
Introduction 1

COMP 14

Prasun Dewan
1

1. Introduction
In this book, we will study how the computer can be programmed. To understand what that means, we must have a

model of the computer. We must understand several basic computing concepts such as hardware, operating system,

compiler, and interpreter. Clearly, a detailed, precise technical description of the computer is beyond the scope of this

course – even an undergraduate degree is sometimes not sufficient to cover in-depth all aspects of a computer. So we

will instead try to model the computer by drawing an analogy between it and a world we understand – the theater

world.
2

A Theater Model of the Computer

Consider a theater (Figure 1) staging not just plays but arbitrary “performances” such as concerts, speeches, talks,

discussions, consultations, cooking lessons, and debates. Scripts may be stored in archival stores such as theater

libraries, from which the performers may copy them to notebooks they carry that are faster to access during the

performance. Some of these performances such as discussions are interactive, that is, involve the audience while the

performance is being conducted, while others such as plays are non- interactive. In either case, we assume what the

performers do is determined by a script for each performance. Moreover, in either case, special instructions may be

provided at the start of or during a performance to determine which parts of the script are exercised. For instance, the

script for a musical concert may include both fast and slow tunes, and the performers may be asked to focus on slow or

fast tunes in different performances.

Each performance may involve one or more cooperating roles or performers, each of who is responsible for some

aspect of the performance. The theater management is responsible for operating details such as determining which

performances are staged, allowing audience members to see only the performances they are authorized to see, and

ushering audience members into and out of performances. Stagehands help the performers execute their script.

1
 Copyright Prasun Dewan, 2000.

2
 In the spirit of “All the world‟s a stage…” from As You Like It, Shakespeare.

Introduction 2

Performer

Theater

Performance

Languagewritten in

Audience

performs

Performance

Script

follows

Theater

Management

managing

Notebook / Teleprompter

stored in

Stagehand

assists

Real Trial

fetched from

Archive

Performer

Figure 1-1 The Basic Theater World

 In our theater world, scriptwriters are free to write in languages that the performers do not understand. Translators

convert from the language of the scriptwriter to the language understood by the performers. A translator may do the

complete translation before the performance is staged or do it sentence by sentence during the performance (Figure 2).

Original

Script
written in Script

language

 reads entire

 script

Translator

 writes entire

script

Translator (Interpreter)

hears sentence

speaks sentence

Performance

Script

Performance

Languagewritten in

Figure 1-2 Performing a Script in a Different Language

Introduction 3

A script may refer to reference material that the scriptwriter did not write. For instance, a state-of-the-union speech

may refer to data from a report on the economy. Typically, the script will be linked to the reference material by a

secretary (Figure 3). Several kinds of errors may be present in a script:

 spelling errors (e.g. cariage),

 grammar errors (such as “ Me and Bobby McGee”.),

 semantic inconsistencies among different parts of the script (such as a role called by two different names in a

script, or the same name given to two different roles),

 errors having to do with the execution of the script (such as a performer being asked to fetch the moon!)

Reference

Material

Secretary
links

Original

Script

Script

Writer

written

by

Word Processor, Script Writer

Translator / Interpreter,

Stagehand, Performer

checked by
uses

Word Processor /

Typewriter

problems

Syntax, Semantics, Logic,

& Style

Figure 1-3 More of the Theater World

Several agents may detect the errors in the script. For instance, the script writers themselves may detect all kinds of

errors, word processors may detect spelling and grammar errors, translators/interpreters can detect the grammar errors

and semantics inconsistencies, and the stage hands/performers would detect some of the execution errors at

performance time. To reduce the likelihood of execution errors, it is important to have several trials before the final

performance (Figure 1). Trials are particularly important if the performance is interactive, since unanticipated audience

input may be received.

It is not enough to remove all errors in a script. It is also important to make it aesthetically pleasing by following

principles of good style. For instance, though „‟I and Bobby McGee‟‟ is technically correct, we should avoid being

egotistical and instead say: „‟Bobby McGee and I‟‟.

Theater Vs Computer World

 This theater world has counterparts in the computer world (Figure 4, 5, 6).

Introduction 4

Computer World Theater World

Hardware Theater

Operating System Theater Management

Program Performance

Processor Performer

Instruction (e.g. add 2 to 5) Performance action (e.g. walk 3 steps.)

Source Code Original Script

Object Code Performance Script

Programming Language Script Language (e.g. German)

Machine Language Performance Language (e.g. English)

Programmers Script Writers

Library (of Code) Reference Material (from Books)

Translator (Compilers/Interpreter) Translator (Before/During Performance)

Users Audience

Disks Archival Storage Areas

Memory Script performance notebook accessible to

performers

Memory Page A Notebook Page

Memory Word A Notebook Line

Memory Address (Page Number, Word Number) Line Identification (Page Number, Line Number)

Running a Program Performing a Script

Interactive Program Performance with audience participation

Non-interactive (Batch) Program Performance with no audience participation

Program arguments Special instructions at start of performance

Runtime Stage-Hands

Editor Typewriter/Wordprocessor

Editing Programs Writing Scripts

Lexical Error Spelling Error

Syntax Error Grammar Error

Semantics Error Inconsistencies in Script

Logic Error Execution Error

Debugging Staging trial performances

Style Principles Style Principles

Table 1 Theater vs Computer World

 The computer hardware provides the stage for executing programs. Programs are “performed” by processors, also

called central processing units (CPUs), which execute a variety of instructions such as addition, subtraction,

multiplication, and division. The execution of programs is managed by the operating system, which allows authorized

users to logon and execute the programs to which they have access.

Introduction 5

Object

Code
Machine

Languagewritten in

Processor
Memory

fetched from

Disk / Tape

stored in

Debugging

follows

interacts

with

Runtime
Real

assists

managing

Operating

System

Figure 1-4 Computer Analog of Figure 1

A program is a script written in some programming language, and it must be translated into the machine language

understood by the processor on which it executes. It is often combined with library code (written by some other

programmer) by a linker before the processor executes it. The linkage can be done before the execution or dynamically

when the library code is referenced by some instruction in the program.
3

The code or script of an executing program is stored in memory, which is divided into a sequence of fixed-size chunks

called memory pages, which in turn are divided into smaller, fixed-sized units called words. Each memory word has a

memory address, and the address of the next instruction to be executed is kept in the program counter. Computer

memory serves not only as a repository of program code but also as scratch paper for holding data executing programs

need to compute their results.

Not all programs that we may want a computer to execute can fit simultaneously in its memory. Therefore, they tend to

be stored in disks, which are one form of archival storage. (Tapes are another, slower but larger and more traditional,

form of such storage.) Disks come in various forms – floppies, zip discs, hard discs, and compact discs. When a

program is executed, the operating system copies it from disk and loads it into memory.

The results of programs are viewed by users; interactive programs receive input from users regarding how the

computation should proceed, whereas non-interactive or batch programs do not offer this flexibility. In either case,

parameters or arguments may be supplied to the program when it is executed to influence what it computes. For

instance, a document name may be supplied as an argument to a word processor to indicate the document to be

manipulated

The programming language implementation provides a piece of software, called the language runtime, which helps

with program execution; for instance, gathering input from the user and reporting errors to users. It is called the

runtime since it executes while the program is executing.

3
 The suffix .dll you see on some Microsoft files stand for dynamically linked library.

Introduction 6

While a performance script may be written using a word processor, which has some knowledge of natural languages

such as English and German, a program is written using an editor, which may have some knowledge of one or more

programming languages (Figure 5).

Libraries

Source

Code

Linker
links

uses

Programmer

written

by problems

written in Programming

Language

Editor, Programmer,

Translator, Operating System

Runtime, Processor

checked by

Syntax, Semantics, Logic,

& Style

J++

Figure 1-5 Computer Analog of Figure 2

As in the case of a performance, before a program is released, it is important to find mistakes or bugs,
4
 which are

discovered during the debugging phase.

Moreover, it is important to follow style principles, so that others, who may have to maintain our code, can understand

and change it. Style principles can also allow software tools to understand our programs. We will see in this book an

important example of such a tool, called ObjectEditor.

Thus, we can see there are many similarities between the computer and theater worlds. An important difference

between them is that unlike the theater performers, the program performer, i.e. the processor, is naive (that is, it has no

innate knowledge) but fast. Because it is naive, it has to follow the script and cannot improvise. As a result, it always

gives the same performance for the same script and user input/arguments.

Another difference is that the language the processor understands is almost never the language a program writer uses. It

understands a low-level binary machine language consisting of 1's and 0's while programmers normally write in higher-

level programming languages, which are closer to natural languages such as English. Thus the role of a translator is

very important in the computer world. A translator may be a compiler or an interpreter (Figure 7). A compiler does the

complete translation before the program is executed, using the context of the complete source code in the translation

process. An interpreter, on the other hand, does the translation during program execution, translating each instruction

individually, just before it is executed. An interpreter can slow the performance down but has the advantage that it

translates only part of the script that is actually performed. (Because of user input and arguments, not all parts of a

program may be executed.)

4
 One of the early computer scientists, Grace Hopper, in the process of trying to determine why a relay was not

working, traced the problem to a moth that was trapped in the relay, preventing it from closing. She filed it away in her

logbook as the bug that caused the problem. Ever since, the word bug has come to denote in computing as a cause of an

error.

Introduction 7

Source

Code

Object

Code

written in

Compiler Interpreter

 reads entire

 code
reads statement

 writes entire

code

writes statement

Machine

Languagewritten in

Figure 1-6 Computer Analog of Figure 3 - Program Translation

The translation process may involve both a compiler and an interpreter, with the compiler doing the major part of the

translation before program execution, leaving the rest to the interpreter at execution time . This is a useful technique to

support portability: The compiler translates the program into platform-independent intermediate code, which is then

translated by a platform-specific interpreter into the machine code for the specific platform, as shown in Figure 8.

Platform-Independent

Intermediate Code

Interpreter

Platform-Specific

Machine Code

Compiler

CPU

Source Code

Introduction 8

Figure 1-7: Translating using both a Compiler and Interpreter

Typically, the language used to generate intermediate code is very close to the machine language of most computers,

making the task of implementing the platform-specific interpreter relatively easy. This is the approach taken in Java

implementations, about which we will study in more detail later.

Because a program executes so instructions so rapidly, it is difficult to see effects of individual instructions, which is

important when trying to find which one is at fault in an erroneous program. Therefore, a special tool, called the

debugger, is often provided to trace program execution during the debugging process. A debugger allows you to single-

step through the program, that is, suspend execution after each step of the program, thereby allowing you to see the

effects of each program step. Thus, it essentially allows you to see the program execution is slow motion, so that you

can better study what it is doing. It also allows you to annotate one or more program instructions as break points. When

program execution reaches a break point, the debugger suspends the execution so that you can see the results of the

program so far. Once you completely observed the effects, you can resume execution.

Why Java?

 In this course, we will study programming, which means, we need to study a programming language in which we can

program. Like natural languages, there are several programming languages, such as FORTRAN, BASIC, COBOL,

Pascal, Lisp, C, Ada, Modula, Eiffel, Smalltalk, and C++. People brought up on different programming languages often

have religious wars over which is best. We chose Java for this course because:

 It is a modern language, having the best features of most of the languages that have been developed so far. In

particular, it has extensive capabilities for creating modular programs, that is, programs composed of smaller units

much as a book or a play is composed of smaller units such as chapters, sections, paragraphs, and sentences.

Modular programs are easy to write and understand since we focus, at any one point, on a small module of the

program rather than the entire program.

 In comparison to C-based languages, it provides good error detection– an important requirement in an introductory

course.

 It comes with a rich library, which embodies many of the programming principles we wish to cover in this course.

Seeing concrete, useful implementations of the principles will hopefully make you follow them, just as watching a

good tennis match can act as inspiration to play well!

 It provides special “reflection” facilities (which we will not actually study in this course), missing in most

conventional languages, that make it possible to write teaching tools, in particular, the tool ObjectEditor,

mentioned before.

Java has several other interesting features such as network support and integration with the Web, which are not relevant

for an introductory programming class and thus will not be covered here.

The choice of the programming language is not that significant for this course, since the focus here is on learning

programming concepts rather than some specific language. Java will simply be a means for learning programming. We

will try to focus mainly on those concepts of Java that are found in other popular languages today and not address

Java‟s idiosyncrasies. Thus, this is a course on introductory programming and not Java.

 As with natural languages, programming languages are related in that some languages have been developed from

others. In particular, Java, C++ and other “object-based languages” have been developed from Smalltalk and Simula.

 Moreover, like natural languages, there are dialects of programming. A dialect of a programming language can be

caused by at least two reasons:

 A particular implementation adds to the vocabulary of the standard language through predefined libraries. Strictly

speaking, libraries are not part of the language, just as a set of technical terms defined in some reference book is

not part of the English language. The term Java Development Kit (JDK) is used for the combination of a version of

the Java language and library. However, some of them are as important as the language, providing a set of system-

provided tools on which the programmers come to depend. As a result, in practice, they are typically considered

part of the language. Therefore, in this course, we will often use the term Java and JDK, interchangeably.

Introduction 9

 The language writer sometimes leaves certain language features unspecified, which a particular computer system is

free to fill in as it wishes; just as a script writer leaves certain performance details unspecified such as the size of

the stage, the accent used to deliver lines, and the colour of the props provided by the stage hands.

Java has been designed to be portable, that is, provide the same features in all implementations. However, the

portability goal remains elusive, with Microsoft and other vendors providing customized features. More important, the

Java language and libraries continue to evolve rapidly, with each new version substantially differing from the previous

one. In this course, we will focus mainly on fundamental concepts found in all versions of Java. However, the chapter

on AWT and the tool, ObjectEditor, will assume version 1.1 of the Java Development Kit. ObjectEditor also assumes

the Swing 1.1 library. Various versions of JDK for different can be downloadable from the site

http://www.javasoft.com/products/index.html.

In addition to differences in languages and libraries, there are also differences in the Java programming environments.

A programming environment for a particular language is a software system that provides tools to support editing,

compiling, interpreting, and debugging of programs in that language. While the behavior of the compilers and

interpreters are determined by the language, a programming environment has complete freedom in the user-interfaces it

provides to execute these programs, and in the kind of editors and debuggers it provides for the language.

Modeling the Computer Vs a Program

The theater analogy we studied here is independent of the programming language and environment used for developing

and executing program code. Its main purpose is to explain the working of a computer, identifying its major hardware

and software components. It treats a program as an indivisible black box, not dissecting its various parts, which tend to

be language specific. Later we will look at analogies, based on our experiences with English, Math, and physical

objects, which will explain the components of a Java program.

Summary

 In order to program a computer, it is important to have some understanding of a variety of hardware and software

concepts such as CPU, operating system, program, object code, source code, libraries, compiler, interpreter, linker,

memory, and disks.

 By drawing an analogy between the computer and theater world, we gain the extent of understanding we need to

code and execute programs.

 We have chosen Java as the programming language because it has modern features, provides good error detection,

comes with standard libraries that embody many of the style principles we will study here, and allows the writing

of teaching tools, one of which we will use in this book.

 A programming language is only part of a programming environment, which also includes debuggers and editors.

Exercises

1. Define compiler, interpreter, linker, operating system, syntax error, semantics error, logic error, and style principle.

http://www.javasoft.com/products/index.html

