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Abstract
The evolution of multicore platforms has led to much recent
work on multiprocessor scheduling techniques for soft real-
time workloads. However, end users routinely run such work-
loads atop general-purpose operating systems with seemingly
good results, albeit typically on over-provisioned systems.
This raises the question: when, if ever, is the use of an analysis-
based scheduler actually warranted? In this paper, this ques-
tion is addressed via a video-decoding case study in which a
scheme based on the global earliest-deadline-first (G-EDF)
algorithm was compared against Linux’s CFS scheduler. In
this study, the G-EDF-based scheme proved to be superior
under heavy workloads in terms of several timing metrics,
including jitter and deadline tardiness. Prior to discussing
these results, an explanation of how existing G-EDF-related
scheduling theory was applied to provision the studied sys-
tem is given and various “mismatches” between theoretical
assumptions and practice that were faced are discussed.

1 Introduction
The advent of multicore technologies has fueled much re-
cent work on scheduling algorithms to support hard real-time
(HRT) and soft real-time (SRT) systems on multiprocessor
platforms. In a HRT system, no deadlines can be missed,
while in a SRT system, misses are tolerable to some extent.
Current multicore designs are arguably better suited for host-
ing SRT rather than HRT applications. In particular, HRT
workloads require provable upper bounds on worst-case exe-
cution times (WCETs), and such bounds are difficult to deter-
mine on current multicore machines. In contrast, less rigorous
execution-time analysis usually suffices for SRT systems.

Motivated by these observations, a number of researchers
have investigated the possibility of supporting SRT applica-
tions using multiprocessor real-time scheduling algorithms
for which formal schedulability analysis exists; such work has
included both research on scheduling-theoretic issues (e.g.,
[10, 11, 15]) and prototyping efforts (e.g., [1, 13]). In prac-
tice, however, SRT applications are often implemented atop
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general-purpose operating systems (GPOSs), which typically
use heuristic-oriented schedulers that must be “tuned” us-
ing a trial-and-error approach until SRT-like performance
is achieved in the common case. To the best of our knowl-
edge, no prior investigation has examined whether an analysis-
driven scheduling approach actually yields superior results on
a multiprocessor in practice. In this paper, we present such an
investigation. Our goal is to determine: when, if ever, is SRT
multiprocessor schedulability analysis really worth it?

Different definitions of SRT schedulability exist, depend-
ing on how the effects of deadline misses are constrained.
Throughout this paper, we assume that a task system is SRT-
schedulable if deadline tardiness is provably bounded. This
definition of SRT schedulability was first considered in [10],
and a number of additional results regarding bounded tardi-
ness have been subsequently proven (e.g., [11, 15]). Global
schedulers, which allow any task to execute on any proces-
sor, have considerable advantages in meeting this definition
of SRT schedulability. In particular, when scheduling spo-
radic task systems, bounded tardiness can be ensured with no
schedulability related capacity loss under a variety of global
algorithms, including the well-known global earliest-deadline-
first (G-EDF) algorithm, which gives higher priority to jobs
(task invocations) with earlier deadlines [10]. Due to bin-
packing issues, the same is not true of partitioned algorithms,
which statically bind tasks to processors. These tardiness
results have been extended to hold in expectation when task
execution costs are determined stochastically and process-
ing capacity is provisioned based on average-case require-
ments [17, 18].

In this paper, we present details of a case study that was
conducted to determine whether the desirable properties of
G-EDF give it any discernible advantage over a widely used
GPOS scheduler. The application considered in this study is
a system of multiple video decoders. We chose this applica-
tion not because it is a common use case,1 but because it has
interesting real-world characteristics (e.g., video frames have
variable processing times and precedence dependencies) and

1Such a system could conceivably be applied (for example) in an airline
entertainment system, in a surveillance system that must process multiple
video streams, or in applications for video compositing that run on ordinary
desktop computers today and operate with multiple streams of (beyond-)
HD-resolution.



because real-time correctness is straightforward to define (e.g.,
display jitter should be low). The schedulers considered in this
study include several scheduling options available in Linux,
and a G-EDF-based framework called EDF-HSB [4] that is
a hybrid of G-EDF and partitioned fixed-priority scheduling
with budget enforcement. EDF-HSB is described further in
Sec. 3. In provisioning the EDF-HSB-based system, we em-
ployed analysis pertaining to restricted processor supplies [15]
and stochastic execution [18] that was unavailable when EDF-
HSB was first presented. Indeed, one of the key contributions
of this paper is to show how these disparate analysis pieces,
which target different sub-problems, can be effectively com-
bined. This required resolving various trade-offs that arise
when integrating these results.

In conducting this study, we sought to answer two basic
questions concerning the practical viability of SRT analysis.
First, how well does such analysis predict the behavior of
the system—in other words, how does theory compare to
practice? Second, for which workloads does an analysis-
based SRT scheduler perform more predictably than a GPOS
scheduler (either “tuned” or “un-tuned”)?

Related work. Quality-of-service support for multimedia
workloads on uniprocessors is a well-studied problem (e.g.,
see [7, 16, 19, 20]); however, practical multiprocessor SRT
support has received comparatively little attention to date.
A number of studies have been conducted in which differ-
ent real-time multiprocessor schedulers2 were experimentally
compared against each other, but to our knowledge, no prior
study has considered GPOS schedulers as well. In most of the
prior studies that have been conducted, synthetically-created
workloads were used (e.g., [1]). Such studies are clearly of
value, as they enable a controlled range of task systems to
be analyzed. However, the ultimate test of a new scheduling
algorithm is whether its use actually enables better implemen-
tations of real applications.

One notable effort in which practical applications were
considered is work by Kato et al., in which several real-time
scheduling algorithms were experimentally compared against
each other using (like us) a video-decoder workload [13, 14].
This is one of the first research efforts in which real workloads
were used in evaluating different real-time schedulers. As in
this paper, SRT systems were the focus of that work, and
thus it is complementary to the effort described herein. How-
ever, the two research efforts differ in several key respects.
First, our primary motivation is to determine whether analysis-
oriented approaches offer any benefits over heuristic-oriented
schedulers used in GPOSs. Such schedulers were not con-
sidered in [13, 14]. Second, while SRT applications are the
focus of [13, 14], HRT analysis was actually employed, with
average-case execution times used instead of WCETs. More-
over, it is not fully explained how this analysis was applied
in provisioning the tested system. In contrast, we use anal-

2Henceforth, all references to scheduling without qualification should be
taken to mean multiprocessor scheduling.

ysis that allows stochastic effects to be accounted for, show
how this analysis can be used to provision the system (both
processing rates and memory buffers), and discuss potential
mismatches between analytical-derived predictions of system
performance and that seen in reality.

Results. The first major goal of this study was to assess
whether prior SRT analysis is actually useful in provision-
ing systems. Virtually any real system is going to violate
some assumptions in theoretical analysis, and this is certainly
true of the study here. However, we found that such violations
had a negligible impact on predicted system performance (e.g.,
such violations did not cause tardiness to grow unexpectedly).

Prior to conducting this study, the assumption of greatest
concern was that per-job execution times are independent,
which is required in determining expected tardiness bounds.
Independence assumptions (of some degree) are essential for
tractable stochastic analysis. Measured execution times re-
vealed that frame decode times are not independent, which is
not surprising. However, EDF-HSB re-distributes spare pro-
cessing capacity via slack reclaiming and background schedul-
ing, and these techniques tend to compensate for situations in
which several successive (dependent) jobs execute for signifi-
cantly longer than the provisioned average case.

Our second major goal was to compare EDF-HSB to
Linux’s default completely fair scheduler (CFS). We found
that EDF-HSB and CFS yield comparable results when am-
ple idle capacity exists. This matches the experience of end
users who use Linux to host various kinds of SRT workloads
(including video playback) on typically powerful, mostly idle
computers. However, when faced with an increasingly heavy
workload, the performance of CFS in terms of jitter, deadline
miss ratios, and tardiness deteriorated quickly, whereas EDF-
HSB maintained a predictable quality-of-service, albeit at the
expense of reduced throughput for background processes.

In a final validation experiment, we approximated EDF-
HSB’s design on top of Linux’s “real-time” SCHED FIFO
scheduler. The tardiness analysis used to provision EDF-
HSB applies to global FIFO as well. Thus, the expected
tardiness bounds derived for EDF-HSB (mostly) apply to
SCHED FIFO assuming a priority assignment that (roughly)
emulates EDF-HSB. As expected, this SCHED FIFO con-
figuration proved to be more effective than CFS and com-
parable to EDF-HSB. This validates that our EDF-HSB im-
plementation is efficient and highlights that stochastic SRT
analysis is of general utility. However, unlike EDF-HSB,
SCHED FIFO was unable to maintain a minimum guaran-
teed background throughput in our experiments.

Taken together, these results answer our question: if the
system is over-provisioned and processing capacity is ample,
then the online scheduling problem is easy and the choice of
scheduler has little impact on observable SRT performance;
however, if the system is (almost) fully utilized, then the use
of an analysis-based SRT scheduler has significant benefits.



Organization. In the following sections, we present needed
background (Sec. 2), describe relevant prior theoretical SRT
analysis (Sec. 3) and discuss challenges that arise when apply-
ing it in practice (Sec. 4), present the results of our case-study
evaluation (Sec. 5), and then conclude (Sec. 6).

2 Background

We begin by describing the video-decoding workloads consid-
ered in this case study and the hardware/software environment
within which these workloads were evaluated.

Video-decoding workloads. The workloads we consider
consist of a number of high-definition video streams together
with a number of repeatedly but irregularly arriving best-effort
(BE) jobs that represent additional background processing.
All examined videos have a frame rate of 23.98 fps and the ma-
jority have resolution 1920×800 or 1920×1080. The overall
goal is to achieve acceptable real-time behavior for the video
streams, while ensuring that BE jobs make progress (hence
minimizing their response times to the extent practicable).

Each video stream must be decoded and then displayed and
thus is naturally supported by two tasks. To avoid excessive
display jitter, it is desirable to view each display task as a
HRT task. However, requiring decode tasks to be HRT can
lead to significant capacity loss, because conservative HRT
analysis techniques would then be required of all real-time
tasks; thus, we view such tasks as SRT. Our case study focuses
on videos with a constant frame rate. In this case, each decode
and display task maps cleanly to an implicit-deadline periodic
task with one job (task invocation) per frame; with a frame rate
of 23.98, each such task has a period of 1/23.98 ≈ 41.7 ms.

The various frames in a single video stream require differ-
ent amounts of time to decode. This means that the per-job
execution times of decode tasks can vary widely. Therefore,
is it reasonable not only to implement such tasks as SRT tasks,
but also to provision them using average-case execution times.
The alternative of using worst-case times would lead to ex-
cessive capacity loss. Provided decode tasks have bounded
tardiness, we can compensate for the expected deadline misses
in decoding by inserting a frame queue between each decode
task and the corresponding display task. In our implementa-
tions, such queues are wait-free, so priority inversions cannot
occur when accessing them.

To summarize, the problem at hand is to support a col-
lection of HRT and SRT periodic tasks along with aperiodic
BE jobs on a multiprocessor system, where the HRT tasks
are provisioned on a worst-case basis, and the SRT tasks are
provisioned on an average-case basis.

Hardware/software environment. The hardware platform
used in the presented study has two six-core Xeon X5650
processors (running at 2.67 GHz), giving the system a total
of 12 CPU cores. The memory architecture is NUMA (non-
uniform memory access), with one 12 GB memory module
per processor. Each processor has a 12 MB L3 cache that is

shared among its six cores.
This platform was used to examine various implementa-

tions of the video-decoding workloads described above both
in Linux and in LITMUSRT. LITMUSRT is a UNC-produced
extension of Linux that supports a variety of multiprocessor
real-time schedulers and synchronization protocols as plug-
ins [9, 12]. The current version of LITMUSRT is 2011.1 and
is released as a patch against Linux 2.6.36. For this case study,
we designed and implemented a new scheduler plugin that
implements a scheduling policy called EDF-HSB, which is
described in detail in Sec. 3.

We compared EDF-HSB both to the default Linux sched-
uler, the completely fair scheduler (CFS), as well as a Linux-
provided policy called SCHED FIFO. CFS is a partitioned
scheduler that attempts to fairly distribute “virtual” run time
among tasks. CFS’s default scheduling decisions can be bi-
ased in favor or against certain tasks via the nice() system call.
SCHED FIFO schedules tasks globally based on fixed priori-
ties, with tasks at the same priority level prioritized on a FIFO
basis. While SCHED FIFO is a more real-time-oriented pol-
icy, CFS is the default Linux scheduler and thus is much
more widely used, even in settings where SRT requirements
exist. Indeed, SCHED FIFO requires root privileges, which
are not commonly granted to SRT applications.

In order to conduct viable comparisons of various imple-
mentation choices, we required a predictable video player
with a straightforward design. We developed a simple video
player that uses the FFmpeg library as the video demuxer3

and decoder instead of modifying a more complex player such
as the VLC Media Player, whose code-base has been under
development for more than ten years. FFmpeg is same library
suite used by popular Linux video players such as MPlayer
and VLC. Each job of the decode task is responsible for de-
muxing the corresponding video file, decoding an individual
video frame, scaling the result, and enqueuing it into a FIFO
frame queue. Each job of the display task dequeues a single
decoded frame and prepares it for display.

3 Applicable SRT Scheduling Results
Having provided a general description of the workload, we
now discuss prior work on SRT schedulers and associated
analysis that can be leveraged to obtain an analysis-based
implementation. Note that our intent here is not to provide
a thorough review of all prior related work, but to instead
describe those mechanisms that we used in this study.

Although the main purpose of the paper is to present the
implemented case study, integrating the various theoretical
results prior to implementation was non-trivial. In particular,
when combining previously published tardiness analysis for
SRT tasks, the resulting tardiness bound obtained depended
on the decode budgets in a non-trivial way that the authors of
the previously published papers could not have anticipated.

3A demuxer separates the video and audio streams in a video file.
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Figure 1: Example of EDF-HSB on two CPUs.

We discuss this issue further in Sec. 4 after reviewing the
individual results next.
Task model. The workload in this case study can be repre-
sented by a task system τ = {τH , τS} to be scheduled on
m CPUs, where τH is a set of periodic HRT display tasks
{H1, H2, . . . ,HnH}, and τS is a set of SRT servers. The SRT
servers are divided into two categories: {S1, S2, . . . , SnS},
which are periodic and map directly to nS SRT decode tasks
that must be supported, and {SnS+1, SnS+2, . . . , SnS+m},
which are sporadic and are used to schedule BE jobs. Each
HRT task Hi is defined by its period Pi and its WCET ei; its
utilization is Ui = ei/Pi. Each SRT server Si is defined by
its period pi and its budget bi; its utilization is ui = bi/pi.
We assume that there are m servers for BE work in order to
give such work the opportunity to execute in parallel.
EDF-HSB. Brandenburg and Anderson introduced a frame-
work called EDF-HSB to handle such mixed workloads on a
multiprocessor, for cases where the HRT workload constitutes
a relatively small fraction of the system’s total utilization [4].
As illustrated in Fig. 1, EDF-HSB ensures that tasks in τH

will never miss their deadlines by partitioning them among the
m CPUs and by assigning them priorities that are higher than
any SRT server. EDF-HSB ensures bounded tardiness for the
SRT servers in τS by scheduling them using G-EDF using the
processing capacity not consumed by the HRT tasks and by
enforcing server budgets. (The figure also depicts stochastic
SRT tasks, which were not considered in [4]—such tasks are
defined below. Additionally, the figure summarizes impor-
tant notation, some of which is introduced later.) Although
timing guarantees cannot be made for BE work (because the
properties of the BE workload are not known a priori), such a

deployment ensures that BE work will not impact the timing
guarantees for HRT and SRT tasks, yet the BE work’s rate of
service is lower-bounded.

EDF-HSB also allows for dynamic slack reclamation to
reduce tardiness of SRT tasks and improve response times
of BE jobs. This reclaiming scheme is similar to the method
of M-CASH [8], which re-allocates processing capacity that
becomes available when a constant-bandwidth-server com-
pletes early. In this implementation of EDF-HSB, both SRT
tasks that are likely to be tardy and BE jobs can receive such
capacities to improve performance.
Allowing stochastic execution times. Stochastic methods
are required to properly analyze systems with average-case-
provisioned components (like our decode tasks). For this
purpose, we employ recent work by Mills and Anderson [18]
that allows the v video decoding tasks {T1, T2, . . . , Tv} to be
specified as periodic stochastic tasks, where task Ti has period
pi, mean execution time ēi, and variance σ2

i , and successive
jobs of task Ti have independent random execution times
satisfying the given mean and variance. Each such task Ti re-
ceives processor time that is allocated from the corresponding
server Si. This model has several desirable properties. First,
unlike WCET, the mean and variance of video decoding times
can be easily estimated from experimental data. Second, the
system may be provisioned based on average execution times.
That is, for task Ti to run on server Si with bounded expected
tardiness, we need only bi > ēi. The analysis for such tasks
separates the deterministic tardiness, which may occur due to
SRT servers missing deadlines, from the stochastic tardiness,
which may occur due to jobs of the served SRT tasks running
longer than their average case. This separation is essential
to incorporate stochastic tasks into EDF-HSB. One potential
concern, however, is the independence assumption—this is
an issue we revisit later.
Schedulability analysis results. Let c = m −∑nH

i=1 Ui be
the processing capacity available to SRT servers. Suppose
all m CPUs may be used to schedule the HRT tasks; let
ai,j = 1 ifHi is assigned to processor j, and 0 otherwise. The
following constraints on the system parameters are required
for the system to be provably schedulable:

1.
∑nH

i=1 ai,jUi ≤ 1 for all j ∈ {1, 2, . . . ,m},

2.
∑nH

i=1 Ui +
∑nS+m
i=1 ui ≤ m,

3. maxn
S+m
i=1 ui <

c
2m−2 , and

4. ēk < bk for all k ∈ {1, 2, . . . , v}.
The first two constraints are needed to ensure that individual
CPUs and the entire system are not over-utilized, the third
constraint is required for bounded tardiness of the SRT servers,
and the fourth constraint is needed to ensure that individual
SRT servers are not over-utilized.

Theorem 1 ([4]). Under EDF-HSB, Constraint 1 implies
that no HRT task misses its deadline.



Theorem 2 ([15]). Under EDF-HSB, Constraints 2 and 3
imply that any SRT server Sk misses its deadline by at most

Bk(τS ,EDF-HSB) =

bk +
B+2

∑m
j=1 yjwj+(m−c−1)

(
maxnS+m

i=1 bi
)

c−(m−1)
(

maxnS+m
i=1 ui

)
−U

(1)

time units, where yj = 1−∑nH

i=1 ai,jUj , wj =
∑nH

i=1 ai,jei,
B is the sum of the m− 1 largest values of bi, and U is the
sum of the m− 1 largest values of ui.

Theorem 3 ([18]). Under any algorithm A that can schedule
τS with tardiness bounds B(τS , A), Constraint 4 implies that
periodic stochastic task Tk misses its deadline by no more
than

Bk(τS , A) +
(

σ2
k

2bk(bk−ēk) + 2
)
pk

time units on average.
Corollary 1. Under EDF-HSB, Constraints 1–4 imply that
no HRT task misses its deadline, no periodic stochastic task
scheduled on a SRT server misses its deadline by more than

Bk(τS ,EDF-HSB) +
(

σ2
k

2bk(bk−ēk) + 2
)
pk (2)

time units on average, and BE work may achieve a throughput
of at least

∑nS+m
i=nS+1

bi
pi

per time unit in the long run.

Applying these results to the case-study system. We can
further simplify the theoretical results described in Theorems
2–3 by exploiting the structure of the workload in our case
study. Because we are considering a set of v videos, all of
which have the same frame rate, we know that nH = nS = v,
and ei = eV , bi = bV , and Pi = pi = pV for all i ∈
{1, 2, . . . , v} (see Fig. 1). Hence, we know that the capacity
available for SRT servers is c = m− veV /pV . Furthermore,
because we do not have any a priori knowledge of the type
of BE work, we assume that bi = bB and pi = pB for all i ∈
{v+1, v+2, . . . , v+m}. Because we are not concerned with
providing maximum BE response time guarantees (our goal is
to guarantee a minimum throughput), we choose budgets such
that bV /pV > bB/pB . Finally, to ensure that the real-time
workload is not trivially schedulable, we assume that v ≥ m.
These assumptions simplify Bk(τS ,EDF-HSB) to

bV +
(3m+veV /pV −2)bV +2

∑m
j=1 yjwj

m−veV /pV −(2m−2)bV /pV
.

Note that because we may choose {b1, b2, . . . , bv+m},
Constraints 2–4 are satisfied if there exists any feasible set
of SRT server budgets. The largest-feasible-budget heuristic
attempts to pick budgets that are as large as possible while
satisfying Constraints 2–4. This can be done by first choosing
the desired BE budget bB , then calculating the largest possible
video budget satisfying both Constraints 2 and 3, and finally
checking that Constraint 4 is satisfied. In other words,

bV = min
{
mpV −veV

2m−2 − ε, mpVv
(

1− bB

pB

)
− eV

}
, (3)

where ε > 0 (because Constraint 3 is a strict inequality). We
then check whether bV > ēV (Constraint 4). If so, then we
have a feasible set of budgets; if not, we must decrease the
amount of allocation to BE work bB and try again. This heuris-
tic budgets as much capacity as possible for video decoding
(under a given level of BE throughput); other heuristics may
be desirable for different applications.

Example. Consider an application with four CPUs, five
videos, each with a period of 40 ms (equivalent to 25 fps), and
25% of the system reserved for BE work. Suppose that each
video frame requires 4 ms to display in the worst case and that
decode times have a mean of 15 ms and a standard deviation
of 5 ms. This example can be specified for EDF-HSB as
the system τ = {H1, . . . ,H5, S1, . . . , S9} with parameters
m = 4, v = 5, pV = 40, eV = 4, and ēV = 15. We first must
statically assign HRT tasks to CPUs to satisfy Constraint 1.
One way to do this is to bindH1 andH5 to CPU 1,H2 to CPU
2, H3 to CPU 3, and H4 to CPU 4. Hence, a total utilization
of 3.5 (consisting of 0.8 on CPU 1 and 0.9 on each other CPU)
is available for SRT servers, which will be scheduled globally.
We next specify parameters of the BE servers {S6, . . . , S9}
to ensure that sufficient capacity is reserved for BE work. By
setting ui = 0.25 for i ∈ {6, . . . , 9}, the capacity reserved
for BE jobs will be 1.0, or 25% of the system.

Now we have a total utilization of 2.5 available to allocate
to {S1, . . . , S5} by setting the decode budget bV using the
largest-possible-budget heuristic. According to (3), we set
bV = min{23.33− ε, 20} = 20. We check that Constraint 4
is satisfied (ēV = 15 < 20), and hence conclude that the
choice of bV = 20 is feasible. Because the second term in the
min is smaller, the overall system utilization (Constraint 2) is
the constraining factor, rather than the utilization cap required
for bounded tardiness (Constraint 3). From Corollary 1, the
theory states that no job of the display task will miss its
deadline and predicts that video decoding jobs will be tardy
no more than 508.8 ms, on average.

4 Implementation Details

Our scheduler, EDF-HSB, was implemented as a plugin
within LITMUSRT. The design of EDF-HSB borrowed heav-
ily from prior work on global real-time scheduler plugins
for LITMUSRT [5]. The video player was developed as a
standalone application whose constituent tasks could be run
as either real-time (i.e., LITMUSRT) or regular Linux tasks.
Our code is available on the project homepage [12].

Interrupt handling. The case-study application has many
sources of interrupts, including disks and timers that fire due
to asynchronous scheduling events, such as a server exhaust-
ing its budget. The default behavior in Linux is to distribute
interrupts across all CPUs. Unfortunately, existing techniques
for accounting for interrupts in schedulability analysis are
rather pessimistic [6]. To avoid undue pessimism, and be-
cause it is easy to redirect certain interrupts away from the



scheduling CPUs, we used dedicated interrupt handling [21],
wherein a single CPU is reserved for processing device- and
timer-related interrupts. When this CPU needs to inform an-
other CPU of a scheduling-related event, it does so by means
of an inter-processor interrupt (IPI). Such interrupts are less
disruptive from an analysis perspective because they coincide
with scheduling-related activities, the overhead of which must
be accounted for anyway. The interrupt-handling CPU is not
used to execute real-time tasks or BE jobs, but could be used
for other processing, such as system monitoring, instrumenta-
tion, and frame display.

Background processing. It is possible that a job is available
to execute on an idle CPU but all unused servers have depleted
budgets. To avoid wasting processing capacity, we allow such
a job to execute “in the background” without consuming bud-
get. This policy is equivalent to firm resource reservations in a
resource kernel [20]. As with slack reclamation, background
processing can only improve the response time of SRT jobs,
and has no adverse effect on the analysis and provisioning
performed earlier.

HRT task assignments. Under EDF-HSB, we chose to
evenly distribute HRT tasks across CPUs. This was done
to lessen display jitter (a more thorough discussion of jitter
is given later). Since a HRT job can only be delayed by
other HRT jobs on the same CPU, minimizing the maximum
number of HRT tasks per CPU lessens such delays.

4.1 Provisioning

We now discuss how the theoretical results discussed earlier
were applied to provision the studied system.

Computing WCETs and server budgets. We henceforth
omit the i subscript in ēi and σ2

i because all SRT decode
tasks are treated identically. In determining the SRT server
budget bV , Constraint 4 requires ē < bV , so average-case
execution times for the SRT decode tasks are required. As
EDF-HSB requires budget enforcement, and budgets cannot
be determined without task execution costs, we determined
costs by running a video decoder workload under G-EDF.
Specifically, we determined estimates of ē, σ2, and the WCET
eV for the HRT display tasks in this way.

It would be unreasonable to expect the system to be re-
provisioned each time a user runs a new video. Instead, the
system should be provisioned once by considering a “typical”
workload scenario. For this purpose, we used a “training set”
of 11 videos selected randomly from the overall set of 58
videos that were used in this study (see Sec. 5). We chose 11
videos to ensure that each CPU is busy without overloading
the system. For each video, we played a random 60 second
interval. This resulted in over 15,800 samples for each job
type. We calculated ē and σ2 across all decode jobs and
computed eV by maximizing across all display jobs. The
corresponding obtained values are ē = 14.49 ms, σ2 = 5.192,
and eV = 4 ms. Using the stated values for ē and σ2, bV

can be determined using (3). As noted earlier, (3) attempts
to maximize bV without violating Constraints 2 and 3; thus,
the value of bV is necessarily workload-dependent. Further
details regarding the calculated bV values are given below.

It is worth emphasizing that the expected tardiness bound
given in Corollary 1 is based upon both a deterministic bound
for the SRT servers and a term that depends on ē and σ2. The
deterministic tardiness analysis is quite conservative and thus
should compensate for any optimism in the above approach
for computing average execution costs.

Overheads. EDF-HSB performance is affected by several
sources of system overheads, including scheduling overheads,
which are incurred during task selection, context-switching
overheads, caused by migrations and preemptions, and cache-
related overheads, which are incurred when a job resumes
on a CPU and suffers from compulsory cache misses. If
these overheads are not accounted for when a task system
is analyzed, then the calculated tardiness bounds and server
budgets may be invalid. Our provisioning step implicitly
accounts for these overheads by ensuring that received IPIs are
charged against the execution time of the currently-running
job, and by ensuring that tasks have no particular CPU affinity
(so that migration-related overheads are not under-estimated).
The overheads are included in the estimates of ē from the
training set, which was discussed previously.

Queue sizes. The size of each decode-display FIFO queue
depends on the decode task’s tardiness, which by (2) de-
pends on the characteristics of the overall workload. We
reserved 10% of the overall system’s capacity for BE work
and then calculated SRT decode server budgets bV for v ∈
{11, 16, 17, . . . , 22} using (3). When v > 22, average ex-
ecution times exceed the maximum possible server budget
and Constraint 4 is violated. bV and σ2 were then used to
calculate the expected tardiness bound given by (2), which
we denote as T . The required frame queue size is then

max
(
1,
⌈
T/pV

⌉)
. (4)

Using the average tardiness to determine the queue capacity
was sufficient for the video application because the distribu-
tion of decode tardiness had a heavy right tail (i.e., very large
values were very unlikely, and hence most values fell below
the average). If an exact probability of exceeding the queue
capacity is desired, Corollary 1 of [18] may be used to deter-
mine the size of the queue. Table 1 lists the resulting budgets,
bounds, and queue sizes. These queue sizes are well in line
with those used by video players in use today; the xine player,
for example, uses an output queue of 15 frames by default.

An interesting problem arose when determining the values
given in Table 1. As the budget increases and the expression
in Constraint 3 approaches equality, the deterministic bound
approaches infinity; on the other hand, as the budget decreases
and the expression in Constraint 4 approaches equality, the
stochastic part of the bound approaches infinity. This phe-
nomenon is illustrated in Fig. 2. The heuristic presented by (3)



v bV tardiness bound (2) queue size (4)

11 19.94 838.57 21
16 18.94 910.81 22
17 18.74 925.04 23
18 18.74 1223.78 30
19 17.73 580.76 14
20 16.65 399.94 10
21 15.66 339.29 9
22 14.77 406.55 10

Table 1: Calculated budgets (in ms), tardiness bounds (in ms),
and queue sizes (number of frames) for SRT decode tasks
with 11 and 16–22 videos playing simultaneously.

assumes that budgets should be as large as possible. However,
in the unusual case where the two terms in the minimum of (3)
are almost equal, the tardiness bound increases significantly.
This phenomenon occurred at v = 18 in Table 1. When
v ≤ 18, the budget is determined by the first term in (3). As
v increases to 18, bV becomes close to the theoretical limit
imposed by Constraint 3. We compensated by increasing ε,
thereby reducing tardiness and frame queue sizes to a man-
ageable level. In the case of v = 18, we increased ε until bV

decreased from 18.94 to 18.74 in order to obtain a smaller
tardiness bound. In Fig. 2, this pushes the expected tardiness
from the large values on the right side of the graph towards the
smaller values in the middle. This was a surprising situation
that could not have been predicted by either the deterministic
or stochastic analysis alone.

While the above discussion of queue provisioning was
directed at EDF-HSB, all of the tardiness analysis used in
this provisioning is applicable if global FIFO scheduling is
used instead of G-EDF in the EDF-HSB framework [15].
In the SCHED FIFO implementation considered in Sec. 5,
HRT tasks are prioritized over SRT tasks as in EDF-HSB.
However, unlike EDF-HSB, it does not enforce budgets for
HRT tasks or provide a minimum guarantee for BE work. Still,
this implementation is quite close to being a true FIFO-variant
of EDF-HSB, so we applied the same queue provisioning to
it. As for the CFS variants considered in Sec. 5, analytical
techniques for determining queue sizes are lacking, so we
simply applied the same queue provisioning to them as well.

4.2 Theory vs. Practice

Every body of theory has its limitations, and there are several
cases where the system we study clearly violates assumptions
made in the theoretical results presented above.

HRT display tasks. Because we used measured rather than
analytically-derived WCETs in provisioning the HRT display
tasks, it is possible that such a task could execute for longer
than its WCET. However, over the several million job exe-
cutions that occurred in the evaluation presented in Sec. 5,
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this was rarely observed. Further, a frame queue may be-
come empty when the tardiness of the corresponding decode
task exceeds the expected bound, but the stochastic analysis
described earlier ensures that the probability of this is low.

Independence of decode jobs. We analyzed the decode
tasks as if successive decode jobs are independent. In reality,
we observed that this assumption is violated. To ameliorate
such violations, the stochastic tardiness work in [18] allows
windows of successive jobs of the same task to be treated as
a single entity in the analysis, at the expense of a higher ex-
pected tardiness bound (since the analyzed entities are larger).
We observed that as the number of video frames per time
window increases, the correlation of successive per-window
execution times decreases, to the point where using a window
of at least 100 video frames resulted in no significant corre-
lation. However, in the case study, we chose not to combine
jobs, because we found that background scheduling and slack-
reclaiming were very effective in allowing tardy jobs to “catch
up” before they negatively impacted system performance.

Self-suspensions. All of the analysis outlined in Sec. 3 is
based on task models in which tasks do not self-suspend.
However, in the studied system, such suspensions can occur
when tasks block waiting on some shared resource such as a
disk. In our experimental setup, this interference was negligi-
ble. This was partly due to the fact that we stored video files
in an in-memory filesystem to avoid lengthy disk-related I/O
suspensions. In a production system, this could be avoided
by means of a solid state drive, flash memory, or a simple
prefetching algorithm. Our video player supports multiple dis-
play backends. Each display job copies a frame to a (virtual)
frame buffer. The target memory could be provided by X11,
a physical frame buffer, or some other (application-specific)
display system. The results presented in Sec. 5 were obtained
by using a “null-device” backend, where each video frame
was copied into a virtual frame buffer, but not physically ren-
dered. This simulates the case where each video is rendered
to a separate display device.



Implications for case study. The point of this study is not
to check whether the theory presented in Sec. 3 is correct (this
is not in question, as each result was already proven). Rather,
the point of the study is to determine whether applications
of the theory are useful. It is clear that the system does not
exactly meet every assumption of the theory. However, it is
unlikely that any real task system will meet every assump-
tion while also being non-trivial to schedule. Hence, for the
theory to be useful, it must be robust to small mismatches
in assumptions. Our implementation of the case study aims
to demonstrate this very point. We implemented the system
as if the assumptions were met. We hypothesized that extra
tardiness due to assumption violations would be small in mag-
nitude compared to the pessimism known to exist in some
of the theoretical results [18]. Moreover, by design, slack re-
claiming and background scheduling are designed to mitigate
much of the tardiness present in the system (some of which
may be due to assumption violations).

5 Evaluation
We instrumented our video player to record relative jitter
and deadline tardiness of display jobs in the same manner as
Feather-Trace [3]. Jitter quantifies the smoothness of video
playback by measuring deviation from the desired frame play-
back rate. If frame i is displayed at time ti and t0 is 0, then
its relative jitter is |ti − (ti−1 + pV )| and its absolute jitter
is |ti − ipV |. A job that is tardy by more than pV time units
increases the absolute jitter of the subsequent job of the same
task but not its relative jitter. From a viewer’s perspective, a
single pause in the video stream followed by correct playback
is a single error, and should not affect jitter measurements of
future video frames. Therefore, we report the relative jitter in-
stead of absolute jitter. We do not report the number of frames
displayed per second (FPS), because the FPS measurement
conveys no measure of video “smoothness.” For example, a
video player that shows 23 frames in 0.01 seconds followed
by a 24th frame for 0.99 seconds still achieves 24 FPS in that
second, but the video stream will appear choppy to the user.
On the other hand, relative jitter captures the smoothness of
playback. For the BE jobs, we report throughput (TPUT). We
do not report jitter or tardiness of SRT decode tasks because
excessive tardiness in the decode tasks manifests as deadline
misses in the display tasks.

Our experiments evaluate the video playback quality and
performance of the BE jobs under EDF-HSB, EDF-HSB
without slack reclaiming and background scheduling (EDF-
HSB-NS), Linux’s CFS scheduler, Linux’s CFS scheduler
where BE work is run at a nice level of 5, and Linux’s
SCHED FIFO scheduler where three decreasing task pri-
orities are assigned to the sets τH , {S1, . . . , SnS}, and
{SnS+1, . . . , SnS+m} in that order. All video players used
the same queue size under each scheduler for the appropri-
ate value of v (see Table 1). BE jobs were modeled by BE
generators. Each generator produced job arrivals according

to a Poisson arrival process with rate λ = 0.01. BE jobs had
exponentially distributed execution times with mean 10 ms.
The execution times were limited to the interval [2, 100] and
interarrival times to a maximum of 200 ms. Therefore, the
utilization of all BE jobs created by a single generator was
approximately 0.1 before truncation. By varying the number
of BE generators, we simulated different levels of background
work. We reserved 10% utilization for BE work by allocating
m = 11 global servers for scheduling BE tasks, each with
budget 5 ms and period 50 ms.

Using a pool of 58 MPEG4 movie trailers, we evaluated
four experimental configurations. In the first two, the number
of videos v was fixed at 11 and 18 and the number of BE
generators was varied, while in the second two, the number of
BE generators was fixed at 18 and 36 and v was varied. For
each experimental replication, we played a randomly chosen
60 second interval of each video simultaneously. For the fixed-
v experiments, each replication used a randomly selected
subset of videos from the pool to determine how performance
was affected as additional BE work entered the system. For
experiments using a fixed number of BE generators, we drew
a random subset of videos for each value of v to observe how
performance was affected as additional SRT tasks were added
to the system.

For each setup, the entire experiment, including the ran-
dom selection of videos and playback intervals, was replicated
six times. To account for variation due to random sampling,
we calculated 95% confidence intervals for the mean of each
metric. Non-overlapping 95% confidence intervals imply that
the difference between schedulers is statistically significant.
A total of 1,260 task set and scheduler combinations were
evaluated, requiring more than 24 hours to execute all ex-
periments. In total, over 1.8 million frames were decoded
and more than 13 GB of benchmark data was collected for
analysis.

5.1 Results

Insets (a)–(d) and (f) in Fig. 3 depict jitter, tardiness, and
throughput as a function of the number of video streams or
BE generators. In these graphs, each point corresponds to
an integral x-coordinate; however, we diffuse points over
each x-axis coordinate in order to avoid clutter. Inset (e)
shows tardiness as a function of time for one task set. In the
following, we discuss the trends apparent in our data.

Video playback. Average-case provisioning, as compared to
WCET provisioning, was useful in reducing the queue size
without causing display task deadline misses before the sys-
tem approached its full capacity. Because EDF-HSB isolates
the BE jobs from the rest of the system, higher numbers of
BE generators do not negatively impact the video tardiness in
inset (b). CFS, on the other hand, did not keep BE work from
competing with the video tasks, as evidenced by the high BE
TPUT in inset (a). nice mitigates this problem somewhat, but
a higher nice value does not preclude a BE job from executing
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Figure 3: Recorded tardiness, jitter, and BE TPUT. (a) BE TPUT, (b) display job tardiness when playing 18 videos simultaneously with a
variable number of BE generators. (c) BE TPUT, (d) display job tardiness, (f) relative jitter for a varying number of videos with 36 BE
generators. (e) tardiness over time for v = 20 with 36 BE generators (note the log scale). Tardiness was averaged in 0.5 second intervals
over the 20 videos in the replication.



in lieu of an eligible video task; it is merely a hint.

BE throughput. EDF-HSB allocates only processing capac-
ity not reserved for video tasks to BE jobs, while CFS makes
no guarantees about the capacity available to any particular
type of task. As a result, BE TPUT was lower under EDF-
HSB than under CFS. In inset (a), where v = 18, EDF-HSB
reaches its maximum BE TPUT when the number of BE
generators exceeds 27. Under CFS, BE TPUT continues
to increase linearly as BE work is added to the system for
the number of BE generators that we examined. When BE
work is run using nice, the BE throughput is sub-linear for
higher numbers of BE generators. Although CFS has higher
BE TPUT than EDF-HSB in insets (a) and (c), it comes at
the expense of video task performance in insets (b) and (d),
respectively. Therefore, it can hardly be considered a benefit.

Slack reclaiming and background scheduling. We include
a comparison of EDF-HSB with and without slack reclaiming
and background scheduling to verify that these techniques
effectively compensate for situations where successive job
executions exceed the calculated average case, as well as
increase BE TPUT where spare processor capacity exists.
Without these techniques, BE TPUT is consistently 1.1 and
tardiness increases linearly once the number of videos exceeds
18 in inset (d). In contrast, background scheduling and slack
reclaiming allow EDF-HSB to increase its BE TPUT by
allocating all processing capacity not devoted to video tasks
to BE work, which can be seen in insets (a) and (c). Similarly,
in insets (d) and (e), donating spare capacity to tardy decoding
jobs decreases the tardiness accumulated in the corresponding
display tasks by two orders of magnitude.

SCHED FIFO. Our provisioning scheme was applied to
both EDF-HSB and SCHED FIFO and resulted in simi-
lar performance, with a few key differences. EDF-HSB has
marginally lower BE TPUT than SCHED FIFO in some
cases, likely due to differences in implementation efficiency
and overheads related to more frequent migrations (such as
those caused by budget enforcement and slack reclaiming).
Regarding implementation efficiency, SCHED FIFO is a pro-
duction scheduler whose implementation has been honed over
many years. Another difference is that SCHED FIFO did not
enforce budgets. In contrast, EDF-HSB was able to guarantee
a minimum BE TPUT, while BE TPUT under SCHED FIFO
dipped well below the 1.1 utilization mark in some instances
(e.g., as low as 0.56 in one case).

Over-utilization. The tardiness graphs in insets (b) and (d)
show EDF-HSB as having zero tardiness for most data points.
Average tardiness under EDF-HSB increased markedly in
the heavy-utilization cases v ∈ {21, 22} in (d). We attribute
this to two factors. First, display tasks occasionally exceeded
their provisioned budget for these large values of v, which
results in over-utilization. Second, for v = 22, some sample
video sets actually resulted in a system that was over-utilized
based on the provisioned decode budget. EDF-HSB provides
temporal isolation, i.e., SRT tasks that did not exceed their

budget were never tardy.

6 Conclusion
For work in the real-time systems community on analysis-
based SRT multiprocessor schedulers to be taken seriously
by OS developers, it is important to have evidence that such
schedulers actually offer some practical benefits in compar-
ison to heuristic-oriented alternatives. This paper has pro-
vided such evidence. Specifically, on heavily-loaded systems,
analysis-based schedulers proved to be superior to Linux’s
default CFS scheduler in terms of jitter, deadline miss ra-
tios, and tardiness. This study also demonstrated the value
of stochastic tardiness analysis in reasoning about SRT sys-
tems, as an alternative to the common practice of simply
applying HRT analysis using average-case execution costs
and hoping that the system works. In particular, average-case
stochastic analysis, together with slack reclaiming, avoids
pessimistic worst-case provisioning of highly variable tasks
such as video decoders without risking unbounded tardiness.
SCHED FIFO also proved to be a capable scheduler for the
considered workload, but cannot provide guaranteed lower-
bounds on BE TPUT. Indeed, because SCHED FIFO has a
corresponding real-time analysis, this bolsters our conclusion
that analysis-based approaches have merit.

Several interesting avenues exist for further work. First,
we have not attempted to identify the best analysis-based pol-
icy to implement. Continued experimental work is needed
to resolve this, including comparisons to semi-partitioned ap-
proaches [13, 14], investigation of slack reclaiming heuristics,
and investigation of trade-offs between BE TPUT guarantees
and HRT display tardiness. Second, it would be of value to
consider SRT workloads other than video. Third, our study
dealt primarily with the allocation of CPU resources. Our sys-
tem could be expanded to provision external resources such
as video devices and disk drives. Finally, in the case-study
system we considered, the workload is static. It would be
interesting to consider other workloads in which applications
are launched and terminated dynamically. Ample evidence al-
ready exists to suggest that the “bounded-tardiness” definition
of SRT would be promising to consider in such settings [2].
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