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1 Modifications From The First Version

I have modified my proposal to address the feedback that I received from my
committee. For your convenience the changes are listed below. Although I
have not changed the essential substance of my proposal I have clarified my
expected contributions and how I intend to demonstrate them.

Overall Vision: I have strengthened the presentation of my vision. The
thesis statement, Section 2, has been rewritten and the expected con-
tributions, Section 3, are more specific and definite. The evaluation
criteria, Sections 6.5, 7.5 and 9.4, have been renamed as ‘deliverables’
and more clearly transition from a general discussion of the issues to
my specific plan of action.

Test Scenes: I now provide a clearer description of the kind of scenes I
will target in the Introduction, Section 4. I state that I will have
three kinds of scenes and describe the characteristics of each scene.
I explain why I need each characteristic. Figure 1 uses an image of
Rui Basto’s version of the Brook’s House as an example scene. For
each scene I will create a fixed camera path, this path will be used
during simulation to investigate how variable the results are. The thesis
statement, Section 2, qualifies the word scene with nontrivial. I have
switched from the term real time rendering to interactive rendering,
meaning 10 to 60 frames per second.

Background: Mention is made of how caustics are rendered using a separate
photon map and a direct visualization. I now provide a table of the
“magic” numbers in photon mapping. The likelihood of point to point
serial chip communications was upgraded from possible to expected.

Query Reordering: In Section 6 I now emphasize the generative reordering
since I expect it to dominate when implementation costs are considered.
I will explore some additional reorderings in my dissertation. These in-
clude the Morton order and an interesting idea that Jan introduced to
me from n-body literature. The deliverables, Section 6.5, now includes
a chart to show the cost of reordering in terms of storage and compu-
tation. The intention is to use this in conjunction with the reordering
benefit chart to determine the proper algorithm for use in my or any
other architecture.
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Irradiance Caching: I no longer propose designing irradiance caching into
the architecture because I do not believe that it is an effective tech-
nique for the target scenes, Section 6.4. That said, I do still plan to
study it this fall and determine what interactions it has with query re-
ordering, Section 6.5. It is a technique that must be addressed by any
research into photon mapping. I will explain why the implementation
cost outweighs the benefit, at least for the scenes we are interested in.

Importance sampling: I discuss in Section 7 the impact the various sur-
face properties have on importance sampling. Instead of hardware
amenability, I now talk of designing and evaluating an algorithm that
is resource, computation and internal state, constrained, Section 7.5,
which are the prerequisites for a hardware implementation.

Computation: I have added a rough sensitivity analysis, this is something
that will become much more precise in the dissertation.

Architecture: The biggest change to the architecture, Section 9, is that I
clearly define my deliverables. The possible levels of simulation are de-
scribed and I state how I will simulate each component. I have removed
irradiance caching from my description of the planned architecture. In-
stead I provide commentary and an extra diagram showing how it could
be included. I will measure the implementation cost and show that it
outweighs the benefit.

I also removed eye ray generation from the ray caster unit to make the
figures clearer. The computation of shadow rays for direct illumination
is now described, as is the direct visualization of a separate caustic pho-
ton map. The dissertation will discuss possible target implementation
technologies, ASIC, FPGA, CPU and cluster, and justify a choice. The
choice will determine what constitutes reasonable bandwidths, internal
storage, and computational power. I expect to choose a PCI-Express
with 1 to 4 ASIC chips. I will also address the issue of deadlock.

Minor changes: Several minor changes were suggested, especially in the
Introduction, and I adopted most of them. Some were grammatical
while others correctly noted a few overly broad statements.

PhD Plan of Study: This section was removed from the proposal because
the committee has approved the plan and it was submitted.

3



D
ra
ft

2 Thesis Statement

Complex scenes can be rendered with the photon map algorithm at interac-
tive rates by an architecture that 1) reduces I/O complexity with memory co-
herent ray casting and photon gathering; 2) implements resource constrained
importance sampling; and 3) can be feasible implemented in the near future.

3 Expected Contributions

I expect to make a number of significant contributions that advance the state
of the art in photon mapping and demonstrate that a system could be built
to visualize photon maps at interactive rates:

Low bandwidth photon gathers using reordering: I will show that by
reordering the computation of the kNN queries required for photon
gathers that I can dramatically reduce the required bandwidth com-
pared to the naive algorithm.

Resource constrained importance sampling: I will demonstrate an al-
gorithm for importance sampling that uses the information in both the
BRDF and the estimated incident radiance from a photon map that is
constrained by limited bandwidth, computation and state. In addition
to photon mapping this unit will be beneficial in ray tracing systems.

A complete photon mapping architecture: I will present a complete
architecture capable of rendering complex scenes using the photon
mapping algorithm. The target implementation technology is a PCI-
Express board with one to four custom ASIC chips.

Bandwidth reduction synergy: I will demonstrate the positive interac-
tion of photon gather reordering, ray casting, and importance sampling.

A related contribution that I do not intend to pursue but that may come
up, especially if any of the above have fundamental problems:

Dynamic scenes: I may investigate updating a dynamic photon map in
parallel to a dynamic scene. Both the generation and update of the
photon map data structure would be interesting areas to research.
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4 Introduction

Modelling the interaction of light and the objects in a scene is the essence
of realistic image synthesis. Local illumination models assume that light
is emitted by a source, reflects off a single surface and is captured on the
viewing plane forming an image. Although sophisticated physically-based
models of reflection are now in use, the framework in which they are used is
relatively simple. The illumination at any point in the scene is completely
independent of the rest of the scene. This separability enables a high degree
of parallelism that is well exploited by modern graphics hardware.

Realistic illumination at a single point however is dependent on the en-
tire scene. There may be shadows, light may bounce indirectly off of mul-
tiple objects, there may be highly specular mirrors, caustics may form, etc.
These effects can be painstakingly added one by one to an image gener-
ated with local illumination models using single purpose rendering algo-
rithms such as shadow volumes [Hei91], environment maps [BN76, Gre86],
pre-computed radiosity textures [CW93], or even a highly specific glittering
gem effect [Gos04].

These algorithms are hard to combine or generalize and fail to capture
essential parts of the underlying physics: the shadow maps may cause alias-
ing; environment maps are incorrect unless computed at the exact center of
a purely reflective sphere; the sparkling gem effect may fail when submerged
in water; the pre-computed radiosity textures have to be recomputed if the
scene changes significantly; and the combination of these effects requires im-
practical planning and is sometimes impossible. Generic global illumination
models, on the other hand, create the effects directly by simulating, with
varying accuracy, the physics of light transport between objects in a scene.

The very benefit of global illumination, the correct simulation of mul-
tiple interactions of light with the scene, also explains why generic global
illumination algorithms are so rarely used in interactive applications. The
illumination at every point in the scene depends not only on the emitters but
also recursively on every other visible point in the scene.

Lr(x, ~ω) =

∫

Ω

fr(x, ~ω′, ~ω)Li(x, ~ω′)(~ω′ • ~n) (1)

This is perhaps best demonstrated by the rendering equation, Equation 1,
put forth by Kajiya [Kaj86]. The reflected radiance from point x in the
direction ω, Lr(x, ~ω), is the integral over the hemisphere of the incident
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radiance, fr(x, ~ω′, ~ω), and the BRDF evaluated at point x for the incoming
direction of ~ω and the outgoing direction of ~ω′. The incident radiance is
calculated recursively until a stoping criterion is reached. The effect of this
recursive explosion of computation is that global illumination algorithms are
inherently computation and bandwidth intensive.

There are several global illumination algorithms that capture some por-
tion of the expressibility of the rendering equation: path tracing (Whitted-
style ray tracing [Whi80], stochastic ray tracing [CPC84], bi-directional ray
tracing [LW93]), radiosity [GTGB84], and more recently photon mapping.

Radiosity is restricted to diffuse surfaces. Whitted-style ray tracing is
unable to handle glossy surfaces, caustics, and several other desired effects.
The more advanced path tracing algorithms, excluding bi-directional ray
tracing, can have a very hard time handling caustics and some other effects.
Bi-directional ray tracing can be thought of as related to photon mapping for
example but it has some problems, mirrored images of caustics are difficult
and it is very inefficient if the observer is a small part of the scene.

Photon mapping [Jen96, Jen01] is a popular and robust global illumi-
nation algorithm. It can reproduce a wide range of visual effects including
indirect illumination, color bleeding, and caustics on complex diffuse, glossy
and specular surfaces represented using arbitrary geometric primitives. It
works well in scenes where the light has a hard time reaching the scene, i.e.
a room light by a keyhole. Recent natural extensions allow photon map-
ping to handle even complex effects such as mirages and complicated water
environments[GAMS04]. For these reasons I wish to develop techniques and
an architecture capable of rendering images interactively using the photon
mapping algorithm.

4.1 Targeted Scenes

I am interested in nontrivial scenes, each of which has some of these features:

• Medium geometric complexity: 10,000 to 100,000 triangles. This will
provide a realistic load to the ray casting unit.

• Varying surface reflectance properties: diffuse, glossy and specular.
This will be important to fully test the combined importance sampler.

• A camera position that views less then half of the scene. This ex-
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poses one of the weaknesses of any bi-directional global illumination
algorithm such as photon mapping.

• Medium size area lights. This will make sure that the system for han-
dling direct illumination is capable of sufficient shadow rays.

• Camera path. I will construct a fixed camera path for each scene. This
will be used by the simulations to examine performance variance and to
generate results for a sequence of frames as opposed to a single frame.

These requirements will result in a fair evaluation of photon mapping,
irradiance caching, query reordering, and importance sampling thereby mak-
ing the architecture simulation representative of the desired workload. I will
have at least three scenes that meet these criteria while sampling the space
of potential uses:

Architectural walkthrough A multiple room model suitable for walk-
throughs. The Brooks House model developed here at UNC-CH with
the glossy and specular additions made by Rui Bastos [BHWL99] is a
good example. The geometry is of fairly simple although a large area
is modeled. The illumination however is complex.

First person shooter A scene found in a commercial first person shooter
such as Quake. This scene would have interesting illumination of some
complicated objects in a fairly simple environment.

Global illumination demonstration There are certain global illumina-
tion phenomena for which the photon map algorithm is particularly
good such as caustics and color bleeding that can be subtle. This scene
would exaggerate these effects with camera position and scene compo-
sition to closely examine the effects. The Cornell box, Jensen’s cognac
glass, and the SaarLand headlight models are examples of such scenes.

5 Background

In this section I provide an overview of photon mapping, declare some defin-
itions, review some previous work in ray casting acceleration, and provide a
short projection of future hardware capabilities. A reader that is well versed
in these matters may wish to skim this section.
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by Rui Bastos is a good example of an architectural scene that meets our
criteria [BHWL99].

5.1 Photon mapping

Photon mapping is a two-step algorithm. The first step, called photon trac-
ing, shoots photons outward from the light sources into the environment.
These photons are probabilistically reflected, refracted and finally absorbed
at non-specular surfaces. When a photon is absorbed, its location, power,
and incident direction are stored in a view-independent photon map. For
scenes involving indirect illumination, this typically involves shooting hun-
dreds of thousands of photons [Jen01]. A photon map can be generated once
and reused for multiple viewpoints as long as the scene does not change.

The second step of the algorithm is visualize the photon map into a
rendered image. The viewpoint is fixed and an eye ray, ~ω, is cast into the
scene for each pixel (u, v) of the final image (or multiple rays per pixel if
antialiasing is desired). At the point x where the eye ray intersects the scene
geometry the direct illumination is computed and additional rays are cast
to sample any specular reflection. The indirect diffuse illumination, L, is
computed from the data in the photon map.

Jensen describes two photon map visualizations that compute L dif-
ferently, direct and final gather. I have denoted these terms as L≈ and
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Figure 2: L≈(x, ~ω) calculated using a photon gather.

L=, respectively. For the direct visualization, illustrated in Figure 2, a k -
Nearest-Neighbor (kNN) search is conducted in a small neighborhood around
the point x using the photon map. Reasonable values for k are 100 or
more [Jen01]. Every photon in the photon map has a power 4Φp and di-
rection ~ωp. If a photon p is selected by the kNN search, these values are
used with the surface reflectance properties (BRDF) fr to compute the con-
tribution to the reflected radiance L≈(x, ~ω). The sum of the contributions
is computed in Equation 2 and is commonly referred to as a photon gather.
The photon gather is thus an estimate of Equation 1.

L≈(x, ~ω) =
k∑

p=1

fr(x, ~ωp, ~ω)
4Φp(x, ~ωp)

4A
(2)

L=(x, ~ω) =
1

N

N∑
i=1

fr(x, ~ωi, ~ω)L≈(yi, ~ωi)( ~nx • ~w) (3)

Final gather visualization, shown in Figure 3, estimates the rendering
equations using a Monte Carlo integration at point x. The hemisphere cen-
tered at x and oriented along the surface normal is sampled and N rays ~ωi are
cast out into the scene. Ray ~ωi intersects some object in the scene at point
yi. At each point yi a photon gather is performed by calculating L≈(yi, ~ωi).
These results are then weighted by the BRDF of the surface at x to get the
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Figure 3: L=(x, ~ω) calculated using Monte Carlo integration with many eval-
uations of L≈(yi, ~ωi).

indirect diffuse illumination at point x. This method is shown in Equation 3
as the weighted sum of N photon gathers.

Photon mapping is a biased yet consistent method for estimating radi-
ance [Jen04]. The result will converge as more photons are gathered, but is
not guaranteed to converge to the correct result. The direct visualization can
exhibit visual artifacts unless an large number of photons are used [Jen01]. I
have chosen to base my work on the higher-quality final gather visualization.

An exception to the final gather decision are caustics. It is generally
agreed that the best way to handle caustics is to create a second photon map
where photons must bounce off at least one specular surface before they are
absorbed [Jen01]. This second photon map is usually constructed with fewer
photons and is always visualized directly.

There has been limited prior research regarding photon mapping in hard-
ware. Purcell implemented a version of the direct visualization with a very
basic data structure on commodity graphic processors [PDC+03]. Hachisuka
used commodity graphic processors to do final gather [Hac04]. To the best
of my knowledge no one has designed custom hardware for photon mapping
or kNN queries in general.

5.2 Acceleration of ray casting

Ray tracing is one of the embarrassingly parallel computation tasks. Ray
tracing acceleration research can be grouped in a few broad categories: 1)
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Reasonable
Term value

Number of photons in photon map 1,000,000
k, the number of photons that we try to find for each gather 100
Final gather rays used to estimate the incident radiance 100
Number caustic photon gathers per eye ray 1
S World space maximum search radius for photons N/A

Table 1: A list of interesting photon mapping constants

hierarchal or space division data structures for scene geometry; 2) dividing
the work across multiple processors; 3) processing bundles of coherent rays
together; and 4) reordering ray generation to promote coherency. Categories
3 and 4 are related, but otherwise the techniques are independent.

There has been a great deal of research into performing interactive ray
tracing on PC clusters and/or specialized hardware. Additionally there are
a number of cache coherent techniques that reduce the actual bandwidth
consumed by ray casting. Pharr [PH96] used a space-filling curve on the
screen to generate the eye rays in an order that increased the effectiveness of
a geometry cache. Several researchers [RJ96, PKGH97, SWS02, DK00] have
described different ways of scheduling rays after they are generated to max-
imize cache use. Kedem developed a machine for ray casting CSG [KE84].

I do not plan to seriously innovate in the ray casting arena. I will adopt
proven ray casting hardware into my architecture. I do expect, however, to
see modestly improved efficiency of the ray casting hardware when the other
techniques are applied because they will increase the coherence of the rays
cast.

5.3 Projected hardware capabilities

I expect that current trends in semiconductor development will continue as
laid out by an industry trade group for the next four years [ITR03]. Specif-
ically, the ASIC Metal 1 1

2
pitch size will fall by approximately 30%. This

will allow for a near doubling of transistors per chip from 1 billion to 2 bil-
lion. Chip size and signal I/O pad count are, however, expected to remain
constant. I expect only a moderate improvement in off-chip signalling speed
per pad except for the jump to point to point serial communications [Pou04].
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6 Bandwidth reduction

6.1 Required bandwidth

In the absence of irradiance caching, Section 6.4, and importance sampling,
Section 7, it is not uncommon to perform at least 100 gathers per eye ray
if final gather visualization is used. If each photon requires 20 bytes of
storage [Jen01], the minimum raw bandwidth for k = 100 and a 512 × 512
image is 512×512×100×100×20B = 50GB. As high as this figure is, it is only
obtainable if you have a kNN query function that that examines exactly the
photons that are selected, an oracle. By instrumenting a a software photon
mapper for a specific scene I found that 122GB of raw memory traffic is
generated. I have observed that as a rule of thumb, for data sets of the size
and nature that we are interested in, that a kNN search in a kd -tree photon
map data structure examines roughly twice as many photons as are selected.
The memory system is therefore presented with 100GB of memory traffic for
the gathers alone in this example image. Any reasonable architecture will of
course use a memory cache. The rest of this section examines the interaction
of data structures and algorithms on the cache performance.

6.2 Photon map data structure

Jensen championed using a 3D data structure to hold the photon map. Some
benefits of a decoupled 3D data structure are: 1) procedural and parameter-
ized geometry may be used; and 2) each piece of geometry need not have its
own data structure, especially useful when a scene is modelled with polygons
of widely varying size [Jen01]. Two significant drawbacks are: 1) a separate
data structure must be maintained; and 2) care must be taken when per-
forming a photon gather to not use photons that hit on a different surface.

Jensen suggests using a kd -tree to store the photon map because it has al-
gorithmic optimal properties for kNN searches [Ben75]. In previous research
I have compared several data structures for this application to evaluate their
cache performance. I found that under certain conditions there are data
structures that are more cache friendly. However when queries are reordered
as described in Section 6.3, the differences are either negligible or even nega-
tive compared to the kd -tree. I found that reordering the queries was a much
more significant benefit then changing the data structure. The two most
significant drawbacks of the kd -tree for a hardware implementation are that
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a stack must be maintained and that multiple rounds of memory accesses are
required leading to high latency [MM02]. I expect that my architecture will
use the kd -tree and both hide the latency and improve cache performance
by processing many queries simultaneously.

6.3 Query Reordering

Caches reduce memory traffic by exploiting spatial locality in the memory
request stream. For any reasonable data structure each kNN search will
examine a small portion of the photon map data structure. A cache will be
helpful only if there is a good chance that a kNN search takes place in the
same region of the photon map as the previously computed one.

The key insight of query reordering is that there exists a large amount
of coherence amongst all of the kNN search queries even with final gather
visualization due to the spatial locality of the query locations, yi in Figure 3.
Standard implementations of photon mapping are not structured to exploit
this coherence, which results in poor cache behavior.

Recognizing the linearity of Equation 3 we can reorder the kNN searches
into any order that is convenient without changing the rendered image.

There are two general approaches to query reordering. The first is a set of
generative schemes, which modify the order in which searches are generated.
The second approach, which I call deferred reordering, is to generate the
list of kNN search locations, called Y , and reorder them, Y ′, to maximize
coherence before performing the searches. Both of these approaches may
require extra computation and storage, which must be balanced against the
substantial gains from cache coherent behavior. My goal is to find the best
order, in terms of bandwidth reduction, while staying within the constraints
of a reasonable hardware implementation.

While describing the reordering techniques I will present some of the
results that we presented in our Graphics Hardware 2004 submission. In
Section 6.1, we calculated that for our test scene a bandwidth of 50GB is
required with an oracle style kNN query that only touches exactly those
photons returned or 122GB using the kd -tree data structure. As shown in
Figure 4 we found that reordering the kNN queries can dramatically reduce
memory bandwidth.

I am currently reimplementing the reordering memory hierarchy simu-
lation using the pbrt framework [PH04]. This is to provide a more robust
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Figure 4: The Hilbert curve reordering continues to improve as tile size
increases, while the practical reordering algorithms achieve maximum per-
formance at either 16 × 16 or 32 × 32 size tiles. The space between the top
and bottom curves indicates the range of improvement possible by reorder-
ing searches. For example, in the case of 16× 16 tiles the range is 211GB to
11GB. (kd -tree data structure with a 128KB cache and 128B cache lines.)

framework in which to simulate irradiance caching, importance sampling and
the other techniques that I will be studying.

6.3.1 Generative reordering

The first set of techniques for increasing the temporal locality of kNN searches
consists of generating the search locations in a coherent order.

Naive ordering. In the naive algorithm each pixel is processed in row
order. All the secondary rays are shot and generate queries. Each the kNN
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search is processed as soon as it is generated and the result is stored directly
at the destination pixel. I found that naive ordering required 211GB of traffic
to main memory from the cache. No additional storage or computation is
required for this ordering, each final gather can be performed as they are
ready.

Tiled reordering. In most scenes the eye rays from neighboring pixels will
intersect the scene at points x in close proximity to each other [WSBW01].
There will therefore be a high coherence among the origins of the rays cast
during the Monte Carlo integration. To exploit this coherence, I break the
screen into tiles and create a list of all the query sites generated by the pixels
in that tile, Y <a,b>. Each individual tile in then processed in row order. A
similar technique is commonly used on current graphics rasterization hard-
ware to improve texture memory locality [MMG+98]. A slight enhancement
is to process the rows in alternating directions. The drawback to the tiled
approach is that even though the origins x of the rays used by the Monte
Carlo integration are similar, the directions ~ωi remain random. In my ex-
periments, which consisted of a relatively open room, the resulting search
locations yi are scattered throughout the scene and this ordering performs
equal to or slightly worse then naive. No additional storage is required and
the extra computation is negligible.

Tiled direction-binning reordering. Considering a subset of the sec-
ondary rays that have similar directions, ~ωi, it is reasonable to expect the
gather sites yi to be in close proximity to each other [WSBW01]. The tiled
algorithm can be improved by passing over each tile multiple times. On each
pass only secondary rays ~ωi that fall within a specified interval of directions
are generated. This algorithm incurs some overhead; each pass requires the
results of the eye ray intersection, x, and the direction, ~ω. This can either
be recalculated by re-casting the view ray, or stored from the first pass. My
experiments use 16×16 direction bins and depending on tile size found band-
widths to main memory as low as 36GB. This ordering requires storing the
intersection, ray direction, and BRDF properties of each final gather in the
tile.

I hypothesize that tiled direction-binning will work even better when
importance sampling, Section 7, is used in the Monte Carlo integration. This
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is because the search locations yi will be clustered in smaller areas of the
hemisphere corresponding to the directions of strongest incident radiance.

6.3.2 Deferred reordering

The structure of Equation 3 showed that the photon gathers, and their asso-
ciated kNN searches, can be performed in any convenient order. The second
set of techniques for improving the temporal locality of the photon gathers
consists of generating a list Y of the search locations with one of the gen-
erative techniques. The elements yi ∈ Y are then reordered into Y ′ before
processing. Decoupling the search location generation from the processing
introduces some overhead. In addition to any extra computation that may
need to take place, the search location, the RGB weight, and the destination
pixel must be stored. This is a lot of storage because there are on the order
of 100 queries for each pixel or 26 million for a 512x512 image.

Hilbert curve reordering. The Hilbert space-filling curve is often used
to produce a linear mapping of a multidimensional space [FR89]. A desir-
able property of Hilbert curves is that the locality between objects in the
multidimensional space is preserved in the linear ordering [MJFS96]. We use
the three-dimensional Hilbert curve to reorder the entire set of kNN searches,
Y ′ = Hilbert(Y ). If the entire screen is processed through the Hilbert reorder-
ing the savings are enormous, down to 15MB. The computation is however
significant as it is a form of sorting. I use an unpublished algorithm by Jack
Snoyeink which is cache efficient but still requires non-trivial computation
and many passes over the entire set of queries.

Tiled Hilbert reordering. Generating the Hilbert curve ordering requires
a significant amount of processing and storage. To reduce this overhead, the
reordering can be done on individual screen tiles generated by the screen
tiled algorithm, Y ′<a,b> = Hilbert(Y <a,b>). While this reduces the efficacy of
the reordering (see Figure 4), it does reduces the computational and internal
storage overhead. At 16× 16 tiles the bandwidth is down to 11GB and only
256,000 queries must be stored.

Hashed reordering. Several authors have explored hashing algorithms for
kNN searches [IMRV97, GIM99]. With Greg Coombe’s assistance I imple-
mented a hashed reordering algorithm that has low computation costs and
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manageable memory use. This algorithm is similar in spirit to that of the
GI-Cube [DK00]. As the search locations are generated, they are hashed
into a set of buckets based on their three-dimensional position. If a bucket
becomes full, the generation of query locations is stalled until the required
bucket has space. The query locations processing begins with the bucket that
is the most full, when that bucket is emptied, the bucket which is then most
full becomes active. In this manner the internal storage can be reduced at
the cost of a reduction in efficiency of the reordering. The expectation is that
the search locations that hash to the same bucket will exhibit spatial locality
that will also be reflected in the photon-map data structure. Without some
form of generative reordering the hash tables must be far too large in order
to capture any coherence in memory access.

Tiled direction-binning Hashed reordering. The hashed reordering
algorithm reorders searches within a fixed-sized window determined by the
size of the hash table. Thus it can only exploit spatial coherence within this
window. The more coherent the list of search locations provided to it, the
better the hashed reordering will perform. We can improve performance by
generating the list with the tiled direction-binning algorithm before reorder-
ing them using the hash table, Y ′<i,j> = Hash(< Y <i,j>). Combining the
tiled direction-binning with the hashed reordering increases the effectiveness
of the reordering by placing the hash table window over a spatially coherent
set of search locations. For tile size of 16×16 and 32×32 bandwidth drops to
approximately 20GB. For larger tile sizes the efficiency drops and bandwidth
is approximately 30GB.

Other interesting reorderings. There are other interesting reorderings
that I will investigate for my dissertation. The Morton order has much in
common with the Hilbert ordering but is generally cheaper to compute. Some
even cheaper orderings may work simply with bit swizzling before sorting.

Jan has suggested an interesting technique from n-body research to me.
This idea takes advantage of the information captured during the ray cast-
ing of the final gather rays. The leafs of the ray casting acceleration data
structure, a kd -tree for example, are labelled in a depth first manner. Each
intersection that will become an kNN query is tagged with this label. The
deferred reordering can then be accomplished by sorting with the label tag
as the key.
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6.3.3 Comparison

The generative reordering techniques uses significantly less internal storage
and computation then the reordering techniques that I have found so far and
still capture a large portion of the possible benefit. I expect to use tiled
direction-binning in my architecture, but the dissertation will fully analyze
the taxonomy.

6.4 Irradiance caching

It is commonly observed that indirect illumination varies slowly from pixel
to pixel in many computer generated images. This is particularly true for
architectural scenes with large flat diffuse surfaces such as walls and floors.
Since estimating the reflected radiance at each pixel can be very costly in a
global illumination system there is a desire to reuse results.

Irradiance caching is a scheme that significantly reduces the computation
cost of indirect illumination in the presence of large diffuse surfaces [WRC88].
It is used in conjunction with an algorithm such as photon mapping that can
produce values of Lr(x, ~ω). A special view-independent three-dimensional
data structure is maintained which stores previously calculated values of
irradiance throughout the scene. For diffuse surfaces the reflected radiance,
in any viewing direction, is directly related to exitance irradiance. This use
of the term cache is unusual. The irradiance cache restricts itself to diffuse
surfaces to lower the dimensionality of the cache and decrease the number of
values that must be in the cache in order to make use of it.

Irradiance caching is applicable to photon mapping [Chr99, Jen01]. Be-
fore each photon gather is performed a series of checks are made to see if the
irradiance cache can be used instead of the more costly Monte Carlo integra-
tion. The first check mandates that this is a diffuse surface. The following
checks enforce some metric of how good the nearest neighbors in the irradi-
ance cache are. Two simple tests are euclidian distance and angle between
surface normals. More sophisticated metrics have been proposed [WH92].
If the values in the irradiance cache are deemed to be sufficient then they
are used to compute the reflected radiance for this query. If not, the Monte
Carlo integration is performed as normal and the resulting value is inserted
into the irradiance cache.

Irradiance caching causes artifacts in the generated image in addition
to those inherent to photon mapping itself. The most serious is that the
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interpolation can be invalid. A shadow boundary is a simple but common
case. A more easily handled artifact relates to the order in which the image is
generated. If the irradiance cache starts empty and scan line ordering is used
during image formation then there will be semi-circular artifacts resulting
from the periodic addition of cache sites after neighboring pixels have already
been computed. This artifact is best handled by seeding the cache with values
scattered across the screen in an extra pass before starting image generation.
This artifact will not totally disappear, however, until limit is reached and
every pixel is tested to see if it needs a cache site before beginning to render
the image. Neither of these artifacts can be completely eliminated without
excessive blurring.

Not only do some scenes create artifacts, but some cause irradiance
caching to not even be beneficial. In images where there is high geomet-
ric detail it falls apart entirely. Jensen describes a field of grass, where
nearly every pixel has a different normal thus breaking the smoothness con-
straints required for irradiance caching to be efficient[Jen04]. If the image
is of mostly glossy or specular surfaces, irradiance caching won’t help either
because it requires diffuse surfaces. As described in the Introduction, Sec-
tion 4, the scenes I desire to render do not meet these criteria. Irradiance
caching will therefore have limited utility and will have a hard time justifying
the implementation cost.

I do not plan to improve on irradiance caching by finding, for example,
better metrics. I will however experiment with the basic irradiance cache
scheme to show that query reordering and importance sampling retain their
value for irradiance cache friendly scenes even though irradiance caching
captures a large portion of the available coherence in memory traffic. I will
describe how it could be implemented in the architecture, but it will not be
described as likely being in the architecture.

6.5 Deliverables

I will use a memory hierarchy simulator based on the pbrt system to evaluate
these techniques [PH04]. To fully evaluate query reordering and the effect
irradiance caching has on it:

• I will measure the cost in terms of computation and internal state for
each reordering. This will be expressed in a series of charts showing the
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costs in terms of independent variables such as tile size and number of
directions bins.

• I will measure the bandwidth reduction obtained for each reordering.
This will be expressed in a series of charts showing the bandwidth in
terms of independent variables such as tile size and cache size.

• Both reordering and irradiance caching will be evaluated using scenes
that match the criteria described in the Introduction. It is particularly
important to evaluate irradiance caching in the presence of realistic
scenes.

• I will examine some additional reoderings such as the Morton order
or the ray casting acceleration data structure labels suggested by Jan.
The hope is to find one that captures more of the available benefits
without the cost of the Hilbert reordering.

• Irradiance caching will additionally be tested with scenes that are well
suited to it in order to demonstrate that my other bandwidth reduction
techniques continue to work even with effective irradiance caching.

7 Importance Sampling

Photon mapping is designed with the Monte Carlo integration technique
known as the sample-mean method [Rub81]. Although the photon gather
used in both the direct and final gather visualizations is itself an approxima-
tion of Monte Carlo integration, the sampling pattern is fixed by the photon
shooting pass. In this section we concentrate on the final gather. In sec-
tion 5.1 I described the final gather naively: the hemisphere above the point
x was sampled randomly, applied to the BRDF and averaged together with
equal weight. When performed naively like this, Monte Carlo integration has
an error that is inversely proportional to the square root of the number of
samples. This leads to a slow convergence, rate which introduces noise even
with a large number of samples.

There exists a significant body of previous work on improving the con-
vergence of Monte Carlo. In computer graphics the two most successful
techniques are stratification and importance sampling. Both techniques re-
duce the actual randomness of the sampling but produce very good results

20



D
ra
ft

in practice. After describing these two techniques for increasing the perfor-
mance of Monte Carlo integration, I will discuss previous work on applying
them to the final gathers of photon mapping and how they can be adapted
to hardware.

Stratification ensures that the entire domain is considered. The domain
is broken into regions and the samples are fairly distributed between the
regions. It is very common for each region to receive one sample. Screen
space jittering is a common application of stratification. In the final gather of
photon mapping, stratification would be applied by breaking the hemisphere
into bins, and shooting secondary rays out through the separate bins.

Importance sampling concentrates the bulk of the samples in parts of
the domain that are, somehow, previously known to contribute highly to the
result. (Some samples must be taken throughout the entire domain to prevent
bias unless the prior knowledge is perfect.) Suppose that the directions of
the rays sampled, ωi, are distributed across the hemisphere according to a
probability distribution function (p.d.f.) p(ωi) and that g(ω) is the incident
radiance function being integrated.

I =

∫
g(ω)dω (4)

=

∫
g(ω)

p(ω)
p(ω)dω (5)

≈ 1

N

N∑
i=1

g(ωi)

p(ωi)
(6)

It has been shown that if p(ω) = gω
I

then the error would be zero [Rub81].
Unfortunately this requires knowing the function that we are solving for! In
general the closer that p(ω) resembles the function we are solving for the
better the convergence will be.

Importance sampling has been used with great success in path tracers.
The ideal p.d.f. for sampling incident radiance in order to calculate exitance
radiance is the composition of: 1) the surface BRDF; and 2) the incident
radiance. We generally have good to exact knowledge of the BRDF. The
photon map can be used as an estimation of the incident radiance. My
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task in this area is to adapt them such that they will work well together, be
hardware amenable and fit into my architecture. I have listed my preliminary
thoughts below.

7.1 Sampling the BRDF

If the viewing angle is known, the BRDF can be used as a basis for defining
p(ω). Except for perfectly diffuse materials, surfaces reflect some parts of
the hemisphere more strongly towards the viewer then others. For example
the traditional Blinn-Phong model has a cosine shaped lobe focused along
the reflection vector. If the BRDF can be converted into a p.d.f. and used
to sample the hemisphere it will preferentially sample those directions that
contribute significantly to the final result. This is significant for glossy and
specular surfaces.

In general sampling a BRDF can be difficult. Neumann and Lafortune
describe a high quality approximation for a few empirical models such as the
Blinn-Phong [NNSK99, LW94]. Lawrence presented a framework for sam-
pling otherwise difficult BRDFs as the Cook-Torrance model or an acquired
tabular BRDF [LRR04].

7.2 Sampling incident radiance

The photon map provides a good estimate of the incident radiance. Jensen
showed how to use the results of a kNN search to create a p.d.f. that can
be used for importance sampling in the context of a path tracer [Jen95]. He
showed that we can expect up to a 70% improvement of the quality of results
for a given number of samples. Conversely, I believe that we can get the
same quality with far fewer samples if we use importance sampling.

His method was to create a table of the hemisphere and splat each photon
found into the proper region. This tabular p.d.f. is then turned into a c.d.f.
by summation of the table entries. A random number between zero and
one is then used to sample table. The result for each lookup is a portion
of the hemisphere which is then randomly sampled to generate an exact
direction. Jensen used this technique only for diffuse surfaces. Hey has done
some closely related work that uses a more expensive construction of the
c.d.f. [HP02].

Encouragingly Jensen found that a small table was sufficient for high
quality results, 4 θ-intervals and 16 φ intervals. This method suggests a
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rather simple hardware implementation. A single photon query is performed
and a small processor with a small table can generate the c.d.f. and generate
samples.

7.3 Combining multiple approaches

Combining multiple sampling without introducing bias requires some careful
analysis. Veach looked at the problem in a situation very close to ours [VG95].
He suggests various means of weighting several p.d.f. such that they can be
combined in an unbiased way without to much waste. The key problem is to
not waste samples, which are expensive to compute, in parts of the domain
that the p.d.f. does not weighted highly.

In the Introduction, Section 4, I described the kind of scenes that I am
interested in. The highly varying surface properties, from diffuse through
glossy to highly specular, present a special challenge to a combined impor-
tance sampler as the utility of sampling the BRDF varies across the scene.

I hypothesis that I will combine Jensen’s tabular method of importance
sampling incident radiance with a to-be-developed tabular version of one of
the BRDF sampling methodologies.

7.4 Uses beyond photon mapping

Importance sampling was described in this section in the context of generat-
ing final gather rays for photon map visualization. Another interesting use is
in stochastic ray tracers [HP02, Jen95]. As was mentioned in Section 5.2 ray
tracing is now viable in hardware, but none of those systems use importance
sampling while spawning secondary rays. Hardware amenable techniques
would be interesting for those applications. A photon map could be used for
this purpose, using my proposed unit, without ever directly visualizing the
photon map.

7.5 Deliverables

I will create an algorithm that combines importance sampling the BRDF with
incident radiance from a photon map. I will demonstrate that this algorithm
is suitable for hardware implementation because it is resource constrained.

• For all the surfaces described in the Introduction, does the proposed
algorithm choose samples well enough such that the number of final
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gather samples can be reduced significantly while maintain equivalent
image quality?

• The algorithm must be resource constrained. How much internal stor-
age is required? How much computation is required? How does this
cost translate onto the proposed implementation technology?

• How applicable is this importance sampler to other uses such as soft-
ware photon map visualization and ray tracers either in software or
hardware?

8 Computational Requirements

The computational requirements of photon mapping are not trivial. I do not
expect, however, that computation will be a limiting factor in my system
design like bandwidth is. This is because: 1) all the algorithms perform
O(1) operations for each memory request; and 2) as described in Section 5.3
the computational capability of semiconductors continues to grow at a faster
pace then off-chip memory bandwidth. I do not plan to directly attack the
computational costs, although the overall increase in coherence should reduce
to a limited degree the amount of effort expended traversing hierarchal data
structures. In the discussions below I concentrate on the operations which
are likely to be performed in floating point.

Ray Generation: Eye ray generation is fixed directly to the resolution
of the final image and sampling pattern. Even in an implementation that
sacrifices computational effort in order to reduce the total number of ALUs
it cost no more then a single ray transformation which is 9 multiplications
and 9 additions [SWW+04].

Ray Casting: There will be #eye rays+#secondary rays+#shadow rays
cast. The computational cost of ray casting is the combination of traversal
cost and intersection cost. Each traversal requires a few comparison opera-
tors to choose the next node to examine. Depending on how the geometry
is stored, a ray transformation may be required as well. Rays will be cast in
mostly coherent packets which reduces the traversal costs somewhat. Assum-
ing a well balanced data structure, such as a kd -tree conventional wisdom
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holds that we can expect to traverse O(ln(# primitives)) nodes and perform
a similar number of primitive intersections. Ray-triangle intersection can
each be done with 10 to 30 FLOPS depending on the exact algorithm used.

Photon Gathering: Photon gathering consists of both a kNN query and
the convolution of the resulting set of photons with the BRDF, see Sec-
tion 5.1. The computation for a kNN query is mostly comparisons both for
traversing the kd -tree holding the photon map and for determining if a newly
found photon is among the k closest found so far. Although the comparisons
can be performed for little more then the cost of a fixed point comparison,
computing the (squared) distances will require floating point arithmetic. The
convolution of a photon gather is computed as the summation of k evalua-
tions of the BRDF multiplied by the k closest photons. The cost of evaluating
a simple Blinn-Phong BRDF without texturing is around 10 FLOPS. This
needs to be performed in floating point because the values will be small and
many will be added together.

Importance Sampling: The biggest computational unknown is the cost
of generating importance sampled secondary rays. It is expected that this
will consist of the following major operations:

• A kNN query in the photon map for initial estimate of Li.

• The tabulation of the resulting photons into a p.d.f.

• The construction of a p.d.f. from the BRDF.

• Sampling both p.d.f.s and generating the correct weights

• The generation of a couple random numbers per generated sample.

Irradiance caching: The three stages of irradiance caching are: 1) search-
ing the octree for the nearby cache sites; and 2) accepting or rejecting each
returned cache site according to a set of heuristics; and 3) inserting a new
cache site if required. The first two will require limited computation. It is
not yet clear how insertion into the octree will done in hardware or how much
computation it will require.
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Observations I performed some initial analysis, Table 8, of the compu-
tational needs for a high quality scene and found that by far the most sig-
nificant use of floating point operations are the evaluations of the BRDF
during the photon gather. Whereas the exact cost of the ray casting or num-
ber of shadow rays are relatively unimportant. 437GFLOPS compares to
55GLFOPS in current hardware and an expected performance of 500GFLOPs
in a couple years1.

Screen resolution 1024× 768
Samples per pixel 2
Eye rays 1572864
Shadow rays per intersection 16
Shadow rays 25165824
Final gather rays per intersection 100
Total rays cast 187170816
FLOPS Generate ray 18
Total GFLOPS Generate ray 3.37
Intersections per ray 20
FLOPS Intersect ray/triangle 30
Total GFLOPS Intersect rays 112
Indirect & caustic gathers per eye ray 101
Photons found per gather 100
FLOPS BRDF evaluation 20
Total GFLOPS BRDF evaluation 321
Total 437 GFLOPS

Table 2: Estimate of the floating point computation required

8.1 Deliverables

The computation of algorithms will be carefully computed, much of this will
occur in the design and analysis of the architecture, see Section 9.4.

1I had a difficult time finding reliable values for these numbers. These numbers are
from an talk at EUROGRAPHICS 2004 by Randy Fernando of NVIDIA [Fer04].
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9 An Architecture

I will present a complete architecture capable of rendering complex scenes
using the photon mapping algorithm. The architecture will performs eye ray
generation, ray casting, photon gathers and assemble the final image.

9.1 Target implementation

The initial architecture that I will layout in this section could be implemented
various ways: a collection of full custom ASICs, FPGAs, CPU cores, or on a
traditional parallel machine such as a commodity cluster or a shared memory
machine. In order to make informed choices while designing and evaluating
the architecture, on the size of internal queues or communication between
processors for instance, it is necessary to make a choice. In my dissertation I
will provide clear reasoning for the choice that I make. I believe that it will
be a small group, one to four, full custom ASICs on a PCI-Express board
hosted in a commodity PC. The simulation will use bandwidths, internal
memory sizes, and computation capabilities that match this implementation
choice.

9.2 Initial thoughts

My current thinking is outlined in Figure 5. Key design feature were in-
spired by the GI-Cube project [DK00] and the SaarCOR project [SWS02,
SWW+04]. From eye ray generation until blending in the framebuffer, data is
encapsulated in packets tagged with their final destination in the framebuffer.
By eliminating eye ray level recursion the packets can be easily reordered to
enhance memory locality.

The screen will be processed in moderate sized tiles, perhaps 16 × 16.
The eye rays are generated and put into packets containing the ray (simple
camera models have a constant ray origin which may be left out) and address
of the pixel within the tile. These packets will hold several, very coherent
rays.

The ray casting unit can accept both eye ray packets and the secondary
ray packets that will be described shortly. Using a system like that of Saar-
COR or their recent FPGA demonstration chip the packets are reordered,
queued and processed in a memory coherent pattern. All the rays in each
of the packets are cast through the scene together. As an eye ray packet is
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Figure 5: A starting point for a packet based architecture.

finished the resulting intersection packets are forwarded to the importance
sampler. The intersection packets contain the original ray, t-value, a pointer
to the primitive hit and destination pixel. A copy of the intersection is sent
to the photon gather unit for sampling the caustic photon map.

Before the importance sampler begins work on the intersections, it will
compute the direct illumination by spawning shadow rays. These are sent
back to the ray caster. The shadow rays across a tile will be very coherent
as they will have similar origins and similar destinations.

The importance sampling unit acts in concert with the eye ray generation
to do generative reordering (Section 6.3) of kNN query locations. Tile sizes
are kept reasonable so that all packets for one tile may be processed at the
same time. This will be an interesting portion of the architecture. As de-
scribed in Section 7 we want to sample proportionately to the significance of
the sampled directions. The result will be a stream of reflected rays. These
are put into packets that contain the new ray, destination pixel, and weight
that the result of this particular query should have on the destination pixel.
This last value is determined by examining the intersection’s material prop-
erties, which was necessary for the importance sampling. These secondary
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ray packets are sent back to the ray caster unit. Once again they are coher-
ent because they share a single origin, although the direction will vary more
than what a normal camera would produce. The results of the final gather
ray intersections are sent to the photon gather unit.

The photon gather unit therefor receives packets that contain a query
location, a destination pixel and weight. Deferred reordering may be applied
at this time after some or all of the tile’s query locations are received. This
may take the form of a hashed queue reordering or a Hilbert reordering
(which is presumably prohibitively expensive). After reordering is complete
the queries are processed in a now memory coherent order. The gathers for
the caustics are batched together in the (tiled) order in which they were
received. Several queries will occur in parallel in order to hide the memory
latency of a hierarchial data structure. The results are then passed to the
frame buffer where they are blended together to form the final pixel values
for that tile.

9.3 Irradiance caching

I said in Section 6.4 that I do not believe that irradiance caching will be
effective on the scenes I desire to render, Section 4. I expect to perform some
analysis of putting it into the architecture in order to develop a sense of how
expensive it’s implementation will be. Here is one way of adding irradiance
caching to the architecture.

After the first point of intersection is found for each eye ray, the irradiance
cache unit evaluates the current state of the irradiance cache. If the quality of
the cache is estimated to be high enough, the pixel’s final value is computed
and sent directly to the frame buffer with the destination pixel address. This
action terminates that eye ray. If the irradiance cache should not be used,
the intersections are forwarded to the importance sampler. If only the basic
irradiance cache metrics are used, it is possible to add sites to the irradiance
cache and consider them in the evaluation of other pixels before computing
their values. The pixels that decide to use those sites will be stored in a local
buffer until their dependent results are computed. This is the point where I
do not know how to extend the architecture to better metrics.

The importance sampling unit takes those pixels that will not be com-
puted using irradiance caching and processes them as described before. The
origins of the final gather rays will be more scattered within each tile as there
are fewer of them. This will reduce coherence.

29



D
ra
ft

�

World Space
Reordering

Raycasting

Frame Buffer

Deferred Reordering

Photon GatherGenerative Reordering

Irradiance Cache

Photon Map

Importance Sampling

Scene

Lookup Update

Irradiance Caching

Eye Ray Generation

Figure 6: An architecture including irradiance caching (with basic metrics).

The photon gather unit still receives packets from the ray caster contain-
ing the query locations. After deferred reordering is complete the queries
are processed. The results are blended together to form both the final pixel
values for that tile and the irradiance which is passed to the irradiance cache
unit. There the values are stored in the cache and and dependent pixels are
processed.

9.4 Deliverables

I do not plan to build an implementation of the proposed architecture. I will
instead simulate it in order to 1) prove the functionality; and 2) measure the
computation, bandwidths and size of internal memories.

There are two levels of simulation that I will use. The first is a cycle accu-
rate C++ simulation. At this level of simulation the units are broken down
into their internal components such as ALUs, queues, and sorters. Each op-
eration is given a cycle length based on the assumed implementation and
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the memory is either directly simulated or is statistically simulated. The
second level of simulation I will use is a functional C++ simulation. A unit
is functionally simulated if it’s inputs and outputs are implemented with the
exact precision and bit layout but the internals a black box that generate the
result in a manner not realistic in hardware.

I will simulate the entire architecture functionally, capturing the intra-
unit bandwidths and queue sizes and the bandwidths to external memory.
Some units will be simulated functionally because I intend to use previous
work. For example the ray caster will be like the SaarCORE. I will create
a cycle accurate simulation for the units that are particularly novel, the
importance sampler and photon gather unit. I will use these simulations to
answer these questions:

• Are the images generated by the architecture correct, in as much as
photon mapping is correct? I will compare the results of the functional
simulator to the publicly available pbrt framework [PH04].

• Is each computational unit feasible for the targeted implementation
process? Are the required internal state memory queues, and buffers
reasonable? For cycle accurate simulated units this will be based on
an examination of the components required. For units simulated func-
tional, such as the ray caster, it will be based on published results.

• Are the internal and external bandwidths achievable in the targeted
implementation? This will be verified with the overall functional sim-
ulation.

• With the targeted implementation, does the architecture’s performance
reach interactive rates? This will be determined by examining the
required bandwidths and computation versus speeds obtainable in the
implementation.

• Does the architecture remain load balanced and avoid deadlock?

• Is the implementation cost of irradiance caching sufficiently high to
justify my choice to exclude it from the architecture?

31



D
ra
ft

10 Schedule

Fall 2004: Officially form committee, propose dissertation, code simulator
(for the evaluation of irradiance caching), write GI paper submission
that extends my GH2004 submission to address the irradiance caching
concern of the reviewers.

Winter 2004: Develop a combined resource constrained importance sam-
pling technique that is suitable for hardware implementation.

Spring 2005: Write GH2005 paper on resource constrained hardware im-
portance sampling. Take oral exam and my last out-of-department
class

Summer 2005: Develop complete architecture, adapt the simulator to per-
form like the architecture to measure more exactly the expected com-
putation and bandwidth requirements.

Fall 2005: Revise the architecture and simulation.

Winter 2005: Write SIGGRAPH 2006 paper on the architecture.

Spring 2006: Write dissertation, defend and graduate.

11 Proposed Oral Exam Topics

• Global Illumination

• Graphics Hardware

• Monte Carlo Integration

• High Performance computing: operation reordering
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