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Fig. 1: We introduce a method to translate acoustic fields recorded from sparse viewpoints of a scene (e.g. live concert recording by
multiple users) into remote and previously unseen scenes (e.g. remote concert in AR/VR) by leveraging diverse modalities including
audio and visual cues, and spatial locations. Unlike existing methods that rely on complex 3D meshes of the environment for audio
rendering, our framework uses audio and visual signals captured from discrete listener viewpoints. We employ a novel neural network
to learn direct sound as well as the distinctive first-order reflections and multibounce reverberation patterns in a given scene from
corresponding visual data, while also accounting for spatial acoustic variations. This allows for synthesizing realistic audio for unseen
environments, both virtual and real-world.

Abstract—
We introduce multimodal neural acoustic fields for synthesizing spatial sound and enabling the creation of immersive auditory
experiences from novel viewpoints and in completely unseen new environments, both virtual and real. Extending the concept of neural
radiance fields to acoustics, we develop a neural network-based model that maps an environment’s geometric and visual features to
its audio characteristics. Specifically, we introduce a novel hybrid transformer-convolutional neural network to accomplish two core
tasks: capturing the reverberation characteristics of a scene from audio-visual data, and generating spatial sound in an unseen new
environment from signals recorded at sparse positions and orientations within the original scene. By learning to represent spatial
acoustics in a given environment, our approach enables creation of realistic immersive auditory experiences, thereby enhancing the
sense of presence in augmented and virtual reality applications. We validate the proposed approach on both synthetic and real-world
visual-acoustic data and demonstrate that our method produces nonlinear acoustic effects such as reverberations, and improves spatial
audio quality compared to existing methods. Furthermore, we also conduct subjective user studies and demonstrate that the proposed
framework significantly improves audio perception in immersive mixed reality applications.

Index Terms—Multimodal interaction and perception, 3D user interfaces, Learning-based audio synthesis, Novel view synthesis,
Acoustic spatialization, Augmented reality, Virtual reality

1 INTRODUCTION

Immersive audio rendering is crucial in augmented and virtual reality
(AR/VR) as it enhances the sense of realism and spatial awareness by
accurately simulating how sounds originate and move in a 3D environ-
ment . For example, when a user attends a remote concert in AR/VR,
adjusting the audio direction, distance, and reverberation of the sound
to match the visual cues of the user’s physical or virtual environment
creates a more immersive experience, as illustrated in Figure 1. As
the listener moves around, the system should dynamically adjust how
they hear the music – whether they are closer to the stage, standing
under a balcony, or hearing the distant echoes from the crowd – making
the experience highly immersive and realistic. This realism, created
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by accurate spatial audio rendering, transforms the concert from just
watching a performance into a fully engaging, lifelike experience. Sim-
ilarly, in a virtual meeting, if someone speaks from a position behind
you, ensuring that the sound arrives as it would in real life, from behind,
enhances spatial cognition.

Existing methods for immersive audio face several challenges in
accurately capturing the complexity of sound propagation and its in-
teraction within a given space, limiting their effectiveness. Popular
techniques such as binaural rendering or standard spatial audio often
rely on simplified models that inadequately simulate how sound reflects,
diffracts, and is absorbed by the environment [25, 61]. Especially, these
methods struggle with real-time performance, particularly in complex
environments such as concert halls, where multiple sound sources and
dynamic interactions occur simultaneously. This leads to unrealistic
reverberations, echo effects, and a lack of spatial depth, breaking immer-
sion [49, 61]. Moreover, existing approaches typically use generalized
Head-Related Transfer Functions (HRTFs), which do not account for
variations in sound perception due to differences in individual head
and ear shapes. Without personalized HRTFs, the spatial accuracy
of the audio can be compromised, diminishing the overall quality of
immersion [15, 39, 67]. Additionally, the computational demands of
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rendering high-fidelity immersive audio in real time, especially for com-
plex multi-source environments, can lead to latency issues and reduced
audio quality, further limiting the effectiveness of current methods [50].

Recent novel-view synthesis and 3D reconstruction methods such as
neural radiance fields (NeRF) [38] and Gaussian splatting [22], have
demonstrated great success in recovering a complex scene from dis-
cretely captured image data. These techniques have also demonstrated
significant benefit in terms of compute and rendering for AR/VR edge-
device applications [8, 21]. However, such approaches do not directly
apply for spatial audio rendering as sound interacts with environments
in more complex ways than light. Moreover, handling the multi-source
and time-sensitive nature of sound adds additional complexity in apply-
ing Neural Radiance Fields (NeRFs), originally developed for rendering
realistic 3D visual scenes, for rending audio in real-time without com-
promising the audio quality or accuracy. This challenge is further
compounded if sound from a given environment recorded at a sparse set
of locations needs to be translated and adapted to a completely novel
unseen 3D environment, with appropriate spatial audio effects.

In this work, we introduce Multimodal Neural Acoustic Fields
(MNAF) framework to enable immersive audio in AR/VR, overcom-
ing some of the challenges described above. Specifically, our method
consists of two modules: 1) a visual-acoustic fusion module that uses a
hybrid transformer-convolutional neural network, dubbed conformer, to
learn the mapping between visual features of the ambient scene images
(obtained from a pre-trained visual feature extractor) and input source
audio signals, and 2) a waveform synthesis module that takes fused
audio-visual features from the previous module to synthesize audio as
heard from a novel unseen viewpoint. The framework is trained on
a large dataset of diverse environments and audio signals, and once
trained, it allows for generating audio from novel viewpoints. Our
framework also allows for translating the source audio into a com-
pletely unseen 3D environment and incorporating personalized HRTFs
to synthesize binaural audio for individual users. We validate our ap-
proach on synthetic and real audio-visual data and showcase visible
improvements over prior works in sound synthesis and rendering room
acoustic effects. Subjective user studies indicate that our framework
provides perceptually enhanced audio experience.

In summary, the contributions of our paper are as follows:

• We propose a novel learning-based framework to synthesize spa-
tial audio from unseen viewpoints and environments, leverag-
ing visual-acoustic features and incorporating a multimodal con-
former with an adaptive convolutional module featuring learnable
kernel dilations and positions.

• We validate our framework on both synthetic and real-world
datasets, as well as a custom dataset of conversational content
recorded in diverse environments with varying noise levels, and
demonstrate our framework’s effectiveness across a range of sce-
narios.

• We conduct a series of subjective user evaluations of our frame-
work using everyday scenarios rendered in virtual reality to assess
the quality of immersive audio rendering at unseen viewpoints,
and demonstrate enhanced immersive experience.

Datasets, training code, trained model weights and additional material
will be made publicly available.

Overview of Limitations: We take a first step towards rendering
immersive audio at unseen locations and environments via multimodal
audio-visual data. While our proposed approach demonstrates clear
improvements in generating immersive audio signals from new view-
points, refining the method to directly support 360-degree video inputs
will enhance immersion in VR and AR applications. Incorporating
additional modalities that complement visual data [37] might further
improve the quality of immersive experiences. Furthermore, extending
the method to explicitly consider the effect of materials in the scene
on sound attenuation, and rendering audio in real-time is an exciting
future direction.

2 BACKGROUND AND RELATED WORK

Our work closely relates to learning-based audio synthesis, novel view
synthesis, and acoustic spatialization, which we discuss here.

2.1 Learning-Based Audio Synthesis
Traditional audio processing systems synthesize sounds by assembling
audio segments or using task-specific mathematical models [51] tai-
lored to specific applications. Recent advances in deep neural networks
have significantly improved audio synthesis, demonstrating remarkable
capabilities in generating realistic voices and music notes [64] and
matching room acoustics [5], despite the challenges posed by audio’s
highly dynamic and time-sensitive nature. Autoregressive models such
as WaveNet [64] and SampleRNN [36, 72] can generate high-quality
audio and switch speakers for text-to-speech synthesis, but they strug-
gle to maintain temporal consistency over long sequences, leading to
potential degradation in audio quality. Adversarial Audio Synthesis
[9, 10] addresses this issue using global latent conditioning and parallel
sampling while relying heavily on the discriminative model for quality.
Diffusion models [24, 44, 73] have emerged as a promising approach,
converting white noise into structured waveforms with fast inference
and generalization. Yet, they face challenges in model size, long-term
coherence, and dependence on large training data. Our work enhances
existing models and methods by improving temporal consistency and
audio quality through audio-visual learning. By incorporating visual
features, we refine the synthesis process, enabling more accurate ren-
dering of effects such as reverberation and echoes.

2.2 Novel-View Synthesis
Recent advances in neural radiance fields (NeRF) [38, 55] have rev-
olutionized novel-view synthesis (NVS) by learning continuous and
implicit scene representations using multi-layer perceptions (MLP).
The original NeRF approach relies on end-to-end training of volume
rendering models to represent static scenes, requiring a large number
of calibrated images from multiple viewpoints for high-quality results
[38]. Subsequent works have explored various extensions, including re-
ducing the number of input views [18, 26, 41, 47, 70] and synthesizing
dynamic scenes [8, 29, 32, 43, 45, 60, 63]. More recently, 3D Gaussian
splatting has emerged as a promising approach for unbounded and com-
plete scene representation in NVS [20, 22, 46]. These advancements in
visual scene representation inspire research into the representation of
sound in the acoustics domain.

2.3 Acoustic Spatialization
Acoustic spatialization aims to create realistic auditory experiences by
modeling how sound propagates and interacts within three-dimensional
environments [6]. Traditional methods often rely on computationally
expensive or scene-specific approaches, such as ray-tracing-based sim-
ulation [25, 50, 54, 65] or wave-based simulations [33, 62] by empiri-
cally estimating acoustic properties [3, 27]. Therefore, it is challenging
to apply these approaches to arbitrary scenes.

Recent works explored neural networks to learn implicit represen-
tations that can continuously map spatial coordinates of a scene to
corresponding audio, enabling flexible and compact modeling of the
acoustic field. Acoustic Scattering Fields, Neural Acoustic Fields
(NAF), INRAS [35, 59, 61], and IR-MLP [48] represent seminal works
in this domain. These models utilize a framework of MLP that takes
listener and source positions as input, and outputs the waveform of
the impulse response, a rendition of audio in the time domain. These
approaches showed success in conditioning the network on local geo-
metric information extracted from a trainable feature grid, allowing for
the disentanglement of geometrical features into arbitrary emitter and
listener locations within a scene. However, they rely on 3D meshes and
are limited in their application to a single source noiseless environment,
making them impractical for immersive AR/VR applications. In con-
trast, our model relies on captured images from the listener’s viewpoint
and relative pose to the speaker, all of which will be freely available
from the sensors on wearable display eyeglasses, allowing the method
to generalize effectively across diverse environments.
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Fig. 2: Model Architecture. Given source audio input, source RGB image and optionally depth, we first encode the RGB channel data through a
Conformer which produces C at the current view point. We then upsample respectively this reverberated audio and the source audio and concatenate
them in the latent space. We then pass this the into a Waveform Synthesis block with adaptive convolutions. We use positional features at the novel
viewpoint as conditions for the waveform synthesis block. The positional features are obtained by concatenating positional information from the
listener viewpoint, namely the listener pose and rotation, as well as the speaker pose, then learning a single representation through the MLP. In each
block, the audio sequence is processed by adaptive conv1d layers and the positional features are processed by conv1d layers.

AV-NeRF [31], Visual Acoustic Matching [6], and NVAS [5] uti-
lized an end-to-end neural network to fuse localized visual features
of the environment with acoustic features. However, these methods
fall short of capturing the complex relationships between the visual
environment and its acoustic characteristics without leveraging the tem-
poral correlations between audio and visual features. In addition, the
binaural channels of the stereo audio are often trained separately in
these models, limiting effective learning of the spatial acoustics, which
compromises immersive experiences. In contrast, our method extracts
acoustically relevant information from visual features by directly learn-
ing the audio-visual correlation in the temporal domain. With effective
cross-modal fusion, our proposed framework enables perceptually high
quality sound rendering, as also validated by our perceptual studies.

3 NOVEL-VIEW ACOUSTIC SYNTHESIS

We seek to synthesize audio as heard from a novel viewpoint of a given
environment or in an unseen new environment using the audio-visual
sensory measurements on an AR/VR headset. This task is intrinsically
multi-modal and challenging. Our method takes as input audio-visual
data (AS,VS) captured from a “source” (or speaker) viewpoint, assum-
ing the position and orientation of the speaker relative to the “receiver”
(or listener) viewpoint are known, as illustrated in Figure 2. Using this
information, we synthesize the audio AR at a novel receiver viewpoint
for any scene via a learnable mapping,

f : (AS,VS,PS,PR;E) 7→ AR, (1)

where PS,PR describes the speaker and listener poses, respectively, for
a given environment E.

Our proposed multimodal neural acoustic fields framework learns
the transfer function AR = fER(AS,VS,PS,PR;ES) to synthesize audio
at novel receiver positions PR and environments ER given the input
audio in the source environment ES. The acoustic characteristics of
the scene, however, are not explicitly handled but are implicitly learnt
from the audio-visual data. The higher-order acoustic effects such as
reverberations depend on the geometric features of the environment
whereas direct line-of-sight sound depend on the relative poses of the
speaker and listener. Therefore, we infer AR in two stages: the higher-
order reflections from the audio-visual features AS and VS, and direct
sound from the poses PS and PR, as shown below:

AR = fAS
(

fVAFER
(AS,VS;ES),PS,PR;ER

)
(2)

where fVAF denotes the first visual-acoustic fusion stage of inferring
reverberations in the new environment based on the sampled sound
and 3D space of the source environment, and fAS denotes the second
acoustic synthesis stage where the direct sound is inferred based on the
relative poses of the speaker and listener. Next, we describe our two
stage method, together dubbed as Multimodal Neural Acoustic Fields.

4 MULTIMODAL NEURAL ACOUSTIC FIELDS

Our Multimodal Neural Acoustic Fields (MNAF) frameworks consists
of two core components: the Visual-Acoustic Fusion Block and the
Acoustic Synthesis Block, as discussed in Section 3. The Visual-
Acoustic Fusion block is built as a hybrid transformer-convolutional
neural network, also known as conformer, to implicitly learn the scene
acoustics. It has been shown that such a model can also implicitly learn
the material properties such as the acoustic impedance and surface
roughness which influence higher-order reverberations, purely from
visual features [34]. We specifically use a cross-modal encoder to
model the correlation between visual data and corresponding audio,
and encode scene-dependent acoustic characteristics into latent features
using our visual-acoustic fusion conformer network. The encoded
latent features are then passed to an acoustic synthesis block to decode
the acoustic field as well as synthesize direct sound and inter-aural
effects dependent on the relative location and pose of the speaker and
the listener. This section discusses our framework in detail.

4.1 Visual-Acoustic Fusion for Encoding
The Visual-Acoustic Fusion (VAF) block employs a stacked conformer
architecture [5, 16] to capture the effects on reverberations informed
by visual data. Simulating accurate acoustic material properties for
every object is challenging in real-world scenarios. Therefore, we
rely on visual features to serve as proxies to object material properties
[2, 12, 28, 40, 53], translating learned object characteristics into their
corresponding sound effects. For instance, hard surfaces like metals
result in sharper and intense reflections with longer reverberation times,
while soft materials like fabric absorb sound, dampening reverberation.
Each conformer block consists of a feed-forward module, a Multi-
Head Self-Attention (MHSA) module, a cross-modal encoder for cross-
attention, a convolutional module, followed by another feed-forward
module in sequential order, as illustrated in Figure 2. Before applying
cross-modal attention, we encode the RGB(D) visual features of the
source viewpoint VS as VF by a pretrained ResNet18 network [17].
The cross-attention is inserted after the self-attention to establish the
correlation between video patches of the source view and acoustic
characteristics. The attention score Fcm between the pairs of audio AS
and visual features VF are computed as

Fcm(AS,VF ) = softmax
(

ASV
T

F√
H

)
VF (3)

where H is the feature dimension of AS and VF .
The cross-modal attention establishes correlations between the audio-

visual inputs of the source view. This approach effectively draws
inferences from their corresponding spatial and material-dependent
room acoustic characteristics from audio-visual data. As a result, the
visual-acoustic fusion block learns an implicit representation C of room
acoustic characteristics in the temporal domain and is encoded as latent
features of the scene-dependent visual-acoustic data:

C = Conformer(AS,VS). (4)



While the conformer captures the higher-order reflections and reverber-
ation within the scene, decoding and synthesizing the audio at a novel
viewpoint requires the audio from the source view. Therefore, we pass
the latent vector C and the source audio AS through 1D convolutional
layers for resampling and matching their dimensions before they are
fused through an additional fusion layer, to obtain output

M = Fusion(Ĉ, ÂS) (5)

where Ĉ and ÂS are the result of 1D convolutional resampling.

4.2 Acoustic Synthesis Network for Decoding
The acoustic synthesis block decodes the conformer output from the
previous stage and uses the listener’s relative position information from
the speaker (in the new environment) to conditionally generate spatial
audio. Positional inputs such as the relative pose of the source and
receiver plays a crucial role in perceiving direct sound. Therefore, the
relative positions and orientations of the speaker PS and listener PR are
passed through sinusoidal positional encoding to get an embedding of
the spatial coordinates, γ(PS) and γ(PR), respectively.

The encoded spatial information is then transformed through a series
of linear projections via an MLP to map the positional embeddings into
a lower dimensional positional feature space, denoted as

ẑ = MLP
(
γ(PS),γ(PR)

)
.

These features enable our model to capture the spatial dynamics in the
scene such as the effect of the listener’s motion on the perception of
spatial sound, and are passed to the acoustic synthesis module as con-
ditional input. The acoustic synthesis module then decodes the output
from visual-acoustic fusion block M (Equation (5)) by conditioning
on positional features ẑ. The acoustic synthesis decoder is designed as
a network of N stacked synthesis blocks as shown in Figure 3, where
each block consists of multiple 1D convolutional layers. Every block
features gated adaptive layers to dynamically adjust and learn the influ-
ence of positional data on the encoded audio. Specifically, this design
ensures that the model accurately captures how spatial changes such
as distance and orientation affect the perceived sound. More details on
adaptive convolution is discussed in Section 4.3.
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Fig. 3: Acoustic Synthesis Block. We decode the fused audio-visual
features M from the previous stage by conditioning on positional feature
space of the speaker and listener ẑ to generate spatial audio.

The VAF block provides fused audio-visual features which may or
maynot be relevant to current listener’s position. To distill relevant
information, we regulate the complex variations in audio-visual data
and extract the features relevant to current listener’s pose. To this end,
we use a tanh activation on M, and a sigmoid activation on ẑ as a gate to
regulate the flow of information. Specifically, we employ a Hadamard
product of tanh and sigmoid activation functions with learnable weights
to serve as the filter and gate respectively, and is described by

xk = tanh
(

uk
A(M

k−1
R )+uk

V (ẑ)
)
⊙σ

(
vk

A(M
k−1
R )+ vk

V (ẑ)
)
, (6)

Bk
R = w1

(
sinxk

)
, Bk

P = w2

(
sinxk

)
, (7)

where k = 1, ...,N is the layer index, xk is the intermediate feature
representation at the k-th layer, tanh(·) and σ(·) are the activation
functions, and ⊙ is the Hadamard product. The learnable weights for
encoded audio and video features in the k-th adaptive convolutional
layer are denoted by uk

A,u
k
V ,v

k
A,v

k
V . As illustrated in Figure 3, the k-th

layer of the acoustic synthesis module takes values from the residue
connection of the previous (k-1)-th layer, Bk−1

R , and outputs the features
Bk

P that are fed to the next layer. The result of these gated networks
are passed through a sinusoidal activation function, and encoded with
two convolutional weights w1 and w2 (Equation (7)). The sinusoidal
function introduces periodicity and maintains a uniform amplitude,
making it well-suited for audio encoding [6]. The outputs {Bk

P, (k =
1, . . . ,N)} are all processed by mean pooling before finally decoding
to produce the synthesized audio ÂR.

4.3 Adaptive Convolutions in Acoustic Synthesis Block
Modeling long-term dependencies in audio requires a large receptive
field to capture the necessary long-range information. One approach to
this challenge is to stack 1D convolutional layers with exponentially
increasing dilation of spacings. While dilated convolutions expand
the receptive field, their fixed spacings limit the model’s ability to
capture specific frequency patterns in audio data. As dilation increases
across layers, large gaps between sampled points cause the network to
miss subtle, localized changes in the audio sequence, due to which the
network struggles to learn the fine-grained waveform variations.

Fig. 5: Dilated Convolution with Learned Spacings (DCLS). (a) a
standard 1D convolution with kernel size of 3. (b) a dilated 3 kernel with
dilation rate 2. (c) a 1D convolution with learned dilation spacings with 3
kernel elements and a dilated kernel size of 9.

We overcome this in our acoustic synthesis module by integrating
dilated convolutions with learnable spacing (DCLS) [23] into the wave-
form synthesis network. This allows our model to dynamically adjust
and optimize the dilations, thereby effectively capturing both long-term
dependencies and fine-grained details presented in the audio signals.
We show in ablation studies that this approach leads to overall better
performance, especially in unseen data and environments.

A DCLS module with a kernel K of m elements is formulated as

F : w,p 7→ K =
m

∑
i=1

f (wi, pi), (8)

where i (1 ≤ i ≤ m) denotes kernel elements, wi denotes their learnable
weights, pi, 1 ≤ pi ≤ s are the learnable positions along the kernel,
and f (w, p) is the contribution from each kernel element. As opposed
to a regular kernel (Figure 5a), a kernel with learned dilation spacing
(Figure 5b,c) can have kernel elements in arbitrary locations, thereby ex-
tending the overall receptive field. However, since the kernel positions
are also learned, they can be fractional.

The final kernel elements are therefore computed via interpolation
of elements of the vector K with learned parameters w, p as

Kℓ =

{
w(1− r) if ℓ= ⌊p⌋
wr if ℓ= ⌊p⌋+1

(9)

and r = p−⌊p⌋ is the fractional part of p, and overlapping kernel
weights at a given position are added.
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higher-order reflections, also known as reverberations. In our model, we address sound propagation in two stages. First, we model reverberations
based on the room’s consistent acoustic profile, which is determined by its geometry, materials, and other characteristics learned from visual features.
Then, we refine this model by incorporating how direct sounds and early reflections are influenced by the pose of the speaker and listener. In the
encoding phase, described in Section 4.1, we extract visual features to model the room’s reverberant sound field, capturing the overall acoustic
profile of the environment. This profile remains consistent throughout the room. In the next step, we incorporate local acoustic effects, which change
as the speaker or listener moves within the space. Detailed in Section 4.2, we utilize positional data, such as the speaker’s pose and orientation, to
further refine direct and early reflective sound paths. To achieve precise spatial audio effects, we also optimize interaural differences using a stereo
loss function. Additionally, our proposed HRTF module and its preliminary validation are discussed in Section 6.3.

4.4 Loss Function
Our loss function includes an ℓ1 loss between the magnitude of short-
time Fourier transform (STFT) of predicted audio ÂR and groundtruth
audio ÂR,

Lmag =
∣∣∣∣|STFT(ÂR)|− |STFT(A)|

∣∣∣∣ . (10)

One noted issue with only using a STFT magnitude loss is that the
model may fail to distinguish energy differences across the binaural
channels, leading to short-cut learning [13, 57]. Therefore, to help the
model better learn stereo balance, we compute the sum and difference
signals on two channels,

AR,sum = AR,left +AR,right (11)

AR,diff = AR,left −AR,right (12)

where AR,sum captures the shared audio content between channels (i.e.
mono sounds evenly distributed across both speakers), and AR,diff cap-
tures the differences, encoding stereo separation and spatial details such
as one channel being louder or delayed relative to the other.

We also employ an additional multi-resolution loss ℓMR [69] com-
posed of spectral convergence ℓSC and spectral log magnitude ℓSM to
captures both fine and coarse spectral features:

ℓSC(ÂR,AR) =

∥∥|STFT(AR)|− |STFT(ÂR)|
∥∥

F
∥|STFT(AR)|∥F

(13)

ℓSM(ÂR,AR) =
1
N

∥∥log(|STFT(AR)|)− log
(
|STFT(ÂR)|

)∥∥ (14)

ℓMR(ÂR,AR) =
1
M

M

∑
m=1

(
ℓSC(ÂR,AR)+ ℓSM(ÂR,AR)

)
, (15)

where ℓsc supervises the deviation of STFT amplitude from ground truth
and ℓsm, the log amplitude of STFT, provides additional quantization
levels for learning weaker signals. We apply ℓMR to each channel as
follows,

Lstereo = ℓMR(ÂR,sum,AR,sum)+ ℓMR(ÂR,diff,AR,diff) (16)

Our final optimization objective is defined as

Ltotal_loss = Lmag +αLstereo (17)

where α is a weight parameter.
We implemented the proposed framework in PyTorch and all the

models were trained on a single NVIDIA RTX 3090 GPU. We used
the ADAM optimizer with β1 = 0.9 and β2 = 0.999 and α = 0.02 for
training, with each model trained for 10 epochs with a learning rate of
5×10−4.

5 EXPERIMENTS AND EVALUATIONS

5.1 Simulation and Real-World Datasets

We used three data sets for our model evaluation: Replay [52],
SoundSpaces [6], and a custom collected data set which we call En-
vSound. The Replay data set contains multiview audio and video
recordings of real-world conversational scenarios captured in a home-
like environment. Eight stationary cameras and binaural microphones
simultaneously record 5-minute conversations split into videos of one
second each, providing synchronized multiview frames and audio. For
training, we randomly selected two out of the eight viewpoints (yielding
56 possible speaker-listener combinations per scene), with the dataset
split into 77K/12K/2K clips for train/validation/test. The visual input
resolution is 256×256.

The SoundSpaces dataset simulates room acoustics based on Mat-
terport3D [4] and Replica [58] 3D environments, offering 120 virtual
scenes with 1,000 speakers and 200,000 viewpoints. For each envi-
ronment, we randomly sampled two speaker locations and four nearby
viewpoints oriented toward the speakers and recorded a one-second
video. Each speaker was assigned a gender-matched speech sample
from the LibriSpeech dataset [42], and binaural impulse responses were
computed for all speaker-viewpoint pairs. During training, two of the
four viewpoints were randomly selected as source and target for each
sample. The SoundSpaces dataset was split into two testing categories:
“Same Environment” (testing on environments seen during training)
and “Novel Environment” (testing on unseen Gibson environments),
using a 90/10/20 split for train/val/test. The visual input resolution is
216×384.

To assess the robustness of our model, we created a custom multi-
environment, multi-scenario dataset, which we name EnvSound, as
SoundSpaces lacks ambient noise and Replay is limited to a single envi-
ronment. We evaluated our model’s performance on this dataset using
both objective metrics and user studies. Our custom dataset comprises
of video clips (∼ 30s) recorded simultaneously using two iPhone 14s
(24mm focal length, 1080x1920 resolution at 30 fps, MEMS stereo
microphones) in diverse, uncurated everyday settings (15 scenes in
total), with the phone held in random positions relative to the speaker.
It features a variety of scenarios, such as conversations and mono-
logues, and offers a broader range of noise levels compared to existing
datasets. For instance, some clips, captured in noisy environments
like busy restaurants, feature ambient sounds comparable in volume to
the conversations, while others, recorded in quiet spaces like offices,
have minimal background noise. The dataset also spans a wide variety
of visual settings, including different room sizes, lighting conditions,
and levels of visual clutter. No denoising or speech enhancement was
applied to the recordings, allowing us to rigorously test the model’s
performance under challenging noise conditions.



Synthetic Dataset Real-world Dataset

Same Environment Novel Environment Replay EnvSound

Mag↓ LRE↓ RTE↓ Mag↓ LRE↓ RTE↓ Mag↓ LRE↓ RTE↓ Mag↓ LRE↓ RTE↓
Input Audio 0.225 1.473 0.032 0.216 1.408 0.039 0.153 1.322 0.045 0.043 5.52 0.042
TF Estimator 0.648 2.713 0.066 0.815 2.792 0.067 0.334 2.632 0.142 - - -
DSP 0.634 7.194 0.049 0.876 7.775 0.048 - - - - - -
ViGAS 0.150 1.260 0.037 0.211 1.241 0.036 0.145 0.947 0.049 0.043 5.25 0.043
Ours 0.134 1.151 0.034 0.186 1.125 0.034 0.142 0.664 0.046 0.035 5.21 0.038

Table 1: Results on Simulated and Real-world Datasets. The Simulated Dataset includes the SoundSpaces dataset, featuring novel views
collected in both the Same Environment and Novel Environment. The Real-world Dataset includes the Replay dataset, which contains novel views in
the same environment, and the EnvSound dataset, which we collected ourselves across various environments. The Replay dataset was collected
using a professional setup, whereas the EnvSound dataset was captured using a phone recorder. We consider the metric of STFT magnitude (Mag),
left/right ratio error (LRE), and RT60 error (RTE). We evaluate the novel environment for the SoundSpaces dataset for it has a subset rendered on
novel scenes. Lower is better for all baselines, for which we use the input audio, TF estimator, DSP, and the ViGAS model.

5.2 Model Evaluations
We evaluated our model’s performance on three datasets. For the
simulated SoundSpaces dataset, we tested our model on uncaptured
views from both “Same Environment” and “Novel Environment”. We
randomly activate only one speaker and select two viewpoints as the
source and target during training. For the real-world Replay dataset,
which provides only a single environment, we used uncaptured views
from the same environment. The EnvSound dataset consists of diverse
everyday scenarios which we use to evaluate our model’s robustness in
challenging environments which include background music and natural
ambient noise. All models were trained on RTX3090 GPUs. Table 1
shows the performance of the models on each of these datasets.

We compared our model against four baselines: 1) audio-only input
, where the synthesized audio at all viewpoints is identical to the input
source audio, 2) TF estimator [68], 3) digital signal processing (DSP)
[7], and 4) ViGAS model [6] without the depth map. The DSP baseline
predicts the output audio in two stages: first, converting the binaural
audio from the source location to the speaker’s mono audio using the
inverse head-related transfer function (HRTF), and second, applying the
target microphone pose and HRTF to process the speaker’s audio and
obtain the final output. For the TF Estimator, we use a Wiener filter to
estimate and store transfer functions, indexed by location or pose, and
retrieve the nearest match at test time. We supplied the ground-truth
coordinates from the SoundSpaces dataset for the DSP baseline. As
can be seen in Table 1, our method demonstrate consistently better per-
formance over all baseline methods and across synthetic and real data.
As our custom EnvSound data is captured in uncalibrated in-the-wild
environments, we are unable to evaluate traditional methods that require
speaker coordinates, such as TF Estimator and DSP, on this dataset.
Our enhancements across all metrics compared to existing methods
indicate that our method is robust diverse scenarios and everyday noisy
environments. We provide additional results and video evaluations in
the Supplementary Material.

We used three metrics to measure the deviation of the predicted
audio from the ground truth,

• STFT Magnitude Error (Mag) compares the magnitude of the
Short-Time Fourier Transform (STFT) between the predicted and
ground truth audio signals. A lower Mag error suggests better
preservation of the audio’s frequency components. Early reflec-
tions, occurring within the first 50 ms, demand high temporal
resolution for accurate analysis. By using a hop length of 160
samples at a 16,000 Hz sampling rate, we achieve a 10 ms update
interval, enabling precise capture of their timing and characteris-
tics.

• RT60 Error (RTE) measures the difference in reverberation time
(RT60) between the predicted and ground truth audio signals.
A lower RTE indicates that the model accurately captures the
reverberation properties of the environment.

• Left-Right Ratio Error (LRE) calculates the difference in energy

ratio between the left and right channels of the predicted and
ground truth audio signals. A lower LRE suggests that the model
accurately reproduces the spatial balance between channels, cru-
cial for creating a realistic binaural audio experience.

These metrics collectively evaluate the spectral content, reverberation
characteristics, and spatial balance of the predicted audio, assessing
how well the model captures the acoustic properties of the environment
and reproduces the desired binaural audio output.

Overall, the proposed MNAF framework effectively synthesizes au-
dio at novel viewpoints as also demonstrated by the objective metrics
in reported in Table 1. Additionally, we also showcase in Figure 6
a comparison between the predicted novel view audio waveform by
our method, by the best available alternate method ViGAS, and the
groundtruth audio waveform. This demonstrates that out method out-
performs prior approaches and achieves audio synthesis that matches
closely with the groundtruth. Our subjective user evaluations, which
also demonstrate significantly improved immersive audio perception,
are discussed in Section 7 and Section 8.

6 ANALYSIS

In this section, we analyze our framework and conduct ablation studies
to evaluate the contribution of each network component towards its
overall effectiveness. Specifically, we study the contribution of the
conformer (used for visual-acoustic fusion) by replacing it with a naive
concatenation of visual and coordinate features, and adaptive convolu-
tions (used for acoustic synthesis) by substituting them with standard
convolutions. Our tests validate the choice of our network architecture’s
visible improvements in performance.

6.1 Analysis on Synthetic Data
Our method outperforms all baseline approaches, including the tradi-
tional approaches that consider explicit camera and speaker location
coordinates, on the synthetic SoundSpaces dataset. To assess the contri-
butions of individual network components, we conducted ablation tests
on the choice of conformer and adaptive convolutions, and the results
are shown in Table 2.

Specifically, we test on two different scenarios: acoustic synthesis
at a novel viewpoint in the same environment and acoustic synthesis
in an unseen novel environment. We observe that the adaptive convo-
lutions significantly improve STFT magnitude and left-right ratio by
capturing the long-term dependencies at higher adaptive resolutions.
The conformer, on the other hand, shows visible improvements across
all metrics, especially in RTE that measures reverberation. A similar
trend is observed even in novel environments, where our method shows
significant improvements over prior works. The adaptive convolutions
demonstrate improvements over all metrics and shows our method’s
adaptability to different unseen novel environments. The conformer
improves on the STFT magnitude and LRE but show modest improve-
ments for RTE. This is because the encoded reverberation patterns of
one environment might not scale well to novel unseen environments.



Fig. 6: Perceptual Study Results. We present comparisons of predicted novel viewpoint audio for our model to the ViGAS model on both channels.
The speaker and the position of the novel viewpoint at which audio is predicted are indicated in the figures. The waveforms predicted by our model
are closer to the ground truth. More results, including waveform plots and videos, are shown in the Supplementary Material.

Models Same Environment Novel Environment

Mag LRE RTE Mag LRE RTE

Our Model 0.134 1.151 0.034 0.186 1.125 0.034
Our Model w/o Conformer 0.139 1.174 0.037 0.191 1.21 0.034
Our Model w/o Adaptive Convolutions 0.150 1.260 0.037 0.211 1.241 0.036

Table 2: Ablation on Synthetic Dataset. Ablation tests and analysis of
our method on synthetic data in rendering sound in familiar and unseen
novel environments.

6.2 Analysis on Real-World Data
For testing the performance of our method on real data, we evaluate
it on the Replay dataset and show that our model outperforms the
baselines. For the Replay dataset, adaptive convolutions contribute
more significantly to improving the left-right energy ratio compared
to simulated datasets. Real-world audio features a wider range of
acoustic phenomena such as reflections and subtle diffractions that are
not often not well modeled in simulated datasets. These complexities
create diverse and intricate spatial audio cues that adaptive convolutions
can effectively model. As Replay dataset consists of clips within the
same environment, we see an improvement on RTE contributed by the
conformer (Table 3) despite the lack of ground truth depth values. Our
method requires at least two viewpoints and increasing the number of
viewpoints empirically results in more accurate outcomes. Results on
real-world datasets validate the effectiveness of our proposed approach
in capturing room acoustics and synthesizing spatial audio in everyday
environments. Additional results and analysis can be found in the
Supplementary Material.

Models Mag LRE RTE
Our Model 0.142 0.664 0.046
Our Model w/o Conformer 0.143 0.664 0.0475
Our Model w/o Adaptive Convolutions 0.147 0.804 0.049

Table 3: Ablation on Realistic Dataset. Ablation tests and analysis of
our method on real-world dataset (Replay).

6.3 Preliminary Validation Towards Personalization
Akin to today’s mobile phones, augmented reality headsets of the future
will be personalized and that requires personalizing spatial audio ren-
dering by incorporating the HRTF of the individual users. To explore
this possibility, we evaluated the integration of an additional HRTF
module to our current model for end-to-end learning of binaural audio.
To this end, an HRTF module that takes the speaker’s absolute position
and pose relative to the target view is added before the visual-acoustic
fused signals are passed to the acoustic synthesis block. This enables

predicting binaural signals by conditioning the audio synthesis block
with re-encoded binaural positional cues. Our current HRTF module
employed the HRTF filter of the KEMAR dummy head [14], incorpo-
rating the speaker’s absolute position and pose relative to the target
view. User-specific HRTFs, which can vary significantly between in-
dividuals, can be derived through methods such as 3D head scanning
[1, 56] or using personal anthropometric measurements [71, 74] with a
large dataset [66]. However, these methods raise privacy concerns due
to the exposure of personal identity. An end-to-end approach to predict-
ing HRTF filters from head movements and binaural audio presents a
potential solution to mitigate such privacy risks [19, 30], and is a key
direction for our future research. The results shown in Table 4 and
Table 5 demonstrate that the HRTF module improves left-right ratio as
expected, and also improves phase and delay, indicating its ability to
increase spatial quality of predicted audios. Furthermore, the HRTF
module also adapts well to novel environments, demonstrating its ca-
pability to capture spatial sound fields effectively even in previously
unseen settings, as shown in Table 5. Additional discussion on HRTF
module can be found in the Supplementary Material.

Models Mag ↓ RTE ↓ LRE ↓ Phase ↓ Delay ↓
Our Model 0.134 0.034 1.134 1.629 2.683
Our Model w/ HRTF Module 0.134 0.034 1.15 1.420 1.815

Table 4: HRTF module in SoundSpaces - Same Environment

Models Mag ↓ RTE ↓ LRE ↓ Phase ↓ Delay ↓
Our Model 0.186 0.034 1.112 1.500 2.573
Our Model w/ HRTF Module 0.185 0.034 1.053 1.46 1.815

Table 5: HRTF module in SoundSpaces - Novel Environment

7 PERCEPTUAL QUALITY IN VR
As shown in Figure 6, we developed a study to assess the audio render-
ing quality of unseen viewpoints in live recordings rendered in a VR
environment. The aim is to determine how well our model generates
realistic audio interpolation in common, everyday settings.

Participants. We recruited 12 subjects (ages 18 - 27, 6 females, 6
males) to join the study. All have normal or corrected-to-normal vision
and no history of auditory deficiency. Among the participants, 5 had no
prior experience with VR, 5 used VR equipment 5 times or less, and 2
are familiar with and have regular access to VR devices. None were
aware of the hypothesis, the research, or the number of task difficulty
levels. The study protocol was approved by the Institutional Review
Board (IRB) at the host institution, and all subjects gave informed
consent before the study.



Setup. In this study, we use a total of 11 scenes, including 7 from
the EnvSound dataset as detailed in Section 5.1, along with 4 scenes
from the publicly available AVSpeech dataset [11], which features
clean speech video clips without background noise. All videos were
converted into 180-degree stereoscopic 3D videos with accompanying
audio and played in a Meta Quest 3 headset, where the experiment took
place.

Stimulus. The stimuli comprise 11 novel view videos featuring
everyday conversations in various settings, including noisy, quiet, spa-
cious, and compact rooms. While the visual frames remain unchanged,
the audio for each scene is generated using one of three methods: cap-
tured audio (reference), audios interpolated by our model, and baseline
method [6]. These audio tracks are then synchronized with the vi-
sual frames, ensuring consistent visuals and the resulting videos are
presented to the participants.

Task. In the VR headset, participants first listened to 11 reference
audios derived from novel view frame videos. They were asked to
review and memorize these reference sounds before starting the exper-
iment. In each trial, a stimulus generated by one of three rendering
methods was presented for 15 to 30 seconds. Participants were in-
structed to focus on the speaker to ensure consistent sound directivity
and used the keyboard to indicate whether the stimulus matched the
reference audio. The experiment comprised 33 trials in total, with 11
trials per rendering method, presented in a randomized order.

case
user

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

Reference Video 7 6 9 5 4 8 8 4 9 8 11 4
Ours 9 7 8 8 5 6 10 5 9 9 10 4
Baseline 8 9 2 5 0 2 0 2 5 3 8 1

Table 6: User Study Results. The table shows the number of trials
(out of 12) where participants did not notice any difference compared
to the reference. Notably, some participants reported audible difference
even in the reference video condition, indicating individual differences in
judgment criteria. A significant difference in perceived audio quality was
observed between reference vs. baseline and our model vs. baseline
conditions (p = 0.006). In contrast, the difference between our model
and reference was not significant (p = 0.189).

Result. A one-way within-subjects ANOVA revealed a significant
difference in perceived sound quality between the acoustic synthesis
methods (F(2,22) = 7.39, p = 0.002). Post-hoc paired t-tests with Bon-
ferroni correction showed that the baseline method performed signifi-
cantly worse than both the reference sound and our model (p = 0.006).
Importantly, there was no significant difference between the sound of
our model and the reference sound (p = 0.189). These results sug-
gest that our method achieves sound quality similar to the reference,
outperforming the baseline.

8 EVALUATION OF IMMERSIVE AUDIO

We aimed to evaluate our model’s ability to transform existing audio
into novel virtual environments, comparing it to prior methods. To this
end, we conducted two studies in both VR and AR. Participants first
watched a concert video and memorized the reference audio. Then,
they experienced the transformed audio generated by our model and
prior work [6], which was adapted to the VR/AR environment. User
experience questionnaires were provided to assess the participants’
immersion and spatial audio sensation of the audio events synthesized
between models.

Participants We recruited 6 participants (ages 18 - 27, 1 female)
to join the study. All have normal or corrected-to-normal vision and no
history of auditory deficiency. Among the participants, 2 had no prior
experience with VR, 3 used VR equipment 5 times or less, and 1 is
familiar with and has regular access to VR devices. None were aware
of the hypothesis, the research, or the number of task difficulty levels.
The study protocol was approved by the Institutional Review Board
(IRB) at the host institution and all subjects gave informed consent
before the study.

a) User Experience in VR b) User Experience in AR

Fig. 7: Live Views. Participants in a) VR, and b) AR environments.
Experimental Setup. We curated live concert clips for reference

audio. In the VR study, we created two virtual environments in Unity.
For the AR study, participants focused on virtual speakers placed in
an office space. The VR study was conducted using the Meta Quest 2
headset, while the AR study involved participants wearing the Apple
Vision Pro.

8.1 Application in VR
We adopted two sizes of indoor scenes in the VR application study: an
apartment (large) and a bedroom (small). Participants watched the refer-
ence audio video before the experiment. Then, they were instructed to
walk through two scenes with immersive spatial audio in VR. The VR
experience session was repeated twice, with one using the audio event
generated by the baseline model [6] and one using our proposed model.
After completing the auditory immersion task, participants were asked
to fill in 2 questionnaires to complete a post-study survey on evaluating
the user experience between 2 sessions (our model vs baseline). The
survey consisted of seven questions sourced from standard XR ques-
tionnaires: PQ and IPQ. The entire study, including instructions and
the survey, took approximately 5 minutes per participant. As shown
in Figure 8, post-hoc paired t-tests at the 10% significance level shows
that our method outperforms the baseline in realism and immersion for
VR (p = 0.054,0.002 respectively).

1 2 3 4 5 6 7
Score

Immersion

Sensory Fidelity

Involvement

Realism

a) Immersive Concert in VR

ours
baseline

1 2 3 4 5 6 7

b) Immersive Concert in AR

Fig. 8: Subjective evaluation of Immersive Audio in VR/AR. Our
post-study survey includes questions (detailed in Supp.) from the PQ
and IPQ questionnaires. The Likert-scale responses are combined to
evaluate both conditions across four dimensions: Immersion, Sensory
Fidelity, Involvement, and Realism, with higher scores reflecting better
performance. The boxes represent the data range between the first and
third quartiles (Q1-Q3), with dots showing the mean and lines indicating
the median. Error bars represent the farthest data points within 1.5× the
interquartile range (IQR) from the boxes.

8.2 Application in AR
We used a conference table as the physical proxy and mapped a des-
ignated area in AR to place the virtual speaker. The study was imple-
mented using Apple Vision Pro. The reference audio along with the
captured image of the office space, was fed into both our model and
the baseline (consistent with Section 8.1). Participants were seated in a
chair facing the virtual speakers placed on the conference table. After
hearing the reference audio, they were asked to listen to two audio clips
played by Apple Vision Pro: the audio generated by our model and the
baseline, presented in random order. The same post-study survey was
utilized, as outlined in Section 8.1. The entire study, including study
instructions and the post-study survey, took approximately 5 minutes
per participant. Post-hoc paired t-tests at the 10% significance level,
as shown in Figure 8, demonstrate that our method performs better
in Involvement, Sensory Fidelity and Immersion for the AR setting
(p = 0.027,0.056,0.007).



8.3 Results
For the VR Concert application, we demonstrate consistent enhance-
ment in the feeling of presence over the baseline, particularly in im-
mersion and realism. In VR, Immersion improves by 26% in mean
and reduces variance by 51.4%, indicating a more stable experience.
Realism sees a 13.4% mean improvement and a 34.5% variance reduc-
tion, ensuring greater reliability. In AR, Immersion improves by 12%
in mean and 19.7% in variance, while Realism shows a 14.1% mean
boost and a notable 43.7% variance reduction.

9 DISCUSSION AND FUTURE WORK

We introduced a multimodal neural acoustic field framework that syn-
thesizes spatial sound and enhances immersive auditory experiences
in virtual and augmented reality environments by mapping geometric
and visual features to audio characteristics. Using a hybrid transformer-
convolutional neural network and an adaptive convolution-based acous-
tic synthesis module, our model can capture reverberation and generate
spatial sound from sparse signals in unseen novel environments. Our
approach improves spatial audio quality and realism, validated through
analysis on synthetic and real-world data as well as subjective user
studies, particularly benefiting augmented and virtual reality applica-
tions. Additional user evaluations with a more diverse participant pool
will be valuable to further assess the generalizability of our approach.
Our current implementation does not handle 360-degree video inputs
and struggles in scenarios where a meaningful geometric or material
context cannot be derived, such as images featuring plain white walls
or blank spaces. Extending the current neural networks to explicitly
model and learn the material properties of objects for more accurate
synthesis of acoustic effects is a promising future direction. Addition-
ally, we plan on expanding experimental conditions to include dynamic
scenes with multiple moving sources and extremely noisy scenarios. To
show real-world adaptability, we would also test the method on various
AR/VR platforms and monitor its power consumption. As such, this
paper paves the road toward multimodal neural rendering for mixed re-
ality of the future, and we are excited that our work will inspire further
investigation into immersive and personalized audio-visual experiences.
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