

 

2) What is inheritance and why is it useful?  

 

 

3) When should you use an if-conditional instead of a switch statement?  

 

4) Rewrite the addElement method of AStringHistory to double the maximum size of the 

collection when it is invoked on a full collection, and then add the element to this new 

collection. 

 

 

5) Create an extension of AStringSet, called ASortedStringSet, that keeps its elements 

sorted in ascending order.   

 

 

6) Use the upper case enumeration of the previous chapter to print the upper case letters in an 

input string in reverse order. Thus, if the user inputs the string: John F. Kennedy, the program 

should input the letters: KFJ. You can assume that a string will not have more than 50 uppercase 

letters. Create a special type defining a character history collection to do this problem. 

 

 

  



 
  

7) Extend your solution to problem 6 of the previous chapter by creating a spelling checker, shown 

below. The users of the program will enter, on the first line, a sequence of words they want to 

put in the dictionary of the program, and then, on the second line, a sequence of words they 

want spell checked.  Let us call the second word sequence the "paragraph." After the paragraph 

has been entered, your program should output all words in the paragraph that are not in the 

dictionary: 

 
 

As before, you can assume that users will enter only letters and spaces in a line and that they will 

always enter a single space after each word (including the last word).  Thus each 

paragraph/dictionary word will be a contiguous sequence of letters ending with a single blank.  You 

can also assume that a user will not enter more than 50 words in the dictionary or make more than 

50 spelling mistakes in the paragraph.  Finally, you can assume no syntax errors will be made - so 

you do not have to do any syntax-error checking.  The dictionary and paragraph words may be 

entered in uppercase or lowercase letters - however case does not influence the spelling check.  

Thus the words `dog' and `Dog' are to be considered the same.  You should not print a dictionary, 

paragraph, or a misspelled word twice, as shown above. For instance, in the interaction above, both 

the words 'A' and 'Moose' are misspelled twice - but the program gives only one error for each 

word.  

To avoid code duplication, think of using a set for storing the various collections of words you need 

to process in this program. The type will extend the set type given in this chapter with other set 

operations you will need such as intersect. 


