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Abstract
Mixed-criticality scheduling algorithms, which attempt to
reclaim system capacity lost to worst-case execution time pes-
simism, seem to hold great promise for multicore real-time
systems, where such loss is particularly severe. However,
the unique nature of these algorithms gives rise to a number
of major challenges for the would-be implementer. This pa-
per describes the first implementation of a mixed-criticality
scheduling framework on a multicore system. We experimen-
tally evaluate design tradeoffs that arise when seeking to iso-
late tasks of different criticalities and to maintain overheads
commensurate with a standard RTOS. We also evaluate a key
property needed for such a system to be practical: that the
system be robust to breaches of the optimistic execution-time
assumptions used in mixed-criticality analysis.

1 Introduction
In embedded real-time systems, it is commonly the case that
the severity of failure is not the same for all tasks in the system.
For example, the failure of one task may cause loss of life,
while the failure of a different task may only cause degraded
system performance. Such tasks are said to be of differing
criticalities. Because a failure may have severe repercussions,
the schedulability of such a system is conventionally assessed
assuming very pessimistic worst-case execution times for
highly critical tasks. Thus, the system may be fully utilized
from a validation and certification perspective, i.e., at design
time, but be severely underutilized in practice, i.e., at run time.

A technique for reclaiming this spare capacity has been pro-
posed by Vestal [15]. He observed that, from the perspective
of scheduling a less critical task, the execution times assumed
of more critical tasks are needlessly pessimistic. Thus, he
proposed that schedulability tests for less critical tasks be
altered to incorporate less pessimistic execution times than
those of the more critical tasks. More formally, in a system
with L criticality levels, L system variants are analyzed: in
the level-l variant, level-l execution times are assumed. The
degree of pessimism in determining such execution times is
level-dependent: if level l is of higher criticality than level
l′, then level-l execution times will be generally greater than
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level-l′ execution times. The resulting task model has come
to be known as the mixed-criticality task model.

The publication of [15] spurred additional work by other
researchers on mixed-criticality scheduling, almost all of
which has been directed at uniprocessor platforms (see [3] for
relevant citations). In contrast to this uniprocessor-directed
work, researchers at UNC Chapel Hill, in collaboration with
colleagues at Northrop Grumman Corp. (NGC), have been
working to determine whether mixed-criticality scheduling
techniques can be practically applied on multicore platforms.
This work has been motivated by the requirements of next-
generation unmanned aerial vehicles (UAVs). In this context,
there is a desire, primarily motivated by size, weight, and
power (SWaP) concerns, to consolidate a large computational
workload on a few multicore machines. Moreover, different
criticality levels are intrinsic to such a workload. For exam-
ple, tasks that are responsible for adjusting flight surfaces or
responding to immediate threats are “safety critical”; tasks
that are responsible for external communication and decision-
making capabilities are “mission critical”; and (some) tasks
that perform route mapping and surveillance may require sig-
nificant computational capacity but do not have strict timing
requirements and hence may be viewed as “best effort” (i.e.,
non-real-time). Of course, the main challenge in this do-
main is to devise mixed-criticality scheduling (and ultimately
synchronization) approaches for multicore platforms that are
amenable to certification.

As a step towards addressing this challenge, the UNC/NGC
team proposed a mixed-criticality scheduling framework for
multicore platforms and provided corresponding schedulabil-
ity analysis results [14]. This framework, referred to here
as MC2,1 supports five criticality levels, denoted A (highest)
through E (lowest). The choice of five levels was motivated
by the five criticality levels found in the DO-178B standard
for avionics. As explained in greater detail later, level-A
and -B tasks in MC2 are subject to hard deadlines and are
scheduled via partitioning, while level-C and -D tasks are
subject to bounded deadline tardiness and are scheduled glob-
ally. Level-E tasks are scheduled as best-effort tasks because
DO-178B merely specifies that a failure at this level must not
affect the operation of the aircraft. The schedulability analysis
provided for MC2 can be applied to validate the schedulability

1This notation, which stands for “mixed-criticality on multicore,” was not
used in [14]; we introduce it here for readability.



of the level-l system, where l ranges over A–D (as required
in a mixed-criticality setting; note that level E is best effort,
so it requires no schedulability analysis).

The schedulability analysis presented for MC2 assumes
an overhead-free task model. In practice, however, over-
heads can have a profound impact on schedulability. This has
been demonstrated in prior schedulability studies in which
overheads (but not criticalities) were considered (see [4] for
relevant citations). Two sources of overhead are of concern:
those introduced by the operating system (assuming, as we
do here, that the scheduling framework is implemented in
the OS instead of middleware) and cache-related costs due
to preemptions and migrations. In a mixed-criticality setting,
overheads should already be accounted for when determining
per-criticality-level execution times. However, properly de-
termining the impact of the OS-related overheads requires a
working scheduler implementation.

A scheduler implementation is also needed to address is-
sues of particular relevance to a mixed-criticality setting. For
example, while MC2 completely isolates level-A tasks from
tasks at other levels in theory, OS activities (such as process-
ing interrupts associated with lower-level work) can interfere
with this sense of isolation. How should the OS be designed
to minimize this interference?
Focus of this paper. There are two major contributions of
this paper: the first is a discussion of design tradeoffs that
affect mixed-criticality scheduling with a focus on reducing
scheduler-induced overheads; the second is an evaluation of
the robustness of the implemented mixed-criticality scheduler.

More concretely, we present an experimental evaluation
of MC2 motivated by the issues raised above as imple-
mented within a UNC-produced real-time OS (RTOS) called
LITMUSRT [4]. This evaluation was conducted to assess
different RTOS design tradeoffs that affect mixed-criticality
scheduling and to determine how well the theoretical schedu-
lability analysis of MC2 carries over to practice. Regarding
RTOS design choices, we sought to determine whether over-
heads in an RTOS that must manage multiple criticality levels
can be made commensurate with overheads seen in RTOSs
where criticalities do not arise. Furthermore, we sought to con-
strain and assess the impact of OS interference with respect
to cross-level isolation guarantees.

With respect to schedulability, we also sought to assess
the robustness of mixed-criticality analysis. As noted earlier,
under this analysis, a system with L criticality levels is viewed
as L different systems: when analyzing the system at level
l, all tasks at all levels are assumed to execute for at most
their level-l execution times. What happens in practice if the
system functions as an “almost” level-l system, i.e., level-l
execution times are sometimes, but not often, exceeded? Is
real-time correctness at level l completely compromised in
this case? Or, does deviance from correct level-l behavior
fall off more gradually as violations of level-l execution times
become more common? Obviously, the latter would be pre-
ferred in practice. To determine the robustness of MC2, we

conducted a series of experiments in which, for each level l,
deviance from level-l execution times is gradually increased.

To our knowledge, this is the first paper on multicore
mixed-criticality scheduling to consider OS-related imple-
mentation issues. However, it is only a first step towards the
practical deployment of a mixed-criticality multicore sched-
uler. For a mixed-criticality scheduler to be applied in practice,
appropriate techniques must be used to determine per-level
task execution times. Such techniques are not considered in
this paper; rather, the focus of this paper is the implementation
and evaluation of a mixed-criticality scheduler in a multicore
system. We assume that tools and techniques exist to de-
termine task execution times, and that the calculated times
include any overheads incurred. We further assume that such
tools properly account for relevant architectural features (e.g.,
shared caches, if they exist) and software characteristics (e.g.,
task working set sizes).

In the rest of this paper, we discuss needed background
(Sec. 2), present our design and analyze the effects of imple-
mentation tradeoffs (Sec. 3), consider the issue of robustness
(Sec. 4), and then conclude (Sec. 5).

2 Background
In this section, we first present necessary background on multi-
processor real-time scheduling. Then, we present an overview
of MC2. Finally, we give an overview of LITMUSRT, the
RTOS underlying our implementation of MC2.

2.1 Underlying Concepts

Task model. The MC2 framework assumes that temporal
constraints for tasks can be modeled by the periodic mixed-
criticality task model. Under this model, each task T has an
associated period, T.p, and execution time for each criticality
level l, denoted T.el. (This value may be undefined for criti-
cality levels higher than T ’s own criticality level.) Successive
jobs of T are released every T.p time units, starting at time
0, and a job released at time t must complete by its deadline,
t+ T.p. The level-l utilization, or long-run processor share
required by a task assuming a level-l execution time, is given
by T.ul = T.el/T.p.

Our focus is on the implementation of a mixed-criticality
multicore scheduler; therefore, we assume that techniques
exist for determining task execution times. The calculated
execution times should account for variations and overheads
caused by the OS, impacts due to a task’s working set size,
and architecture-specific issues such as cache line migrations.

Schedulability. A task system is schedulable if, given a
scheduling algorithm and m processors, the algorithm can
schedule tasks in such a way that all temporal constraints are
met. For hard real-time (HRT) tasks, jobs must never miss
their deadlines, while for soft real-time (SRT) tasks, some
deadline misses are tolerable. In the latter case, we require
deadline tardiness to be provably bounded by a (reasonably



small) constant (e.g., using analysis such as that found in [9]).

Hierarchical scheduling. MC2 uses a two-level hierarchical
scheduling approach. When the scheduler is invoked to select
the next task to run on a processor, it first selects a subset of
tasks, known as a container (in other literature, sometimes
called a server). Second, the scheduler selects a task to ex-
ecute from the chosen container, according to a scheduling
algorithm associated with that particular container. In MC2,
such a scheme is used to treat differently tasks of different crit-
icality. It also allows the temporal correctness of subsystems
to be validated independently.

2.2 MC2

MC2 was designed assuming a modest core count (e.g.,
m ∈ {2, . . . , 8}), and we assume this as well throughout
this paper.2 Because the level-D tardiness bound of the origi-
nal version of MC2 in [14] is large, we instead implement a
slight variation of MC2 supporting four criticality levels (in-
stead of the original five), labeled A through D. In this variant,
the original level-D system is not implemented, and the best-
effort level-E system is simply “renamed” to level D.3 In the
new system, A is the highest criticality, while D is the lowest
criticality. Levels A and B each comprise m containers—that
is, one per processor, per level. Levels C and D each comprise
one container, shared among all m processors. This container
allocation scheme is illustrated in Fig. 1.

In our implementation, there is implicitly an additional
level of containment, as per-task budgets are enforced. Specif-
ically, a level-l task T is assigned a budget (i.e., an OS-
enforced execution time) equal to its execution time at level l,
T.el. In essence, T itself is implemented as a single-task con-
tainer (within a container for its level) that receives a budget
allocation of T.el time units every T.p time units. If an actual
job of T has an execution time exceeding T.el, then several
consecutive budget allocations will be required to service it.
Hereafter, we use the term “container” only to refer to per-
level containers. Note that, while budget enforcement is the
default in our implementation, it can be disabled.

We now describe the two-level hierarchical scheduling
scheme employed by MC2.

Level A. Level-A tasks are statically prioritized above all
other tasks in the system. They are scheduled according to a
precomputed dispatching table, following the cyclic executive
scheduling model [2]. The predictable and easy-to-analyze
nature of this type of scheduler has led to its adoption as the
de facto standard in industry for scheduling highly-critical
workloads.

If no level-A task is eligible to run on a processor at a given
instant, the scheduler instead considers level-B tasks. Further-

2Multicore platforms are currently not used in avionics to host highly
critical workloads. Enabling a platform with two to eight cores to be used
would be a significant innovation.

3In the remainder of this paper, the use of “MC2” to refer to the four- or
five-level variant is context-dependent.
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Figure 1: Container allocation under MC2 on a four-processor
system. “CE,” “EDF,” “G-EDF,” and “Best Effort” indicate
the scheduler used for each container (see text for details).

more, if a level-A task completes before its assigned level-A
budget has been exhausted, MC2 allows a lower-criticality
task to run for the duration of the remaining budget. This
technique is known as slack shifting.

Slack shifting is a key optimization that allows lower-level
work to safely execute earlier than it otherwise would. When
slack shifting is in progress, the completed job, whose excess
budget is being consumed by lower-level work, is known as a
ghost job. From a schedulability perspective, slack shifting is
transparent for tasks at the criticality level of the ghost job.

Level-A schedulability is achieved by applying existing
techniques for constructing cyclic executive schedulers. In
determining level-A schedulability, all tasks of lower critical-
ity are ignored. Schedulability is guaranteed at runtime as
long as no level-A task exceeds its level-A execution time.
See [14] for restrictions on level-A task periods.

Level B. When no level-A tasks are eligible to run, or when a
level-A task is “running” as a ghost job, the scheduler selects
a level-B task (if one is eligible). Level-B tasks are scheduled
in earliest-deadline-first (EDF) order, which is optimal on
a uniprocessor. Because there is one level-B container per
processor, level-B scheduling across the system resembles the
partitioned EDF (P-EDF) scheduler, and has similar theo-
retical schedulability properties. P-EDF is a good candidate
scheduler for HRT workloads that do not require the strict
behavior provided by a table-driven cyclic executive.

Level-B schedulability is achieved when the level-B exe-
cution times of level-A and -B tasks on each processor do
not exceed the total utilization of that processor. Schedula-
bility is no longer guaranteed at runtime when some level-A
or level-B task exceeds its level-B execution time. (In Sec.
4, we examine what happens to level-l tasks when execution
times exceed level-l times.)

Similarly to level-A jobs, level-B jobs become ghost jobs
when they complete before exhausting their level-B budget.
In this case, or when no level-B job is eligible on a processor,
a level-C job will be selected to run (if one is available).

Because EDF scheduling has not yet been widely accepted
by the certification community for HRT tasks,4 it is worth

4The ARINC 653 specification for safety-critical RTOSs is a notable
exception; it allows EDF scheduling as a second-level scheduler under a



Crit. T.p T.eA T.eB T.eC T.eD
T1 A 5 3 2 1 1
T2 A 10 4 2 2 2
T3 B 10 – 2 2 1
T4 B 20 – 2 1 1
T5 C 10 – – 2 2
T6 C 20 – – 2 2
T7 D 5 – – – 2

Table 1: Example mixed-criticality task system.

noting that MC2 could easily be modified to support rate-
monotonic [12] scheduling in place of P-EDF. Besides being
straightforward to implement, such a modification would not
affect schedulability under the existing analysis, given restric-
tions on level-B task periods assumed in [14], where such
analysis is presented. However, we chose to retain P-EDF at
level B for the implementation described in this paper, in the
hope that these restrictions will be lifted in a future extension
to MC2.

Level C. Unlike higher-criticality tasks, level-C tasks are not
assigned to processors, but are instead scheduled globally
across all processors. They are selected in EDF order; there-
fore, level-C scheduling resembles the global EDF (G-EDF)
scheduler. Level-C tasks have only a SRT guarantee, namely,
bounded deadline tardiness. G-EDF is known to be optimal
with respect to ensuring bounded tardiness [9].

A schedulability test for level-C tasks is given in [14]
assuming level-C task execution times. Schedulability is guar-
anteed at runtime as long as no level-A, -B, or -C task exceeds
its level-C execution time. (Again, in Sec. 4, we examine
what happens to level-l tasks when execution times do ex-
ceed level-l times.) As with higher levels, slack shifting is
employed at level C (to allow level-D jobs to run earlier than
they otherwise would).

Level D. Level-D tasks are scheduled on a best-effort basis.
Thus, no schedulability test is provided. This level can be
used for tasks that simply need to make a predictable amount
of progress over time, and tasks that require a quick response
time but are not considered HRT or SRT.

Example. Table 1 gives an example mixed-criticality task
system, showing each task’s period and execution times for
different criticality levels. Fig. 2 shows how the system would
be scheduled under MC2 for the first 10 units of execution
time. (Although this paper concerns multiprocessor systems,
only a single processor is assumed in the example, in order to
ease understanding.)

Note that the overall design of MC2 was motivated by a
desire to make intelligent tradeoffs among real-time schedu-
lability (i.e., highly utilizing the system), certification con-
straints, and engineering practice. More detail on these trade-
offs can be found in [14].

hierarchical scheduling paradigm [11].
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Figure 2: Possible MC2 schedule for the task system in Ta-
ble 1. Empty boxes represent ghost jobs. Up-arrows indicate
releases, while down-arrows indicate deadlines.

2.3 LITMUSRT

We implemented MC2 using LITMUSRT, an extension to
the Linux kernel that supports real-time schedulers as event-
driven plugins [4]. Two categories of events exist under
LITMUSRT. Time-based events, such as job releases, are han-
dled by plugin-defined interrupt routines triggered by Linux’s
high resolution timer (hrtimer) framework. Scheduling events,
including job completions and synchronization requests, are
also handled by plugin-defined event handlers.

Our plugin implementation provides event handlers for
levels A through C. (Level-D tasks are relegated to the stock
Linux scheduler.) The code for our plugin can be found on
the LITMUSRT homepage [1]. We do not elaborate on our
event handlers, as cyclic executive schedulers have long been
well-understood, and significant prior work has been done
on the implementation of P-EDF and G-EDF schedulers in
LITMUSRT [6]. Instead, in Sec. 3, we focus on issues that
arise from supporting all of these schedulers simultaneously
in a hierarchical manner, including specific challenges that
come with supporting the MC2 framework.

3 Implementation Description and Evaluation
In this section, we explore the question of how best to support
the MC2 framework in an RTOS environment. For MC2 to
prove viable, two key RTOS overhead-related criteria must be
met. First, it must be possible to bound overheads by relatively
small constants. In the face of the complex state synchroniza-
tion needed to support MC2’s hierarchical scheduling require-
ments, this is a serious challenge. Second, the overheads that
do exist must be made to penalize higher-criticality tasks as
little as possible (and, instead, penalize lower-criticality tasks).
Otherwise, since they are provisioned in a pessimistic manner
(such a provisioning would include overhead accounting),
higher-criticality tasks could be adversely impacted.

The rest of this section is organized as follows. First,
we discuss relevant overhead metrics. Then, we discuss four



specialized techniques used to meet the criteria outlined above.
Finally, we present an evaluation of overheads in general and
of our techniques in particular.

3.1 Overhead Metrics
We are concerned with two kinds of RTOS overheads: release
overhead and scheduling overhead.

Release overhead is accrued when a LITMUSRT release
handler, triggered by the firing of a release timer, is executing.
The release handler removes each task being released from
the applicable release queue (i.e., the release queue associated
with the container to which that task belongs), and merges it
into the applicable ready queue. (For level A, rather than ac-
cessing queues, the release handler references the applicable
cyclic scheduling table.) The release handler also determines
if each released task needs to be scheduled and, if so, noti-
fies the affected processor, triggering it to begin executing a
scheduling event.

Scheduling overhead is accrued when a scheduling han-
dler is executing, triggered by either a task completion, or
a notification of the need to reschedule. Unlike the release
handler, the scheduling handler must execute on the proces-
sor that is being rescheduled. If a task is already running
on the processor, the scheduling handler will preempt it and
merge it into the applicable ready queue. (For level A, no
requeuing is necessary.) If the preempted task is from level
C, the scheduling handler will determine whether the task is
of sufficient priority to begin executing on a remote proces-
sor. If so, the handler notifies that processor to reschedule.
Finally, the scheduling handler removes the next task to run
from the applicable ready queue (or references it in the table)
and initiates a context switch to that task.

Fig. 3 (a) gives examples of these overheads. At time 3 task
TB releases a job. This causes the release handler to execute
on P2 (though it could have executed on any processor). The
handler dequeues TB from the release queue of P2’s level-B
container, and enqueues it in the ready queue of the same
container. Then, because level-B tasks are of higher prior-
ity than level-C tasks, it initiates a scheduling event on P2,
causing the scheduling handler to execute. The scheduling
handler preempts TC and enqueues it in the level-C ready
queue (which is global), and, observing that TC has sufficient
priority to execute on P1, notifies P1 of the need to initiate
a scheduling event. (This notification is accomplished using
an inter-processor interrupt.) Finally, the handler dequeues
TB from the ready queue and initiates a context switch to it.
After P1 receives the notification, it, too, initiates a scheduling
event, causing TC to resume execution.

In provisioning the task system, the execution budget of
TB must be inflated to account for the overhead to release
and schedule TB , as well as any other release and scheduling
events that can occur on P2 while TB is executing. Note that
this overhead is increased by the need to service a level-C
task from time 4 to time 5. This runs counter to the second
criterion listed at the beginning of Sec. 3. In Sec. 3.2, we

introduce and evaluate a technique to rectify this problem.

3.2 Specialized Techniques

Fine-grained state locking. As noted at the beginning of
Sec. 3, the scheduler state data that must be synchronized
across processors for MC2 is significant. Each container has
an associated dispatch table (level A), or associated ready and
release queues (levels B and C). Furthermore, each processor
has state associated with it indicating the task currently sched-
uled to run. Spin locks are used to synchronize access to data
structures on a per-container and per-processor basis. Fig. 4
gives an illustration.

The overall scheduling approach of MC2 creates a high
degree of contention for the described state. A naı̈ve imple-
mentation that does not carefully optimize locking patterns
would almost certainly suffer from significant overhead. In
contrast, our implementation adopts the strategy of maintain-
ing scheduler state locks that are as fine-grained as possible.
Two important properties of our implementation that result
from this strategy include: (a) processor locks are never held
for more than O(1) time; and (b) container locks are never
nested inside other container locks.

Regarding (a): In order for an event handler to check for
the need to initiate a local or remote scheduling event, it needs
to compare the task running on the relevant processor to the
highest-priority tasks in some container’s ready queue. Ob-
taining that task typically requires O(log n) time, where n is
the number of tasks in the ready queue. Intuitively, it would
appear that the checking operation requires a task to hold both
a processor lock and a container lock for O(log n) time. How-
ever, we employ a specialized strategy to avoid this penalty.
In this strategy, processor locks are always nested inside con-
tainer locks (not the other way around), and the results of all
needed O(log n) operations are obtained and cached before
the processor lock is acquired. Thus, the processor lock is
never held for more thanO(1) time. While this strategy would
not necessarily pay off in single-level global schedulers, we
believe it is an important optimization for MC2, because pro-
cessor locks are especially highly contended (since multiple
containers can “compete” for the same processor lock).

Regarding (b): A context switch that transitions between
two different criticality levels requires obtaining locks for two
containers. In our implementation, the first lock is dropped
before the second is acquired. For example, in Fig. 3 (a), the
scheduling handler that runs at time 4 must enqueue TC into
the level-C ready queue and dequeue TB from P2’s level-B
ready queue. In order to prevent holding both of these con-
tainer locks at once, TC is moved from P2’s lock-protected
running task data structure to stack memory, instead of being
immediately enqueued into the level-C ready queue. Only
when the scheduling of TB completes is TC finally enqueued
in the level-C ready queue.

A naı̈ve implementation would be vulnerable to deadlock
in two scenarios: when a processor must simultaneously ac-
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Figure 4: MC2 scheduling state on a two-processor system.

cess both CPU and container state, and when a processor must
simultaneously access state from two containers. Fortunately,
under (a) and (b), our implementation avoids these scenarios.
The fixed locking order given for (a) avoids the first deadlock
source by preventing circular dependencies between container
locks and CPU locks, i.e., no processor can block on a CPU
lock which is, in turn, held by a processor blocked on any
container lock. Rule (b) avoids the second deadlock source by
ensuring no container lock is ever held by a processor waiting
on another container lock.

Note that the level-C container includes a data structure
(not shown in Fig. 4) that allows event handlers to determine
which processors (if any) should be preempted if higher-
priority level-C work becomes available. In the case of
Fig. 3 (a), this data structure needs to be updated immedi-
ately when TC is preempted. However, updates to this data
structure normally require the level-C lock, which has not yet
been acquired by the scheduling handler. To work around
this problem, our implementation uses a partially wait-free
technique in which a consistency check must be performed
by any handler that does acquire the level-C lock.

Interrupt master. It has been shown that redirecting all in-
terrupts (such as timer interrupts) to a single processor, de-
noted here as the interrupt master, can significantly improve
schedulability in single-level global schedulers [6]. Our imple-

mentation supports an interrupt master as an optional feature,
allowing us to evaluate its effect in hierarchical scheduling
and in MC2 in particular (presented later in Sec. 3.3). When
this feature is enabled, all release events and device inter-
rupts occur on the interrupt master. This allows budgeting
for level-A and -B tasks on other processors to be less pes-
simistic, as it is not necessary to account for release overhead
suffered on behalf of other tasks. However, level-A and -B
tasks on the interrupt master are penalized by this scheme. A
real-world deployment may avoid allocating level-A and -B
tasks to the interrupt master for this reason (our experiments
take this approach).

Note that, by consolidating all device and timer interrupts
onto a single CPU, an interrupt master can potentially increase
the interrupt delays to which a single release event is exposed.
A real-world implementation would need to address this issue
if excessive device interrupt delays were possible. Specifi-
cally, the system would need to shield release events from the
effects of these delays.

Timer merging. Recall that MC2 was designed with avion-
ics workloads in mind. Such workloads tend to be highly (if
not entirely) harmonic in nature. Two tasks are harmonic with
respect to one another when the period of one task evenly
divides the period of the other. Under harmonic workloads, it
will commonly be the case that several (perhaps many) jobs
are released at approximately the same time.

Consider the pathological example given in Fig. 3 (c). At
time 1, tasks of levels A, B, and C are released. Their release
timers fire in reverse-priority order, causing the following
unfortunate sequence of events. First, the level-C task is
released; then it is scheduled to run. Then, the level-B task
is released; this causes rescheduling for the level-C task, and
the level-B task is scheduled to run. Finally, the level-A task
is released; this causes the level-B task to be preempted, and
the level-A task is scheduled to run.

Our implementation supports a feature, called timer merg-
ing, to rectify this situation. When this feature is enabled,
release events that will occur within 1µs of one another are
merged using anO(1) hash table operation. This results in the
behavior illustrated in Fig. 3 (d). The merging algorithm does



not easily scale across multiple processors, as synchronization
issues would arise that would require expensive global locks.
Thus, in our implementation, the timer merging feature can
only be used in conjunction with the interrupt master feature
(where timers only fire on a single processor), and we evaluate
the two features as a single unit (later in Sec. 3.3).

Work redistribution. Recall Fig. 3 (a), in which a schedul-
ing event for task TB must move task TC to the level-C ready-
queue (while holding the container C lock) before TB can
execute. In such a case, a higher-criticality task is penalized
for this overhead, performing work and acquiring locks on
behalf of a lower-criticality task. This runs counter to our
stated goals. Thus, our implementation supports a feature,
which we name work redistribution, to offload this work to the
interrupt master. More specifically, when a higher-criticality
task preempts a lower-criticality task, the lower-criticality
task is placed on a special-purpose local queue, and a notifi-
cation is sent to the interrupt master (via an inter-processor
interrupt) to requeue the lower-criticality task in the applica-
ble container. The redistributed work is then included in the
scheduling overhead of a task on the interrupt master instead
of the overhead of the higher-criticality task. This process is
illustrated in Fig. 3 (b).

3.3 Overhead Measurements
We collected release and scheduling overhead samples by exe-
cuting three system configurations under our implementation
of MC2. Our task systems were designed to mimic workloads
that could be seen on avionics systems. Each level-A task
was randomly assigned a period of 25 ms, 50 ms, or 100 ms,
in accordance with common periods used in avionics appli-
cations [10, 13]. Level-B periods were randomly selected
to be harmonic with respect to the level-A hyperperiod and
limited to a maximum of 300 ms. Level-C periods were ran-
domly selected from the range [10, 100]ms and rounded to
the nearest multiple of five. We purposely selected smaller
periods to thoroughly test MC2; shorter periods result in more
scheduling decisions per unit of time and therefore increase
overhead. Similarly, we rounded level-C periods to increase
the probability of multiple scheduling decisions occurring
simultaneously, further increasing overhead.

In current avionics systems, highly-critical tasks represent
only a small portion of the overall workload (usually, at most
20% of the overall capacity5). Assuming this trend contin-
ues in future systems, we evaluated three different capacity
configurations for the level-A, -B, and -C sub-systems. The
following three-tuples represent the (A, B, C) capacity con-
figurations we evaluated: (5%, 5%, 65%), (10%, 10%, 55%),
and (20%, 20%, 35%). For example, the first configuration de-
notes that level-A, -B, and -C utilizations are upper bounded
by 0.05m, 0.05m, and 0.65m, respectively. Task utilizations
were obtained by generating a single execution time per task.

We varied the number of tasks running, n, from 20 to 120

5This estimate comes from private discussions with industry sources.

in steps of 20. For each n, we generated 10 task systems
per capacity configuration, for a total of 30 task systems for
each value of n. Our results (shown below) were obtained
by averaging the results from all 30 task systems for each
experimental configuration.

Each task consisted of an independent program period-
ically running and performing arithmetic calculations on a
32 kB per-task array for the amount of time given by the task’s
execution time. Level-A and -B tasks were not allocated to
the interrupt master for reasons explained in Sec. 3.2. Ad-
ditionally, each processor executed a background task that
repeatedly accessed a large array to emulate bus contention
and cache misses appearing in a heavily loaded system.

Three experimental runs were performed for each group
of 30 task systems, each with a different configuration of
the features described in Sec. 3.2. In the first run, only the
fine-grained locking feature was enabled. The second run was
similar to the first, with the addition of the interrupt master
and timer merging features. The third run was similar to the
second, with the addition of the work redistribution feature
(i.e., all features enabled). Other potential configurations were
either not feasible, since certain features require other features
to be enabled, or are omitted due to space constraints.

We performed our experiments on a six-core Intel Xeon
processor chip running at 2.13 GHz. Overheads were col-
lected using the Feather-Trace [5] tool, which imposes a small
overhead of 61 instructions to collect a sample. In total,
338,899,980 release and scheduling overhead samples were
recorded, consuming 5.05 GB of disk space.

Our measurements are plotted in Fig. 5. In this figure, the
left-side insets give release overhead measurements and the
right-side insets give scheduling overhead measurements. The
“level-l overhead” is the overhead due to executing a release
or scheduling handler for level-l. The top two graphs give
average overheads for all levels, the middle two graphs give
worst-case overheads for levels A and C, and the bottom two
graphs give worst-case overheads for levels B and C. In the
following paragraphs, we analyze the implications of the pre-
sented data for level-A, -B, and -C tasks separately. Following
this, we discuss the effectiveness of our features with respect
to the stated goals for our implementation mentioned at the
beginning of Sec. 3.
Level A. In provisioning level-A tasks, the execution bud-
get of each task will be pessimistically inflated to reflect
uncertainty about the task’s real execution cost and to reflect
RTOS overheads. Thus, for level-A tasks, the worst-case
overheads (in the middle two graphs of Fig. 5) are most rele-
vant. Note that, in accounting for RTOS overheads, a level-A
task T ’s execution budget must be inflated to account for its
own scheduling and release overhead, as well as any release
overhead incurred due to other tasks being released due to
interrupts that occur on T ’s assigned processor.

Considering first the worst-case level-A scheduling over-
heads as shown in Fig. 5 (d), the value of our implementation
techniques are readily apparent: enabling all of the proposed
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(a) Average-case release overhead (levels A, B, C).
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(b) Average-case scheduling overhead (levels A, B, C).
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(c) Worst-case release overhead (levels A, C).
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(d) Worst-case scheduling overhead (levels A, C).
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Figure 5: Overhead measurements under three feature configurations, with trend lines added for clarity. “Basic” indicates the
configuration with only the fine-grained locking optimizations. The “IM + TM” configuration adds to this the interrupt master and
timer merging features. The “All” configuration additionally includes the work redistribution feature. Numeric labels ([1] through
[9]) are printed near each curve for clarity. In a group of nearby curves, a set of labels printed horizontally indicates that the curves
are ordered top-to-bottom when the labels are read left-to-right, e.g., “[1][2][3]” indicates that curve [1] is above curve [2], and
curve [2] is above curve [3]. Arrows pointing from labels to curves are provided when curves intersect or are very near one another.



features (i.e., the curve “All (A)”) reduces worst-case level-A
scheduling overhead from approximately 25–32µs to approx-
imately 14–22µs. The much lower average-case scheduling
overheads in Fig. 5 (b) suggest that the worst-case values seen
in Fig. 5 (d) occur rarely.

Understanding the implications of the release-overhead re-
sults for level A in Fig. 5 (c) is less straightforward. Under the
“Basic” configuration (no release master), level-A tasks will
be interrupted by the release handlers of level-B and -C tasks.
Thus, level-A tasks must be penalized for their own release
overhead (i.e., “Basic: A” in Fig. 5 (c)), as well as some (po-
tentially large) number of releases at any level (e.g., “Basic:
(B)”and “Basic: (C)” in Fig. 5 (c) and (e)). Fortunately, the
situation greatly improves with the interrupt master enabled:
level-A tasks not on the interrupt master are never penalized
for lower-level task releases, because those releases occur on
the interrupt master only. Thus, with all features enabled (i.e.,
“All”) such a task suffers only a single instance of scheduling
and release overhead (both less than 22µs).6

While the overheads for each event may seem like a small
fraction of task execution time, in reality a single job’s execu-
tion time must be inflated to account for a number of overhead
sources. Consider a level-A task running in a system of 120
tasks. With no features enabled, the inputs to a (hypotheti-
cal) execution time analysis tool for this task would include
a level-A scheduling cost of 32µs and release event cost of
38µs, a level-B release event cost of 17µs, and a level-C
release event cost of 34µs, or 121µs total. Even without
additional pessimism added by an execution time analysis
tool, this is 16% of 750µs, one of the execution times used by
level-A tasks in our system. With all features enabled, these
inputs fall to a reduced level-A scheduling cost of 22µs and
release event cost of 22µs, or 44µs total (a 64% reduction).

Counterintuitively, some of the overhead curves trend
slightly downward as the number of tasks in the system in-
creases. This is most likely caused by decreased cache misses
in the scheduler code due to more frequent scheduling and
release overhead events [4]. This does not affect our conclu-
sions and is not discussed further here.
Level B. Like level A, level B is HRT and thus worst-case
overheads are most relevant. Also, like level A, a level-B task
T ’s execution budget would be inflated to account for both
a level-B schedule and release event as well as any release
events for other levels that interrupt T ’s execution while it
is running. With the interrupt master enabled, release events
for other levels are not included, and level-B tasks only need
to account for level-B release and scheduling overheads as
shown in Fig. 5 (e) and Fig. 5 (f).

In Fig. 5 (e), we see that enabling all features results in
a 30%–60% decrease in worst-case release overheads for
level B. In Fig. 5 (f), level-B worst-case scheduling overheads
are nearly unaffected (n = 20), improved by up to 35%

6In a real-world setting, the (relatively small) latency to send an inter-
processor interrupt from the interrupt master to the task’s assigned processor
when it is released would also have to be considered.

(n = {40, 60, 80, 120}), or increased by only 3% (n = 100).
Overall, we consider this an acceptable tradeoff.

Level C. Largely similar conclusions follow for level C, ex-
cept that in this case, average-case overheads are more rele-
vant (as level C is SRT). We need to consider average level-C
scheduling overheads, as well as average release overheads
for levels A, B, and C (recall that level-C tasks, being globally
scheduled, are affected by all release overheads whether or
not the interrupt master is enabled).

In Fig. 5 (a), we see that with our techniques enabled,
average level-B release overhead is reduced by 2.2–2.3µs (by
60% to 35%) and average level-C release overhead is reduced
by 1.6–1.8µs (by 25% to 18%). Level-A release overhead is
increased slightly, by 0.1–0.8µs (by 2% to 14%), likely due
to increased overheads from timer merging. Finally, level-C
scheduling overhead is increased by 0.4µs , but this represents
only 4% of the provisioned average scheduling cost. Given
that level C is less critical and SRT, these improvements are
too minor to significantly affect level-C performance.

Summary. Our analysis demonstrates that MC2 can be sup-
ported in an RTOS-like environment (LITMUSRT) with rela-
tively small overheads, in spite of the additional complexity
introduced by needing to manage multiple criticality levels.
Further, it shows that the proposed implementation features
enable higher-criticality tasks to be largely shielded from
overheads arising due to lower levels. Enabling all of these
features reduces worst-case overheads at levels A and B while
leaving level-C overheads essentially unaffected.

4 Robustness Evaluation
Mixed-criticality analysis allows a system designer to reclaim
system capacity lost to execution-cost pessimism for highly-
critical tasks. This capacity is reassigned to less-critical tasks,
for which less pessimism is needed. In effect, the designer
declares that she is willing to accept a greater risk of failure for
lower-criticality tasks than higher-criticality tasks. In return
for taking this risk, the system is more fully utilized.

It is presumed that the designer will provision execution
times at each level so that the appropriate amount of risk
is taken. However, in order to do so, she must know what
happens when the “bet” she made does not pay off. In other
words, what is the penalty to be paid when task failures cause
real execution times to exceed the times assumed for some
criticality level? If task performance degrades too abruptly,
additional pessimism would have to be built into the system to
compensate for this possibility. In the ideal case, the designer
would like to see a graceful degradation of the performance
of level-l tasks as level-l execution times are exceeded. Is this
a realistic expectation?

In this section, we investigate this question in the context
of our MC2 implementation. Specifically, we give an MC2

configuration and measure task behavior as execution times
violate configuration assumptions. While we give what we



consider to be a realistic MC2 configuration, the configura-
tion used is not as important as how task execution behavior
degrades when configuration assumptions are violated.

Our MC2 configuration is constructed as follows. Moti-
vated by the characteristics of avionics systems, we assume
that the level-A, -B, and -C subsystems consume 10%, 10%,
and 55% of the system’s capacity, similar to one of the con-
figurations in Sec. 3. Further, we assume that level-C (resp.,
level-B) execution times are defined by profiling tasks and
using observed average-case (resp., worst-case) values. We
assume that level-A execution times are determined by a tool
that adds additional pessimism. Based upon the differences
between average- and worst-case observed overheads seen in
Fig. 5, we assume that level-B execution times are ten times
greater than level-C execution times.7 Further, we assume
that level-A execution times are twice level-B execution times.
We have no way of justifying this choice, as timing-analysis
tools for multicore systems currently do not exist.8

Our system models execution time assumption mismatches
by having jobs determine actual execution times in one of two
ways: executing for their average-case or drawing their execu-
tion time from a beta distribution modeling aberrant behavior.
The beta distribution produces a value in the range (0,1), with
a configurable mean and standard deviation. We configured
our experiments such that distribution means of (arbitrarily
close to) 1.0, 0.5, and 0.05 correspond to the assumed level-A,
-B, and -C costs, respectively. Note that these values have
the proper ratio mentioned above: the level-A cost is twice
the level-B cost, which is in turn ten times the level-C cost.
However, since a sample from the beta distribution returns a
value in the range (0,1), the actual execution cost of a job is
determined by using distribution samples to scale the level-A
execution times. We initially configured the beta distribution
used in experiments so that its mean was 0.05, i.e., a level-C
cost is obtained on average (as expected by the designer). We
further configured the beta distribution’s standard deviation
so that the probability of obtaining a value larger than 0.5 is
less than 1%, i.e., the probability of exceeding the assumed
level-B cost (which is an observed worst case) is low.

Modeling what happens when the designer’s expectations
are not met becomes a simple matter of “shifting” the pa-
rameters of the aberrant beta distribution so that its average
progressively takes on values ranging from 0.05 to 1.0. For a
fraction P of jobs, execution time is selected using the aber-
rant beta distribution average. This results in a sequence of
progressively more difficult to schedule task systems. We
generated two such sequences of task systems, a pathological
one in which P = 0.5 (i.e., a beta average higher than 0.05
was used with probability 0.5), and a more reasonable (i.e.,

7We are not claiming that a ratio of ten is typical for an actual application,
but merely explaining why we chose this value for levels B and C.

8Despite the availability of some such tools for uniprocessor systems, even
today, in many avionics applications, worst-case execution-time estimates are
often computed exactly as described here, i.e., by multiplying an observed
worst-case value by an arbitrary value.

less pathological) one in which P = 0.1.
We executed these task systems on the same hardware

platform considered in Sec. 3. In each experimental run, each
task system was executed for one minute. Two metrics were
recorded for criticality levels B and C.9 The deadline-miss
ratio is the fraction of all deadlines that were missed. The
average relative response time is the average ratio of the
response times of tasks to their periods. (This allows tardiness
to be assessed in a unified way.) In total, 51,504,417 trace
records were collected, consuming 1.15 GB of disk space.

In Fig. 6, the obtained results for these metrics are plotted.
The insets in the left column show results for the P = 0.5
experiments; the insets in the right column show results for the
P = 0.1 experiments. In each inset of this figure, the x-axis
gives the assumed beta distribution average for each job with
probability P . Thus, the task systems corresponding to x =
0.05 are those where (as expected by the designer) level-C
execution costs occurred on average, x = 0.5 are those where
level-B costs occurred on average with probability P , and
x = 1.0 are those where level-A costs occurred on average
with probability P .

Recall that our implementation of MC2 supports optional
budget enforcement, forcing tasks running at criticality level l
to execute for no longer than their configured level-l execution
budget. Our experimental data revealed that this feature has
a significant effect on performance degradation when the
system is under load. Thus, in Fig. 6, we plot curves for task
systems both with and without budget enforcement enabled.

Level B. To understand the level-B system’s resistance to
failure, we must look at system behavior when the execution
times of tasks exceed their level-B execution costs, i.e., when
x begins to exceed 0.5. As the level-B system is HRT, we are
primarily concerned with the deadline miss ratio (insets (e)
and (f) of Fig. 6).

The level-B results illustrate the surprising flexibility
shown by the system when budget enforcement is disabled.
Without budget enforcement, overrunning tasks that would
otherwise be forced to wait for their next release (and miss
their deadlines) instead continue to run as the highest priority
tasks in the system. This gives the system additional room to
compensate for aberrant task execution behavior.

We can see this improvement in the P = 0.5 results of
inset (e), where half of the jobs draw their execution times
from the aberrant beta distribution. With budget enforcement,
the deadline miss ratio rises to 10% at x = 0.4 and 50% at
x = 0.6 (though in inset (a), we see that the average relative
response time exceeds 1.0, i.e., the average task is tardy, only
for x ≥ 0.8). However, without budget enforcement, we see
that deadline misses begin to rise only after half of the jobs
are executing for x = 0.8, on average (or 60% more than their
level-B budget).

9Level-A tasks never failed to execute within their cyclic executive
scheduling windows in our system, and, thus, are not discussed in this
section.
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(a) Average relative response time, P = 0.5.
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(b) Average relative response time, P = 0.1.
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(c) Average relative response time (magnified), P = 0.5.
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(d) Average relative response time (magnified), P = 0.1.
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(e) Deadline miss ratio, P = 0.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

de
ad

lin
e 

m
is

s 
ra

tio

beta mean with probability 0.1

[1]

[2]

[3]
[4]

(f) Deadline miss ratio, P = 0.1.

Figure 6: Scheduling metrics for our task system with different means for a “shifted” beta distribution, with trend lines included for
clarity. Numeric labels ([1] through [4]) are printed near each curve for clarity. If two curves have nearly identical data points (i.e.,
overlap), their labels are printed horizontally (e.g., “[3][4]”).



The system is even more flexible in the less pathological
P = 0.1 case (inset (f)). With budget enforcement, the dead-
line miss ratio begins to rise as 10% of tasks approach their
level-B execution times, though it never exceeds 0.2. Without
budget enforcement, the deadline miss ratio hardly increases
even when these tasks execute for their level-A execution time,
on average. These results lead us to conclude that, without
budget enforcement, the level-B system can maintain cor-
rectness in the presence of significant task execution failures
before degrading entirely.

Level C. The analysis for level-C tasks is similar to level-B
tasks, except that we are more concerned with relative re-
sponse times, as level C is SRT and may be tardy by a bounded
amount (i.e., relative response times exceeding 1 are allowed).
We focus on insets (c) and (d), which show relative response
times as average task execution times drawn from the shifted
distribution rise to 10% of our level-A execution budget, or
twice the level-C execution budget (the data in these insets
corresponds to that in (a) and (b) for x ∈ (0, 0.1]).

Level-C relative response times, like level-B deadline
misses, are reduced with budget enforcement disabled. Thus,
we focus on results without budget enforcement for level-C.
In inset (d), where P = 0.1, level-C relative response times
remain below 0.3 even when x = 0.10, or 10% of tasks are
executing for an average of twice their level-C execution bud-
get. With P = 0.5 in inset (c), performance degrades faster.
Average relative response times reach 30.0 at x = 0.075, or
when 50% of tasks are executing for 50% more than their
level-C execution budget. After this, response times grow un-
boundedly. While level-C performance exhibits less flexibility
in the P = 0.5 case, these high response times reflect both
the pessimism of this experiment and the processor execution
times devoted to higher-priority tasks to compensate.

5 Conclusion

In this paper, we have presented experimental results con-
cerning the MC2 mixed-criticality scheduling framework for
multicore systems. To the best of our knowledge, this is the
first paper on the implementation aspects of multicore mixed-
criticality scheduling. Our research has shown that MC2 can
be implemented in a way that keeps RTOS-related overheads
at acceptable levels, while largely shielding higher-criticality
tasks from overheads created by lower-criticality tasks. It
has also shown that MC2 is quite robust with respect to mis-
matches in assumptions regarding execution-time estimates
and actual execution times experienced at runtime.

In future work, we intend to extend MC2 to also support
task synchronization. In doing so, we hope to leverage recent
work on asymptotically optimal real-time multiprocessor lock-
ing protocols [7, 8]. Such protocols will need to be adapted to
minimize the impact lower-criticality tasks have on the block-
ing times experienced by higher-criticality tasks. In other
future work, we hope to port our MC2 design to an RTOS

that is suitable for use in safety critical systems. While the
open-source nature of LITMUSRT makes it quite attractive
for assessing various RTOS-related design alternatives, be-
ing based upon Linux, it is not a viable candidate for actual
deployment in such systems. Although we believe that the
conclusions reached in this paper are not Linux-specific, fur-
ther experimentation with other RTOS choices, and even other
hardware platforms, would strengthen these conclusions.
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