
Compressing, Streaming, and Processing of Large Polygon Meshes

PhD Proposal

Martin Isenburg

University of North Carolina at Chapel Hill

February 20, 2004

This document proposes a set of deliverables for which—upon completion—I hope to be

given the PhD degree. In the next section I motivate why I should spend four years of my

life and several ten-thousand dollars of my supervisor’s grant money into the development

of various algorithms that operate on polygon meshes. In Section 2 I detail the research

contributions that I aim to achieve in the order they lead from one to the next. At the

same time I reference the research literature that I will familiarize myself in the course of

carrying out the proposed research. In Section 3 I list completed milestones and estimated

completion dates for missing milestones. In the last section I anticipate the immediate and

the potential impact of my work on the field mesh processing.

1 Motivation

Polygonal meshes represent surfaces in 3D and serve as the de facto standard for fast in-

teractive visualization. A large number of polygons can be required to accurately represent

a detailed model. Bandwidth in the mesh rendering pipeline is a limited resource in many

graphics applications, which has motivated researchers to find suitably compact mesh rep-

resentations.

The standard representation of a polygon mesh uses an array of floats to specify the

vertex positions and an array of integers containing indices into the vertex array to specify

the polygons. Optional mesh properties (e.g. surface normals, texture coordinates, ...) and

how they are attached to the mesh is specified in a similar manner. For large and detailed

1



models, this representation results in files of substantial size, which are expensive to store

and slow to transmit.

To reduce transmission times in networked environments, a number of mesh compression

schemes have been proposed. Their main objective is to reduce the amount of data needed

to describe a particular polygonal model. The more compact the description, the smaller

the delay when transmitting a model from one computer to another across a network with

limited bandwidth.

I propose to investigate various improvements and extensions over existing methods.

Mesh compression is still a relatively young research field and has mainly focused on fully

triangulated meshes. In particular, I will generalize triangle mesh compression schemes to

non-triangular surface meshes and hexahedral volume meshes. Furthermore, I will develop

techniques for efficient compression of mesh properties, which have been somewhat neglected

in previous work on compression but which are important for fast delivery of the property-

rich 3D content of Web applications.

Modern scanning technology has enabled scientists to create polygonal meshes of incred-

ible size. The Atlas statue from Stanford’s Digital Michelangelo Project [58], for example,

has over 254 million vertices and more than 507 million triangles. Ironically, current mesh

compression schemes are not capable—at least not on common desktop PCs—to deal with

meshes of the giga-byte size that would most benefit from compression. Current compression

algorithms can be used only when connectivity and geometry of the mesh are small enough

to reside in main memory. I will investigate how to compress such large meshes in one piece

on a standard PC using an out-of-core approach.

The resulting compressed format will allow streaming decompression with a small mem-

ory foot-print at speeds that are CPU- and not IO-limited. Furthermore, the mesh access

provided by the decompressor will enable a new approach for performing out-of-core com-

putations on large meshes. I will showcase that this streaming representation will allow the

design of highly efficient mesh processing algorithms with the example of simplification.

The ease with which meshes in the compressed format can be processed will suggest that

any type of streaming representation is much better suited for storing large models than

current indexed mesh formats. While conceptually simple, a streaming mesh format will

2



allow to redesign many mesh processing algorithms to work in a streaming, possibly pipelined,

fashion. Furthermore it will eliminate once and for all the problem of de-referencing indexed

meshes, which hampers most large mesh algorithms and usually has to be resolved in a costly

pre-processing step. I will design a streaming mesh format, develop measures for different

stream qualities, and investigate how to generate and to compress streaming meshes.

2 Research Plan

This sections details my anticipated research contributions in different areas of mesh pro-

cessing. The first subsections are concerned with maximal compression of small to mid-sized

polygon meshes, which is mostly of relevance to the Web3D community. The last subsections

are concerned with much larger data sets that are more relevant to researchers and industries

working with scientific simulations, high-resolution 3D scanning, and CAD applications.

2.1 Mesh Compression

To reduce transmission times in networked environments, a number of mesh compression

schemes have been proposed to reduce the amount of data needed to describe a particular

polygonal model. The more compact the description, the smaller the delay when trans-

mitting a model from one computer to another across a network with limited bandwidth.

Generally mesh compression techniques have focused on encoding fully triangulated data

sets—a natural candidate for the lowest common denominator. Among other things I will

investigate how to encode non-triangular meshes directly in their polygonal repre-

sentation and show that avoiding the triangulation step will typically further reduce the

storage costs for compressed polygon models.

My dissertation will be concerned only with single-resolution or flat mesh compression

schemes. Alternative approaches reduce the perceived transmission delay by initially trans-

mitting a coarse and much smaller approximation of the model to be used until the much

larger full resolution version is received. Rather than separately encoding two (or more)

versions of a model, multi-resolution or progressive mesh compression methods first send a

small base mesh that is incrementally refined all the way up to the original resolution. I have

worked on multi-resolution mesh (MRM) compression in the scope of my PhD during a sum-

3



mer internship at INTEL. There I have prototyped a compression scheme (patent pending)

that will be part of the upcoming CAD exchange format (see www.3dif.org).

Relevant previous work includes graph coding [79, 78, 48, 13, 11], flat compression of

connectivity [12, 76, 77, 59, 23, 66, 52, 53, 67, 38, 5, 21, 54, 71, 3, 49], of geometry [12, 76,

77, 45, 56, 14, 46, 57, 15, 55, 9, 69], and of properties [12, 75, 5], progressive compression [74,

25, 63, 10, 4, 2, 47], and compression after remeshing [51, 50, 20, 73].

Connectivity: Most compression efforts have focused on efficient encodings of mesh con-

nectivity as this is where the largest gains are possible. Recent schemes traverse the mesh

triangles in a manner that is often described as region-growing. They encode the connectiv-

ity through a set of symbols that describe this traversal, which are subsequently compressed

into a bit-stream using some form of entropy coding [80]. The schemes can be classified

into face-based, edge-based, and vertex-based approaches, depending on which mesh element

they associate each symbols with. Furthermore we distinguish schemes that require storing

explicit split offsets as part of the encoding from those that avoid them. Face-based ap-

proaches are the Cut-Border Machine [23], which uses offsets, and Edgebreaker [66], which

avoids them. Edge-based approaches are the Dual Graph method [59], which uses offsets,

and Triangle Fixer [27], which avoids them. The main vertex-based approach is the TG

coder [77], which uses offsets, no corresponding method exists that avoids them.

I will extend two connectivity compression schemes to operate directly on

polygonal connectivity, namely Triangle Fixer [27] and the TG coder [77], and show

that this achieves superior bit-rates. This will also suggest that most triangle connectivity

coders could be extended to more efficiently compress polygonal connectivity in the following

way: deterministically triangulate non-triangular faces and record the original face degrees

in addition to the other code symbols, but (a) compress them with different contexts and

(b) exploit the mutual correlation between them by using already compressed symbols to

further switch between several contexts.

Geometry: Traditionally, the compression of mesh connectivity and the compression of

mesh geometry are done by clearly separated (but often interwoven) techniques. Most ge-

4



ometry compression schemes use the traversal order that the connectivity coder induces on

the vertices to compress their associated positions with a predictive coding scheme. Previ-

ously decoded positions are used to predict the next position and only a corrective vector

is stored. The predictive coding schemes employed in practice exclusively use simple linear

predictors [12, 76, 77].

The reasons for the popularity of linear prediction schemes are that (a) they are simple

to implement robustly, (b) compression or at least decompression is fast, and (c) they deliver

good compression rates. For nearly six years the simple parallelogram predictor by Touma

and Gotsman [77] has been the accepted benchmark that recent approaches compare them-

selves with. Although better compression rates have been reported, it is usually questionable

whether these gains are justified in practice given the sometimes immense increase in algo-

rithmic and asymptotic complexity of the encoding and decoding schemes. Furthermore,

these improvements are often specific to a certain type of mesh. Some methods achieve sig-

nificant gains only on models with sharp features, while others are applicable only to smooth

and densely sampled meshes.

Current predictive geometry compression schemes work as follows: First the floating-

point positions are uniformly quantized using a user-defined precision of, for example, 8, 12,

or 16 bits per coordinate. Then a prediction rule is applied that uses previously decoded

positions to predict the next position and only an offset vector is stored, which corrects the

predicted position to the actual position. The values of the resulting corrective vectors tend

to spread around zero. This reduces the variation, and thereby the entropy, of the sequence

of numbers, which means they can be effectively compressed with an arithmetic coder [80].

Despite the availability of excellent mesh compression techniques, scientists and engineers

often refrain from using them because they modify the mesh data. Although connectivity is

encoded in a lossless manner, the floating-point coordinates associated with the vertices are

altered when they are quantized onto a uniform integer grid. Although a fine enough grid

can usually represent the data with sufficient precision, the original floating-point values are

slightly changed. Therefore many people refrain from using compression altogether. I will

investigate how to compress floating-point coordinates with predictive coding in a

completely lossless manner by omitting the initial quantization step and calculating the

5



predictions in floating-point arithmetic. The predicted and the actual floating-point values

will then be broken up into sign, exponent, and mantissa and their corrections will be com-

pressed separately with context-based arithmetic coding. As the quality of the predictions

is expected to vary with the exponent, we will use it to switch between different arithmetic

contexts. This will be a completing rather than a competing technology that can be used

whenever quantization of the floating-point values is—for whatever reason—not an option.

The popular parallelogram predictor introduced by Touma and Gotsman [77] predicts

vertex position of triangular meshes to complete the parallelogram that is spanned by three

previously processed vertices of a neighboring triangle. I will investigate how to extend the

parallelogram prediction rule to have better performance on polygonal meshes

without increasing its complexity. The premise here is that polygonal faces tend to be fairly

planar and convex. Although they are usually not perfectly planar, major discontinuities

are improbable to occur across them—otherwise they would have been triangulated when

the model was designed. Using information about polygons to perform predictions within a

polygon rather than across polygons should lead to better results.

Using connectivity information to guide the prediction of geometry makes intuitive sense

since we expect a strong correlation among the vertex positions of neighboring triangles.

In regular samples meshes, where the variation in triangle area is small, we expect this

correlation to be especially large. I will investigate how to recover information about

the geometric shape solely from the connectivity graph of such meshes. This will

raise the question whether it is possible to represent shapes through connectivity alone.

Properties: Previous research in mesh compression has mostly focused on connectivity

and geometry coding; the compression of properties has received less attention. There are

two kinds of information to compress. One specifies each individual property—the property

values. The other describes how the properties are attached to the mesh—the property map-

ping. The compression of per-vertex mappings is straight-forward: properties are mapped

and predicted in the same manner as vertex positions. The compression of per-corner map-

pings, on the other hand, has not been sufficiently addressed. Such mappings accommodate

discontinuities in the normal field or the texturing of a polygon mesh. I will investigate

6



predictive compression schemes for mappings with discontinuities. This will in-

clude predictive compression of the property mapping as well as the property values. I will

predict the characteristics of typical mappings [39] by classifying corners, edges, and ver-

tices as smooth or crease [39] and by switching arithmetic contexts based on the correlation

between them. I will avoid unreasonable predictions of property values in the presence of

mapping discontinuities by switching between a set of simple predictions rules. In particular,

I will focus here on texture coordinate compression.

2.2 Compressing Stripified Meshes

For interactive visualization not only the speed at which a triangle mesh can be received is

important, but also the speed at which it can be displayed. Here the bottleneck is not the

data rate at which a mesh can be sent across a network, but the data rate at which it can

be sent to the rendering engine. Each triangle of the mesh can be rendered individually by

sending its three vertices to the graphics hardware. Then every mesh vertex is processed

about six times, which involves passing its three coordinates and optional normal, colour,

and texture information from the memory to and through the graphics pipeline.

A common technique to reduce the number of times this data needs to be transmitted is

to send long runs of adjacent triangles. Such triangle strips [17, 81] are widely supported by

today’s graphics software and hardware. Two vertices from a previous triangle are re-used

for all but the first triangle of every strip. Depending on the quality of the triangle strips this

can potentially reduce the number of vertex repetitions by a factor of three. Since computing

an optimal set of triangle strips is NP-complete [16], in practice one resorts to a variety of

heuristics for generating good triangle strips [17, 70, 82].

Given the difficulty of generating good triangle strips it would be desirable to do this just

once and store the computed stripification together with the mesh. However, currently avail-

able connectivity compression techniques do not support the encoding of stripified meshes.

Obviously one can enhance any existing compression method by encoding the stripifica-

tion separately and concatenating the results. However, such a two-pass technique adds

unnecessary overhead—it does not exploit the correlation between the connectivity and the

stripification of a mesh. I will investigate how to encode the connectivity and the strip-

7



ification of a triangle mesh in an interwoven fashion that fully exploits the correlation

existing between the two.

2.3 Compressing Volume Meshes

Unstructured volume meshes can be found in a broad spectrum of scientific and industrial ap-

plications including fluid mechanics, thermodynamics and structural mechanics, where such

volumetric data is used for both, computation and visualization. Traditionally unstructured

volume meshes were composed of tetrahedral elements, but recently also other polyhedra

have become popular. Especially hexahedral volume meshes are often used, because of their

numerical advantages in finite element computations.

The standard representation for hexahedral meshes uses three floating-point coordinates

per vertex to store geometry and eight integer indices per hexahedron to store connectivity.

Optionally there are application-specific mesh properties such as density or pressure values

that are attached to the vertices. For meshes with v vertices and h hexahedra this repre-

sentation requires 96v bits for the geometry and 256h bits for the connectivity when using

standard 4 byte data types.

For archival, storage, and transmission of the data, a more compact representation is

beneficial. There have been several publications concerning the compression of tetrahedral

volume meshes [72, 22, 64, 83], but I am not aware of a compression scheme that can

handle hexahedral volume meshes. For tetrahedral geometry the best coder I am aware

of [22] achieves an average geometry compression ratio of only 1 : 1.6 after quantizing each

coordinate to 16 bits of precision. The authors report that more sophisticated prediction

schemes failed, essentially because “tetrahedral meshes are too irregular to predict vertex

coordinates much better than with the proximity information of the connectivity alone”.

Tetrahedral volume meshes seem irregular by nature because its elements do not allow

a reqular tiling of the domain. While the equilateral triangle, for example, tiles the 2D

space, the equilateral tetrahedron does not tile the 3D space. This is different for hexahedral

meshes. A cube is a hexahedron whose six faces are square and meet each other at right

angles. It is the only of the five platonic solids that regularly tiles the 3D domain. This

suggests that hexahedral meshes will exhibit significantly more regularity than tetrahedral

8



meshes and that a compression scheme should be able to exploit that.

Compression schemes for surface meshes based on degree coding for the connectivity and

parallelogram prediction for the geometry automatically adapt to regularity in the mesh. For

example, a highly regular triangular mesh composed mostly of equilateral triangles will have

a low-dispersion vertex degree distribution with an entropy close to zero, while each pair of

adjacent triangles will be in a roughly “parallelogram-shaped” configuration. The same can

be observed for non-triangular meshes that correspond to the the other two regular tilings

of the 2D domain: squares and regular hexagons. I will investigate how to extend these

compression schemes from surface meshes to volume meshes while preserving their

adaptivity to this kind of regularity.

Going from surface meshes to volume meshes, one can think of the vertices getting

stretched into edges. What was a vertex degree in the surface mesh becomes an edge degree

in the volume mesh. Hence, the concept of degree coding can be extended to compress the

connectivity of volume meshes using edge degrees. This will work both for tetrahedral and

hexehedral connectivity. However, initial measurements on the edge degree distributions of

tetrahedral meshes suggest that the compression rates achievable by degree coding will be

worse than those reported by other methods. Hexahedral meshes, on the other hand, exhibit

a low dispersion in edge degrees indicating that degree-coding is well suited for them.

2.4 Compressing Gigantic Meshes

Modern scanning technology enables scientists to create digital 3D representations of real-

world objects with incredible detail. The Atlas statue from Stanford’s Digital Michelangelo

Project [58], for example, has over 254 million vertices and more than 507 million triangles.

If represented in a standard indexed mesh, this corresponds to 6 gigabytes of triangle and

3 gigabytes of vertex data. Ironically, mesh compression schemes are not capable—at least

not on common desktop PCs—to deal with meshes of the giga-byte size that would most

benefit from compression. Current compression algorithms and for the most part also their

corresponding decompression algorithms can be used only when connectivity and geometry of

the mesh are small enough to reside in main memory. Realizing this limitation, Ho et al. [24]

propose to cut gigantic meshes into manageable pieces and encode each separately using

9



existing techniques. However, partitioning the mesh introduces artificial discontinuities.

The special treatment required to deal with these cuts not only lowers compression rates but

also significantly reduces decompression speeds.

Up to a certain mesh size, the memory requirements of the compression process could be

satisfied using a 64-bit super-computer with vast amounts of main memory. Research labs

and industries that create giga-byte sized meshes often have access to such equipment. But to

decompress on common desktop PCs, at least the memory foot-print of the decompression

process needs to be small. In particular, its memory requirements must be less than the

size of the decompressed mesh. This eliminates a number of popular multi-pass schemes

that either need to store the entire mesh for connectivity decompression [76, 66, 5] or that

decompress connectivity and geometry in separate passes [39, 45, 73].

This leaves us with all one-pass coders that can perform decompression in a single,

memory-limited pass over the mesh. Such schemes compress and decompress connectivity

and geometry information in an interwoven fashion. This allows streaming decompression

that can start producing mesh triangles as soon as the first few bytes have been read. There

are several schemes that could be implemented as one-pass coders [77, 23, 59, 57].

I will investigate how how to compress meshes of giga-byte size in one piece on

a standard PC using an external memory data structure that provides transparent

access to arbitrary large meshes. This data structure will accommodates the access pattern

of a one-pass compression engine to reduce costly loads of data from disk. The resulting

compressed format will allow streaming, small memory foot-print decompression at only

CPU and not IO limited speeds. This format will have benefits beyond efficient storage and

fast loading. It will be a better input format to algorithms that need to perform out-of-core

computations on large meshes than standard indexed mesh formats, which are inefficient to

work with and often need to be de-referenced in a costly pre-processing step or the resulting

polygon soups, which are at least twice as big and provide no connectivity information.

2.5 Large Mesh Processing

The straight-forward approach for processing large meshes is to cut them into pieces small

enough to fit into main memory and then processes each piece separately while giving special

10



treatment to the split boundaries. Mesh cutting has successfully been used to, for example,

distribute [58], simplify [26, 65, 6] and compress [24] very large polygon models. Despite the

apparent simplicity of this approach, the initial cutting step can be fairly expensive when

the input mesh is in a standard indexed format.

More recent strategies are batched and online processing, which avoid the cutting step

and process the mesh as a whole: For the first, the data streams in one or more passes though

the main memory and computations are restricted to the small amount of data that is kept

in memory at any time. For the other, the data is processed through a series of potentially

random queries. In order to avoid costly disk access with each query the data is re-organized

to accommodate an anticipated access pattern.

Batch processing is CPU efficient and has mainly been used for out-of-core mesh

simplification [60, 61, 68, 19]. These schemes operate on de-referenced triangle soup in

increments of single triangles. The output of this pass either is small enough to fit in

memory so that the remaining computation can be done in-core or is directly written to a

file, which is then used as input for subsequent batch-processing passes.

Out-of-core approaches based on batch processing are designed to work without explicit

connectivity information. This enables them to efficiently do their computations using a

few batch processing passes instead of requiring costly online processing on the entire mesh.

Large meshes that must be processed out-of-core are therefore treated differently from small

meshes that can be processed in-core. Unfortunately, the output of batch-processing based

algorithms tends to be of lower quality than that of algorithms that have access to explicit

connectivity information.

Online processing is usually much more I/O-limited but makes it possible to run

typical in-core algorithms on data sets too large to fit into main memory. This requires

data structures that separate references to the mesh data from the physical location of

the data in memory. Some schemes simply use the virtual memory functionality of the

operating system and try to organize the data accesses such that the number of page faults

is minimized [62, 7]. This, however, works only as long as the data amount to less than

4 gigabytes. Going beyond that limit requires dedicated external memory data structures

that manage the virtual address space for the data explicitely. These can be accelerated by

11



caching or pre-fetching of data that is likely to be queried soon.

Cignoni et. al [8], for example, propose an octree-based external memory data structure

that makes it possible to simplify the St. Matthew statue from 386 to 94 million triangles

using iterative edge contraction [18]. Similarly, the out-of-core mesh I mentioned in the last

section will make it possible to compress the St. Matthew statue from over 6 GB to less than

400 MB of data using a compressor based on region-growing [77].

Such external memory data structures enable traditional in-core algorithms to be applied

to large data sets by providing seemingly random access to complete connectivity informa-

tion in a transparent manner. However, building these data structures is time and space

consuming and using these data structures tends to be slow.

I want to explore a completely novel approach to large mesh processing. It is based on

the mesh access provided by the streaming one-pass decompressor mentioned in the last

section. I will show that this will be useful for all types of mesh processing using the

example of simplification. It will combine the efficiency of batch-processing with the

advantages of explicit connectivity information available in online-processing by

restricting the access to the mesh to a fixed traversal order, but at the same time providing

full connectivity for the active elements of this traversal.

2.6 Streaming Meshes

The compressed format outlined in the last section allows to stream large meshes while using

a relatively small amount of memory. This ability comes from two things: (a) decompressing

triangles and vertices in an interleaved fashion gives us streaming, and (b) having knowledge

about when a vertex is used for the last time (e.g. knowledge about when it is safe to discard)

gives us small memory footprints. As these two things are conceptually simple, one could

generally store meshes this way. I will investigate how to design a streaming mesh format

that provides streaming access with small memory footprint to large meshes that

is light-weight enough to be considered as a standard mesh format alongside PLY or OBJ.

Today’s standard mesh formats (e.g. PLY, OBJ, IV, OFF, VRML) mesh formats use

an array of floats that specifies the vertex positions followed by an array of indices into the

vertex array that specifies the polygons. No constraints are imposed on the order of either

12



vertices or triangles. In particular, the three vertices of a triangle can be located anywhere

in the vertex array. They need not even be close to each other. And while subsequent

triangles may reference vertices at opposite ends of the array, the first and the last triangle

could use the same vertex. This flexibility was enjoyable as long as meshes were small or

moderately sized. However, with the arrival of gigabyte-sized data sets, this has become a

major headache.

These formats were designed in the early days of computer graphics when the Stanford

bunny was considered a complex model. This model, which has helped popularize Stanford’s

PLY format, abuses this flexibility like no other—its vertices and triangles are pretty ran-

domly distributed in their respective arrays. Nowadays the PLY format is used to archive

the scanned statues that were created by Stanford’s Digital Michelangelo Project [58]. The

Atlas statue, for example, has over 254 million vertices and more than 507 million triangles.

Having a gigabyte-sized block of triangle data that indexes a gigabyte-sized block of vertex

data unduly complicates all subsequent processing.

A streaming mesh format will eliminate once and for all the problem of de-referencing

indexed meshes, which hampers all large mesh algorithms and is usually resolved in a costly

pre-processing step. Furthermore it will allow to redesign many mesh processing algorithms

to work in a streaming, possibly pipelined, fashion. Besides designing a streaming mesh

format, I will define metrics that measures different stream qualities, develop out-

of-core techniques for converting existing data into this streaming representation,

and finally show how to efficiently compress streaming meshes on-the-fly directly in

their particular stream order.

3 Milestones

The following milestones have already been completed:

• coursework

• teaching requirement

• product requirement

• language requirement

13



• research

– connectivity compression: edge-based without offsets [27, 28, 39], polygo-

nal [39, 29], stripified [28], hexahedral [30], out-of-core [33], streaming [35].

– geometry compression: polygonal [31], hexahedral [30], lossless [37], out-of-

core [33], streaming [35].

– property compression: mapping [39, 40], texture coordinates [44].

– compression strategies: with connectivity [34], for textual formats [42, 41, 43],

online benchmark [32], out-of-core [33, 35], streaming [35].

– meshing: unit edge [34], with isotropic [1].

– streaming processing: decompression [33], simplification [36], compression [35].

The following milestones will be completed soon:

• integrative paper (80% remaining, end of april)

• proposal (early march)

• oral exam (early march)

• dissertation (20% remaining, late may)

• defense (late april / early may)

• travel requirement (15% remaining)

4 Impact of the Work

The research activities proposed here will significantly advance the field of mesh compression

and large model processing. The main impact will come from the contributions described in

subsections 2.4, 2.5 and 2.6. These contribution are enabling in the sense that they will allow

researchers to operate on large meshes that used to require access to supercomputers. They

are innovative in the sense that they will lead to a new breed of streaming mesh algorithms

that perform online computations at batch-processing speeds.

Replacing indexed or immediate mesh formats with any type of streaming format (op-

tionally compressed) as the raw data representation for large meshes will be beneficial to

many researchers. I have spent days just to acquire and pre-process the large meshes of Stan-

ford’s Michelangelo Project. The largest scanned statues had to be cut into several pieces

14



in order to make the download over the Internet feasable. The download of these pieces can

take on the order of hours; even loading them from the harddrive into memory takes tens of

minutes before any processing can take place. I had to write dedicated out-of-core software

to stich the pieces back together. This painstaking pre-processing step created gigabytes of

intermediate data files and significant delayed my actual research.

The distribution of large data sets in compressed form is much easier. After completing

design and implementation of our out-of-core compressor and the corresponding decompres-

sor I will be able to burn the six gigantic example meshes that we have acquired over the

months—originally over 10 Gigabytes—onto a single CD. Loading these data sets from the

compressed representation is much faster, copying those data files between file systems no

longer lasts the entire lunch break, and downloading them from a remote site is not an

overnight job anymore.

The results of the research proposed here will be disseminated in form of a conference and

journal publications, as well as technical reports. Especially the work on streaming meshes

will be also made available in form of source code and a well-documented API. This will

enable other researchers to develop their own streaming mesh algorithm either by following

the examples or by using the code in full or in parts. Furthermore, I will make commonly

used large models available in a compressed format and provide others with the necessary

tools for compressing their own models. Ultimately, I would like to convince Stanford to

offer the large models of their Scanning Repository in a compressed streaming format.

References

[1] P. Alliez, E. Colin de Verdiere, O. Devillers, and M. Isenburg. Isotropic surface remeshing. In Proceedings

of Shape Modeling International’03, pages 49–58, 2003.

[2] P. Alliez and M. Desbrun. Progressive encoding for lossless transmission of 3D meshes. In SIG-

GRAPH’01 Proceedings, pages 198–205, 2001.

[3] P. Alliez and M. Desbrun. Valence-driven connectivity encoding for 3D meshes. In Eurographics’01

Proceedings, pages 480–489, 2001.

[4] C. Bajaj, V. Pascucci, and G. Zhuang. Progressive compression and transmission of arbitrary triangular

meshes. In Visualization’99 Proceedings, pages 307–316, 1999.

15



[5] C. Bajaj, V. Pascucci, and G. Zhuang. Single resolution compression of arbitrary triangular meshes

with properties. In Data Compression Conference’99 Proceedings, pages 247–256, 1999.

[6] F. Bernardini, I. Martin, J. Mittleman, H. Rushmeier, and G. Taubin. Building a digital model of

Michelangelo’s Florentine Pieta. IEEE Computer Graphics and Applications, 22(1):59–67, 2002.

[7] P. Choudhury and B. Watson. Completely adaptive simplification of massive meshes. Technical Report

CS–02–09, Northwestern University, 2002.

[8] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. External memory management and simplification

of huge meshes. IEEE Transactions on Visualization and Computer Graphics, 2003. To appear.

[9] D. Cohen-Or, R. Cohen, and R. Irony. Multi-way geometry encoding. Technical Report TR-2002,

Tel-Aviv University, 2002.

[10] D. Cohen-Or, D. Levin, and O. Remez. Progressive compression of arbitrary triangular meshes. In

Visualization’99 Proceedings, pages 67–72, 1999.

[11] L. de Floriani, P. Magillo, and E. Puppo. A simple and efficient sequential encoding for triangle meshes.

In Proceedings of 15th European Workshop on Computational Geometry, pages 129–133, 1999.

[12] M. Deering. Geometry compression. In SIGGRAPH 95 Conference Proceedings, pages 13–20, 1995.

[13] M. Denny and C. Sohler. Encoding a triangulation as a permutation of its point set. In Proceedings of

9th Canadian Conference on Computational Geometry, pages 39–43, 1997.

[14] O. Devillers and P.-M. Gandoin. Geometric compression for interactive transmission. In Proc. of IEEE

Visualization 2000, pages 319–326, 2000.

[15] O. Devillers and P.-M. Gandoin. Progressive and lossless compression of arbitrary simplicial complexes.

In SIGGRAPH’02 Proceedings, pages 372–379, 2002.

[16] F. Evans, S. S. Skiena, and A. Varshney. Completing sequential triangulations is hard. Technical report,

Department of Computer Science, State University of New York at Stony Brook, 1996.

[17] F. Evans, S. S. Skiena, and A. Varshney. Optimizing triangle strips for fast rendering. In Visualization’96

Proceedings, pages 319–326, 1996.

[18] M. Garland and P. Heckbert. Surface simplification using quadric error metrics. In SIGGRAPH’97

Proceedings, pages 209–216, 1997.

[19] M. Garland and E. Shaffer. A multiphase approach to efficient surface simplification. In Visualization’02

Proceedings, pages 117–124, 2002.

[20] X. Gu, S. Gortler, and H. Hoppe. Geometry images. In SIGGRAPH’02 Proceedings, pages 355–361,

2002.

16



[21] A. Guéziec, F. Bossen, G. Taubin, and C. Silva. Efficient compression of non-manifold polygonal meshes.

In Visualization’99 Proceedings, pages 73–80, 1999.

[22] S. Gumhold, S. Guthe, and W. Strasser. Tetrahedral mesh compression with the cut-border machine.

In Visualization’99 Proceedings, pages 51–58, 1999.

[23] S. Gumhold and W. Strasser. Real time compression of triangle mesh connectivity. In SIGGRAPH’98

Proceedings, pages 133–140, 1998.

[24] J. Ho, K. Lee, and D. Kriegman. Compressing large polygonal models. In Visualization’01 Proceedings,

pages 357–362, 2001.

[25] H. Hoppe. Efficient implementation of progressive meshes. Computers & Graphics, 22(1):27–36, 1998.

[26] H. Hoppe. Smooth view-dependent level-of-detail control and its application to terrain rendering. In

Visualization’98 Proceedings, pages 35–42, 1998.

[27] M. Isenburg. Triangle Fixer: Edge-based connectivity compression. In Proceedings of 16th European

Workshop on Computational Geometry, pages 18–23, 2000.

[28] M. Isenburg. Triangle Strip Compression. In Graphics Interface’00 Proceedings, pages 197–204, 2000.

[29] M. Isenburg. Compressing polygon mesh connectivity with degree duality prediction. In Graphics

Interface’02 Proceedings, pages 161–170, 2002.

[30] M. Isenburg and P. Alliez. Compressing hexahedral volume meshes. In Pacific Graphics’02 Conference

Proceedings, pages 284–293, 2002.

[31] M. Isenburg and P. Alliez. Compressing polygon mesh geometry with parallelogram prediction. In

Visualization’02 Proceedings, pages 141–146, 2002.

[32] M. Isenburg, P. Alliez, and J. Snoeyink. A benchmark coder for polygon mesh compression.

http://www.cs.unc.edu/˜ isenburg/pmc/, 2002.

[33] M. Isenburg and S. Gumhold. Out-of-core compression for gigantic polygon meshes. In SIGGRAPH’03

Proceedings, pages 935–942, 2003.

[34] M. Isenburg, S. Gumhold, and C. Gotsman. Connectivity shapes. In Visualization’01 Proceedings, pages

135–142, 2001.

[35] M. Isenburg and P. Lindstrom. Streaming meshes. submitted, 2004.

[36] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink. Large mesh simplification using processing

sequences. In Visualization’03 Proceedings, pages 465–472, 2003.

[37] M. Isenburg, P. Lindstrom, and J. Snoeyink. Lossless compression of floating point geometry. In to

appear in CAD’04, 2004.

17



[38] M. Isenburg and J. Snoeyink. Mesh collapse compression. In Proceedings of SIBGRAPI’99 - 12th

Brazilian Symposium on Computer Graphics and Image Processing, pages 27–28, 1999.

[39] M. Isenburg and J. Snoeyink. Face Fixer: Compressing polygon meshes with properties. In SIG-

GRAPH’00 Proceedings, pages 263–270, 2000.

[40] M. Isenburg and J. Snoeyink. Compressing the property mapping of polygon meshes. In Pacific

Graphics’01 Proceedings, pages 4–11, 2001.

[41] M. Isenburg and J. Snoeyink. Coding with ASCII: compact, yet text-based 3d content. In Proceedings

of the 1st International Symposium on 3D Data Processing, Visualization and Transmission, pages

609–616, 2002.

[42] M. Isenburg and J. Snoeyink. Compressing polygon meshes as compressable ASCII. In Proceedings of

Web3D’02 Symposium, pages 1–10, 2002.

[43] M. Isenburg and J. Snoeyink. Binary compression rates for ASCII formats. In Proceedings of Web3D’02

Symposium, pages 173–178, 2003.

[44] M. Isenburg and J. Snoeyink. Compressing texture coordinates with selective linear predictions. In

Proceedings of Computer Graphics International’03, pages 126–131, 2003.

[45] Z. Karni and C. Gotsman. Spectral compression of mesh geometry. In SIGGRAPH’00 Proceedings,

pages 279–286, 2000.

[46] Z. Karni and C. Gotsman. 3D mesh compression using fixed spectral bases. In Graphics Interface’01

Proceedings, pages 1–8, 2001.

[47] Zachi Karni, Alexander Bogomjakov, and Craig Gotsman. Efficient compression and rendering of multi-

resolution meshes. In Visualization’02, pages 347–354, 2002.

[48] K. Keeler and J. Westbrook. Short encodings of planar graphs and maps. In Discrete Applied Mathe-

matics, pages 239–252, 1995.

[49] A. Khodakovsky, P. Alliez, M. Desbrun, and P. Schroeder. Near-optimal connectivity encoding of

2-manifold polygon meshes. Graphical Models, 64(3-4):147–168, 2002.

[50] A. Khodakovsky and I. Guskov. Compression of normal meshes. In Geometric Modeling for Scientific

Visualization, Springer-Verlag, pages 189–206, 2002.

[51] A. Khodakovsky, P. Schroeder, and W. Sweldens. Progressive geometry compression. In SIGGRAPH’00

Proceedings, pages 271–278, 2000.

[52] D. King and J. Rossignac. Guaranteed 3.67v bit encoding of planar triangle graphs. In Proceedings of

11th Canadian Conference on Computational Geometry, pages 146–149, 1999.

18



[53] D. King, J. Rossignac, and A. Szymczak. Connectivity compression for irregular quadrilateral meshes.

Technical Report TR–99–36, GVU Center, Georgia Tech, November 1999.

[54] B. Kronrod and C. Gotsman. Efficient coding of non-triangular meshes. In Proceedings of Pacific

Graphics, pages 235–242, 2000.

[55] B. Kronrod and C. Gotsman. Optimized compression of triangle mesh geometry using prediction trees.

In International Symposium on 3D Data Processing Visualization and Transmission, pages 602–608,

2002.

[56] E. Lee and H. Ko. Vertex data compression for triangular meshes. In Proceedings of Pacific Graphics,

pages 225–234, 2000.

[57] H. Lee, P. Alliez, and M. Desbrun. Angle-analyzer: A triangle-quad mesh codec. In Eurographics’02

Proceedings, pages 198–205, 2002.

[58] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis,

J. Ginsberg, J. Shade, and D. Fulk. The Digital Michelangelo Project. In SIGGRAPH 00 Proceedings,

pages 131–144, 2000.

[59] J. Li and C. C. Kuo. A dual graph approach to 3D triangular mesh compression. In Proceedings of

ICIP’98, pages 891–894, 1998.

[60] P. Lindstrom. Out-of-core simplification of large polygonal models. In SIGGRAPH 00 Proceedings,

pages 259–262, 2000.

[61] P. Lindstrom and C. Silva. A memory insensitive technique for large model simplification. In Visual-

ization’01 Proceedings, pages 121–126, 2001.

[62] S. McMains, J. Hellerstein, and C. Sequin. Out-of-core build of a topological data structure from

polygon soup. In Proceedings of the 6th ACM Symposium on Solid Modeling and Applications, pages

171–182, 2001.

[63] R. Pajarola and J. Rossignac. Compressed progressive meshes. IEEE Transactions on Visualization

and Computer Graphics, 6(1):79–93, 2000.

[64] R. Pajarola, J. Rossignac, and A. Szymczak. Implant sprays: Compression of progressive tetrahedral

mesh connectivity. In Visualization’99 Proceedings, pages 299–306, 1999.

[65] C. Prince. Progressive meshes for large models of arbitrary topology. Master’s thesis, University of

Washington, 2000.

[66] J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes. IEEE Transactions on

Visualization and Computer Graphics, 5(1):47–61, 1999.

19



[67] J. Rossignac and A. Szymczak. Wrap&zip: Linear decoding of planar triangle graphs. The Journal of

Computational Geometry, Theory and Applications, 1999.

[68] E. Shaffer and M. Garland. Efficient adaptive simplification of massive meshes. In Visualization’01

Proceedings, pages 127–134, 2001.

[69] O. Sorkine, D. Cohen-Or, and S. Toledo. High-pass quantization for mesh encoding. In Proceedings of

Symposium on Geometry Processing’03, pages 42–51, 2003.

[70] B. Speckmann and J. Snoeyink. Easy triangle strips for TIN terrain models. In Proceedings of 9th

Canadian Conference on Computational Geometry, pages 239–244, 1997.

[71] A. Szymczak, D. King, and J. Rossignac. An Edgebreaker-based efficient compression scheme for con-

nectivity of regular meshes. In Proceedings of 12th Canadian Conference on Computational Geometry,

pages 257–264, 2000.

[72] A. Szymczak and J. Rossignac. Grow & fold: Compression of tetrahedral meshes. In Proceedings of the

5th ACM Symposium on Solid Modeling and Applications, pages 54–64, 1999.

[73] A. Szymczak, J. Rossignac, and D. King. Piecewise regular meshes: Construction and compression.

Graphical Models, 64(3-4):183–198, 2002.

[74] G. Taubin, A. Guéziec, W.P. Horn, and F. Lazarus. Progressive forest split compression. In SIG-

GRAPH’98 Proceedings, pages 123–132, 1998.

[75] G. Taubin, W.P. Horn, F. Lazarus, and J. Rossignac. Geometry coding and VRML. Proceedings of the

IEEE, 86(6):1228–1243, 1998.

[76] G. Taubin and J. Rossignac. Geometric compression through topological surgery. ACM Transactions

on Graphics, 17(2):84–115, 1998.

[77] C. Touma and C. Gotsman. Triangle mesh compression. In Graphics Interface’98 Proceedings, pages

26–34, 1998.

[78] G. Turan. Succinct representations of graphs. Discrete Applied Mathematics, 8:289–294, 1984.

[79] W.T. Tutte. A census of planar triangulations. Canadian Journal of Mathematics, 14:21–38, 1962.

[80] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression. Communications

of the ACM, 30(6):520–540, 1987.

[81] M. Woo, J. Neider, and T. Davis. Open GL Programming Guide. Addison Wesley, 1996.

[82] X. Xiang, M. Held, and J. Mitchell. Fast and efficient stripification of polygonal surface models. In

Proceedings of Interactive 3D Graphics, pages 71–78, 1999.

[83] C. Yang, T. Mitra, and T. Chiueh. On-the-fly rendering of losslessly compressed irregular volume data.

In Visualization’00 Proceedings, pages 101–108, 2000.

20


