
Identifying Security Critical Properties for

the Dynamic Verification of a Processor

Rui Zhang Natalie Stanley Christopher Griggs Andrew Chi Cynthia Sturton

The University of North Carolina at Chapel Hill

{rzhang, cgriggs, achi, csturton}@cs.unc.edu stanleyn@email.unc.edu

Abstract

We present a methodology for identifying security critical

properties for use in the dynamic verification of a proces-

sor. Such verification has been shown to be an effective way

to prevent exploits of vulnerabilities in the processor, given

a meaningful set of security properties. We use known pro-

cessor errata to establish an initial set of security-critical in-

variants of the processor. We then use machine learning to

infer an additional set of invariants that are not tied to any

particular, known vulnerability, yet are critical to security.

We build a tool chain implementing the approach and

evaluate it for the open-source OR1200 RISC processor.

We find that our tool can identify 19 (86.4%) of the 22

manually crafted security-critical properties from prior work

and generates 3 new security properties not covered in prior

work.

1. Introduction

Hardware companies conduct extensive testing and verifi-

cation throughout the design phase, yet errata in the design

persist to the final shipped product [2, 3]. And, just as is the

case with software, bugs in the hardware can create vulner-

abilities that are exploitable by malicious software [15]. Re-

cent work has demonstrated the efficacy of using assertions

built in to the hardware design to protect, post-deployment,

against security vulnerabilities [10, 11, 22]. The assertions

act as an execution monitor: each assertion is a proposition

encoding a property that should always hold and at run-time

the assertion monitors the hardware signals and state named

in the property. If the property is ever violated the assertion

fires, triggering an exception. In this way, the assertions act

in concert with software to protect core, security-critical pro-

cessor functionality. The question of what to assert – what

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17, April 08 - 12, 2017, Xi’an, China

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037734

are the properties that are critical to security – is an open

one, and the problem addressed by this work.

The current state of the art is to develop the assertions

manually by studying the processor’s instruction set archi-

tecture (ISA), identifying properties of the ISA that are crit-

ical to the security of software running on the processor,

and encoding those properties as assertions. The process re-

quires human expertise and judgment, can be tedious and

time consuming, and some properties that are important for

security are obscure and unlikely to be identified. Further-

more, because the instruction manuals describing an ISA

may be incomplete and ambiguous there are important prop-

erties which even the most thorough perusal of the ISA will

be unable to uncover.

There is, however, a benefit to having a human in the loop.

The line between a security property and a purely functional

property is blurry. Some properties seem obviously critical

to security. As an example, each of the above cited works

([10, 11, 22]) includes an assertion that the supervisor sig-

nal is set only in response to a small number of well de-

fined events. Other properties, such as the one(s) violated

by Intel’s infamous FDIV bug [1, 7], feel safely character-

ized as purely functional. However, in general, making the

distinction often comes down to a judgment call, one that

weighs the cost of adding an additional assertion to the final

design against the benefit of increased security provided by

the particular assertion. Where the human expert chooses to

draw the line between security and functional properties can

change for different systems and at different points in time.

We present SCIFinder, a methodology and tool chain for

semi-automatically generating a set of security-critical pro-

cessor invariants that can be encoded as synthesizable asser-

tions. Our approach is informed by three observations. First,

detailed information about processor invariants may not ex-

ist in any specification documents; this information can only

be learned by studying a running processor. Second, human

expertise is still needed for, and well suited to, distinguishing

security concerns from purely functional ones. And, third,

properties that are critical to security tend to have some com-

monalities between them, for example, they concern state

that is critical to security such as the supervisor signal.

Invariant Generation

SW

Programs

(C, C++)

SCI Identification

SCI Inference

Initial

SCI
Final

SCI

Human Expert

Known Processor

Errata (Patches,

English Descriptions)

Security

Critical Errata

Functional

Errata

Processor

Invariants

Processor

Design

(Verilog)

Figure 1: Workflow of SCIFinder.

Rather than try to cull security-critical properties from

the ISA, we instead generate, automatically, a large set of

processor invariants that describe all aspects of processor

behavior and then categorize each invariant as critical to

security or not. And, while we wish to use human judgment

to guide this process, we do not want to burden the human

with the task of combing through hundreds of thousands

of invariants to perform the categorization. Therefore, we

have developed two ways to algorithmically differentiate

security-critical invariants from functional invariants: 1) Use

published processor errata that can be shown to pose a threat

to security to drive the categorization, and 2) Use statistical

analysis techniques to classify the invariants.

The benefit of using published errata as a starting point is

the potential to create assertions with high value. These as-

sertions will at a minimum catch actual bugs that have had a

deleterious effect on security. The approach has the potential

to be stronger than that, however. If the assertions are well

crafted, they capture not just the absence of a particular bug,

but the presence of a desired security property. These asser-

tions will detect any bug that violates the protected property,

even if the bug itself is entirely different from the one that

first inspired the assertion.

Still, the errata-based approach is limited to finding prop-

erties that have at one point been violated by a known secu-

rity bug. In our second approach, we conjecture that once a

human has identified points along the security–functionality

boundary, machine learning techniques can be used to auto-

mate the classification of additional invariants. In this way

new security-critical invariants can be identified.

SCIFinder has four phases (Figure 1):

1. Observe a processor executing a variety of programs to

collect a set of likely processor invariants defined over

software-visible processor state.

2. Given a list of known design errata, use human expertise

and judgment to classify each erratum as either a func-

tional bug or a potential security vulnerability.

3. Identify security-critical invariants (SCI) as those invari-

ants violated by the security vulnerabilities.

4. Apply machine learning techniques to find additional SCI

in the set of processor invariants.

In this work we focus on the development of a meaningful

and comprehensive set of security-critical invariants. We

present the following:

◦ Our two-pronged approach that uses known design errata

plus machine learning techniques to identify processor

invariants that are well suited to dynamic verification

techniques and are critical to security.

◦ The implementation of our tool chain.

◦ An evaluation of our approach for the open-source OR1200

RISC processor, and a comparison of our semi-automated

approach to the fully manual approach of prior work.

We find that our tool can identify 19 (86.4%) of the

22 manually crafted security-critical properties from prior

work and generates 3 new security properties not covered

in prior work. We test our generated assertions against 14

bugs from published AMD errata documents (bugs not used

in the development of the assertions) and find the assertions

stop 12 (86%) of these bug-based exploits.

2. Dynamic Verification for Security

Dynamic verification targeted for security is inspired by a

long history of using assertion based verification (ABV)

during hardware design, testing, and verification. In ABV,

assertions are added to the hardware design, which is then

simulated with random or selected inputs. Any assertions

that fire during simulation point to a bug in the design [9, 17].

Unlike the assertions used as part of ABV, the security-

critical assertions used in dynamic verification are kept in the

design through synthesis and exist in the fabricated chip. So,

while ABV assertions cannot detect bugs that are not trig-

gered by test data, the security-critical assertions continue

to monitor processor state and will detect, post deployment,

attempts to exploit a vulnerability in the field. This form of

dynamic verification has several benefits to recommend it.

From a hardware-design point of view, the assertions are rel-

atively simple statements with low overhead in terms of area

and power. From a security point of view, the assertions can

provide a powerful guarantee: any violation of the property

will be detected, regardless of the possibly complex series of

events that brought the processor to an insecure state.

What action is taken once the assertion fires depends

on the system design. A simple design choice is to halt

execution [10]; another option is to throw an exception to

software. Hicks et al. found that software can often recover

and move the processor past the buggy state to continue

making forward progress [22]. We leave this aspect of the

system design as out of scope for this work.

3. Design

Our methodology has four phases: invariant generation; clas-

sification of known design errata as either security vulnera-

bilities or functional bugs; security-critical invariant (SCI)

identification; and SCI inference. In the first phase, we col-

lect a set of likely processor invariants. We use a modified

version of Daikon, a dynamic invariant generation tool, and

execute the processor design in simulation with a variety of

software running on it. In keeping with prior art, we operate

at the ISA level: we track software-visible state and consider

execution of an instruction to be a single step of execution.

In the second phase we rely on human judgment to clas-

sify processor design errata as either security critical or not.

We use as our source of errata the revision history for the

design. This requires that revisions be documented with the

reason for the change, and if it was a bug fix, a high-level

description of the error. It is helpful if the revision documen-

tation includes a test case that triggers the error.

The third phase relies on one of our key observations:

security-critical errata are vulnerabilities precisely because

they violate some underlying security property. We can use

the errata to identify security-critical invariants – those that

are violated when a security-critical erratum is triggered.

SCI identified in this phase will protect against not just the

particular vulnerability used to find it (and presumably that

vulnerability has been patched in the latest version of the

processor), but also against other, unknown bugs that violate

the same invariant. In Section 5 we discuss how often this

occurs within our test data.

In the fourth phase, we use machine learning techniques

to identify additional invariants as security critical. We next

discuss phases one, three, and four in detail. Details of our

implementation of phase two are in Section 4.1.

3.1 Invariant Generation

We wish to collect meaningful processor invariants. We do

this by generating a large number of processor execution

traces covering as many processor states as possible, and

then observing invariants within and across these traces.

Some of the generated invariants are potentially security

critical and will be identified as such in the following phases

(see §3.3, §3.4).

3.1.1 Execution Traces

We obtain the processor execution traces by simulating the

processor’s register-transfer-level (RTL) design. During sim-

ulation we track architectural signals and selected register

values of the RTL design at each instruction boundary. To

provide as much breadth as possible, we run a variety of pro-

grams including SPEC benchmarks, a Linux boot, and scien-

tific computations (see §5.1). Our execution traces must, at

a minimum, cover all the instructions in the ISA, including

system calls, bit-rotation operations, word-extension opera-

tions, and interrupts and exceptions.

3.1.2 Daikon

From the execution traces, we use Daikon, a dynamic in-

variant detection tool, to gather meaningful invariants [16].

Daikon has an instrumenter and an inference engine. The

instrumenter records information about variable values as a

program executes, and the inference engine reads the traces

produced by the instrumenter to generate invariants.

Daikon is not specifically designed for hardware, and we

adapted it to suit our needs:

1. Daikon is intended to learn software-level invariants: pro-

cedure pre- and post-conditions, class invariants, and data

structure invariants. These are not directly applicable to

processor execution traces; we extend Daikon to suit our

hardware use case (see §3.1.3).

2. Patterns often seen in hardware design, such as bit-

packing several flags into a single register, are unknown

to Daikon. We develop new invariant patterns that cap-

ture such non-linear relationships between variables

(see §3.1.4).

3. Certain processor design optimizations, such as delay

slots, need to be carefully handled (see §3.1.5).

4. The invariants generated by Daikon contain redundan-

cies. Our SCI will be enforced on processors dynamically

and should be concise to avoid overhead. We introduce

optimizations to remove redundancy (see §3.2).

3.1.3 Invariant Variables

Daikon produces invariants in the form of procedure pre-

and post-conditions, as well as class and object invariants.

The latter two are not applicable to our hardware setting,

but the first two can be adjusted to suit our needs. We are

interested in ISA-level properties that hold as the processor

executes; by observing processor state before and after the

execution of each instruction, we can use Daikon to develop

a set of pre- and post-conditions for each instruction. The

pre-conditions describe properties that always hold when a

particular instruction executes, and the post-conditions de-

scribe properties that always hold at the conclusion of a par-

ticular instruction, provided the pre-conditions hold.

We modify Daikon’s instrumenter to extract trace data

from the execution logs produced by the simulation. It out-

puts variable values before and after each instruction is

executed. The set of variables tracked should be inclusive

enough for the inference engine to infer meaningful invari-

ants including those critical to security. On the other hand,

the variable set should be small enough to make invariant

inferences computationally feasible.

We make the same design decision as prior work in dy-

namic processor verification. We include all the variables at

the ISA level, that is, all registers and signals that are visible

to software: all general purpose registers (GPRs), all spe-

cial purpose registers (SPRs), flags, data and address of the

memory subsystem, target registers, and immediate values

of the instruction. The ISA level represents a trade-off be-

tween complexity and completeness: the microarchitectural

signals and registers that make up the processor implementa-

tion are abstracted away, reducing complexity. In exchange,

we lose information that may be useful for constructing se-

curity properties. As an example, prior work found that an

error in the processor’s pipeline that modifies an instruction

in flight would not be caught because the processor remains

self-consistent at the ISA level. Extending our approach to

capture microarchitectural information is the likely solution

to this limitation. Our optimization strategies (§3.2) are a

first step toward making such an extension feasible.

3.1.4 Invariant Patterns

Daikon invariants make comparisons between variables or

between a linear combination of variables. We found this

to be insufficient for capturing important properties at the

hardware level. For example, a common pattern in hardware

is for a 32-bit register to act as a record containing 32

(or fewer) independent bit flags. To address this, we made

the Daikon instrumenter configurable. This allows users to

create derived variables that can be used to define more

complex invariants. For example, a derived variable that

extracts bits from its parent variable can be used to generate

a property indicating whether the flag that handles control

flow is correctly set.

3.1.5 Processor Complexity

In many architectures, including the one in which we im-

plement our tool, the processor always executes the instruc-

tion in the delay slot – the instruction directly after a control

flow instruction (i.e., branch or jump). A naive observation

would infer the invariant that the next program counter (NPC)

after a control flow instruction is equal to the current pro-

gram counter plus four (PC + 4), and while true, this does

not capture the important property that control should move

to the target of the branching instruction after executing the

instruction in the delay slot. Similarly, the naive observa-

tion would be unable to infer an invariant about the NPC reg-

ister for any other instruction. Normally a (non-branching)

instruction obeys the invariant NPC = PC + 4, but if the in-

struction ever appears in a delay slot, its NPC would be the

address of the branch or jump target.

To allow for the generation of meaningful invariants

about control flow, we treat the control-flow instruction plus

the one in the delay slot as a single entity. The OpenRISC

architecture, the architecture we use in our implementation,

has a single branch delay slot, so the branching instruction

and the instruction in the delay slot is treated as one in-

struction. For those architectures with double branch delay

slots (e.g. MIPS-X), the branching instruction and the pair

of instructions following can be treated as one block.

EXPR
.
= EXPR1 | EXPR2

EXPR1

.
= OPER OP1 OPER

EXPR2

.
= OPER in {imm, imm, . . .}

OPER
.
= VAR | orig(VAR) | imm

OP1

.
= = | 6= | < | ≤ | > | ≥

VAR
.
= GPR | SPR | flag | mem_address | VAR × imm

| notVAR | VAR mod imm | VAR OP2 VAR

OP2

.
= and | or | + | −

Figure 2: The grammar of invariant expressions. orig() in-

dicates the value of a variable before the instruction exe-

cutes; the default is the variable value after the instruction

executes. imm refers to an immediate value. in indicates set

inclusion. Boolean operators are all bitwise operators.

3.1.6 Structure of the Invariants

From the data generated during executions we use the

Daikon generator to create invariants of the format

I
.
= risingEdge(INSN) → EXPR,

where risingEdge(INSN) represents the execution of an

instruction, and EXPR is an expression over the tracked

variables. Figure 2 shows the grammar for expressions in

our set of invariants.

As the execution of each instruction can take several

cycles, we only consider the variables as they enter and

leave the instruction. We designate the value of the variables

before the instruction begins with the orig() prefix, and any

variable without the orig() prefix indicates the value after

the instruction has been completed.

To give an example, we show the invariant that describes

the property that privilege should correctly de-escalate:

I
.
= risingEdge(l.rfe) → SR = orig(ESR0)

This invariant states that when returning from an excep-

tion (indicated by the l.rfe instruction), the status register

(SR) should be correctly updated with the value it had before

the processor entered the exception handler. ESR0 stores that

value. The orig(ESR0) denotes the value of ESR0 before the

l.rfe instruction is executed, while SR denotes the value of

SR after the l.rfe instruction is executed.

We generate approximately 106,000 unique invariants

which form a model describing normal processor behavior.

Inherently the model we generate represents the current im-

plementation of the processor; the correctness of our model

is tied to the correctness of the implementation and design

of the processor. Any errors or bugs in the specification and

implementation will be reflected and remain undetected.

3.2 Optimization

We perform the following optimizations to put the invariants

in a concise form.

3.2.1 Constant Propagation

Equality-to-constant invariants (e.g. A = 0) can be used

to reduce the complexity of other invariants. Our constant

propagation optimization is similar to the compiler opti-

mization technique of substituting constant values at com-

pile time [5, 6]. The propagation is performed iteratively so

that any new equality-to-constant invariant can be used in

subsequent substitutions.

We parse the invariants into expression trees, initialize a

worklist with all the invariants, and construct a variable–

value map. Then we iterate through the worklist, and for

each invariant, we use the variable–value map to substi-

tute constants for expressions where possible. For any new

equality-to-constant invariant after substitution, we update

the variable–value map and remove that invariant from the

worklist. The process continues to iterate through the work-

list until there are no new equality-to-constant invariants.

3.2.2 Deducible Removal

The deducible removal optimization pass removes the in-

variants that can be deduced from several other invariants.

For example, D < C is deductible from A + B > D and

C > B + A. Full deducible removal is equivalent to taking

the transitive reduction of the binary relation; we remove in-

variants with transitive operators that can be derived from

other invariants. Daikon invariants do not have complex ex-

pressions on both sides of an inequality, thus we do not per-

form deducible removal for cases similar to the following:

A+B > C +D is deducible from A > B and C > D.

We first canonicalize invariants with transitive operators

into the form of lhs OP rhs, where OP ∈ {>,≥,==}
(< and ≤ will be converted accordingly), and lhs (rhs) is

a sorted postfix string of the left (right) hand side of the

expression. We build a directed acyclic graph (DAG) for all

generated invariants for each OP. For each invariant I
.
=

lhs OP rhs, we add the lhs and rhs as vertices in the DAG,

and an edge directed from lhs to rhs. We then compute

transitive reduction of the graph to get the minimum set of

invariants with the same reachability relation.

3.2.3 Equivalence Removal

In this optimization pass we remove redundant invariants.

We cluster invariants that are logically equivalent to each

other in the same class and keep only one invariant from

an equivalence class. For instance, the following invariants

would be grouped into two equivalence classes and only two

would be retained: (A = B), (B = A); (C + B ∗ D >

F), (F < C +D ∗B), (D ∗B + C > F), etc.

We determine invariant equivalence by putting every in-

variant into a canonical form, using the same form as used

in the deducible removal pass.

3.3 Security-Critical Invariant Identification

Once we generate the set of invariants that describe normal

processor behavior, our goal is to identify the subset of in-

variants that are crucial for security – the security critical

invariants (SCI). One possible solution might be to use hu-

man expertise to develop a set of rules to apply. However,

the rules may lack diversity: only the types of properties that

a human has thought of will be represented, and prior work

has shown that this approach can leave gaps in the resulting

set of security properties [22]. In addition, the set of rules

has to be small enough that the human can reasonably create

it (i.e., there cannot be an individual rule for every generated

invariant), but the rules themselves cannot be too general or

they risk admitting too many invariants into the set of SCI.

For these reasons, we took an empirical approach to iden-

tifying SCI in the set of generated invariants. We leverage se-

curity errata that have existed in the processor design at some

point in its development lifecycle. By definition, a program

that triggers the bug must exhibit some unusual states that

do not obey processor specifications. By checking which of

our generated invariants are violated in the execution of a

triggering program, we can approximately obtain the SCI.

Because the errata are essentially programming bugs, they

may occur anywhere in the design and potentially provide

a more varied set of SCI than human-generated heuristics

do. Because the identified SCI come directly from a security

vulnerability, we know they are in fact critical to security.

To be specific, when we find a security bug from the pub-

lished processor errata list or bug trackers (§4.1), we first

implement the defect in an open source processor (in Ver-

ilog), creating a buggy processor. We then write a program

that triggers the vulnerability, execute it on the buggy pro-

cessor, and record its execution trace. Given the previously

generated invariant set and the execution trace, our tool will

automatically sort through the execution trace to see if at any

point an invariant has been violated. Any violated invariants

are then added to our set of candidate SCI.

Since the initial set of generated invariants may contain

false positives, invariants identified as SCI in this step may

not be true SCI. In order to remove these false SCI, we

run the same trigger program on a correctly implemented

processor (with the security defect removed) and perform the

same steps of recording execution traces and checking for

invariant violations. The set of violated invariants found in

this phase are false positives, i.e. they are not true processor

invariants, and can be eliminated from the final set of SCI.

One possible concern is that identified SCI are applicable

only to one particular bug. In our experiments, we found that

a single SCI can be identified from different bugs and it can

stop multiple bugs (see §5.2). This means the SCI we extract

from a particular bug are applicable to a class of bugs, a class

defined by the invariant(s) violated.

3.4 Security-Critical Invariant Inference

Once we have identified a set of SCI using security-critical

bugs, we apply machine learning techniques to infer which

other invariants should be labeled security-critical.

The core component of the Inference step is a logistic

regression model, which can be applied to classify invari-

ants as security critical or non-security critical. We model

the probability that an invariant is non-security critical as a

function of its measured features. In particular, we adopt

the penalized logistic regression model with elastic net

penalty [34]. There are two reasons: 1) In this application

the number of measured features is larger than the number of

observations (invariants). Penalized logistic regression ap-

proaches have successfully extended traditional regression

models for improved accuracy in such circumstances [34].

2) This model excels in parameter interpretability [24]. As

each feature included in the model incurs a cost or penalty,

it can also be used to understand which of the features are

critical to security.

Here, we specify the details of the regression model. We

fit the model with the elastic net penalty using the glmnet

[18] package in R.

As in the typical regression framework, we let yi ∈
{security-critical, non-security-critical} be the class label for

invariant i. Since yi is binary and hence a Bernoulli random

variable, we model its probability, pi, as follows.

pi = Probability(yi = non security critical),

(1 − pi) = Probability(yi = security critical).
(1)

For invariant i, we let xi be its set of measured features.

In our context, the features are all the ISA-level variables

(§3.1.3) such as general purpose registers, flags, and memory

addresses, and also operators such as >, <, 6=.

Then, we relate pi to xi as,

log(
pi

1− pi
) = x

T

i
β + β0. (2)

Here, β and β0 are the vector of regression model coeffi-

cients and the intercept term, respectively, that are fitted with

glmnet. The jth entry of β corresponds to the jth feature and

explains that feature’s contribution to the odds that invariant

i is not security critical. β0 is an intercept term giving the

odds of being non security critical. When fitting the model,

the objective is to learn the β and β0 values that best describe

the observed data.

We bootstrap this model using a small set of manually

labeled invariants that contain both SCI and non-SCI. The

constructed model can be used not only to predict whether

a given invariant is likely an SCI but also to help hard-

ware designers and security practitioners understand which

of the features are critical to security based on the learned

β. For example, in our implementation only 24 of the 158

features have non-zero coefficients in the constructed mod-

els. These critical features include GPR0, PC, SF, ==, and

IMM (see §5.3).

3.5 False Positives

False positives can occur in the final set of SCI in two ways.

The first is that our tool generates an invariant that is not truly

invariant. There are two potential sources for this type: 1)

the Daikon tool itself; 2) inadequate test suites for invariant

generation; and 3) the unintentional use of a buggy processor

during the first stage. We minimize the first and second

by tuning the parameters of Daikon to be conservative in

finding invariants (see §5.1) and running many programs on

our processor. (Increasing test coverage reduces the number

of false positives.) The third source of false positive is a

limitation of our tool. We rely on human experts to manually

remove this kind of false positive from the final set of SCI.

The second type of false positive occurs when our tool

classifies a non-security-critical invariant as security-critical.

Reducing this type of false positives requires drawing a fine

line to differentiate SCIs and non-SCIs, adding more labeled

data, and refining machine learning models.

The issue of how invariants are integrated into the system

– it is possible that false-positive invariants can be deployed

to the processor – is beyond the paper’s scope. Human ex-

perts can inspect the set of generated security-critical invari-

ants to decide which are suitable for production use.

4. Implementation

Our tool is implemented mainly in Python. The exception

is the SCI inference engine which is implemented in R and

Matlab. As part of our evaluation we implement assertions

enforcing the SCI on the OR1200 processor. This part of the

work is implemented in Verilog.

4.1 Security-Critical Errata

We use potential security vulnerabilities to find security-

critical invariants. We first collect bugs from the pop-

ular open source processors OR1200, LEON2, LEON3,

OpenSPARC-T1, and OpenMSP430. Bugs are found from

the processors’ bugtracker and bugzilla sites, developers’

mail archives, commits to the source repositories, comments

in the source code, and published lists of errata. The bugs

we collect are mainly in the core of the processor; bugs in

peripheral devices such as UART, Debug Unit, and Ethernet

are not included.

After collecting bugs, we manually select the bugs that

may be classified as security critical: for each bug in the col-

lection, we examine the patch and description to determine

whether it is vulnerable to a security attack. In doing so we

follow the same guidelines used by prior efforts in manually

building SCI. Namely, we look for bugs that would allow

an attacker to gain privileges to read or modify processor

state that would not otherwise be allowed by the ISA or that

would allow the attacker to subvert core functionality of the

processor such as modifying the address in a load operation.

The total number of bugs we collected is 185, of those we

deem 25 as security-critical. Of those 25, we successfully re-

produced and modeled 17; 8 of them were not reproducible.

Bug No. Synopsis Source

b1 l.sys in delay slot will run into infinite loop OR1200, Bugzilla #33

b2 l.macrc immediately after l.mac stalls the pipeline OR1200, Bugtracker #1930

b3 l.extw instructions behave incorrectly OR1200, Bugzilla #88

b4 Delay Slot Exception bit is not implemented in SR OR1200, Bugzilla #85

b5 EPCR on range exception is incorrect OR1200, Bugzilla #90

b6 Comparison wrong for unsigned inequality with different MSB OR1200, Bugzilla #51

b7 Incorrect unsigned integer less-than compare OR1200, Bugzilla #76

b8 Logical error in l.rori instruction OR1200, Bugzilla #97

b9 EPCR on illegal instruction exception is incorrect OR1200, Mail #01767

b10 GPR0 can be assigned OR1200, Mail #00007

b11 Incorrect instruction fetched after an LSU stall OR1200, Bugzilla #101

b12 l.mtspr instruction to some SPRs in supervisor mode treated as l.nop OR1200, Bugzilla #95

b13 Call return address failure with large displacement LEON2, Amtel-errata #2

b14 Byte and half-word write to SRAM failure when executing from SDRAM LEON2, Amtel-errata #3

b15 Wrong PC stored during FPU exception trap LEON2, Amtel-errata #4

b16 Sign/unsign extend of data alignment in LSU OpenSPARC T1

b17 Overwrite of ldxa-data with subsequent st-data OpenSPARC T1

Table 1: Security-critical bugs implemented and used for evaluation.

Table 1 shows the 17 security-critical processor bugs we

use. The first 12 bugs are from OR1200, 3 bugs are from

LEON2, and the last 2 are from OpenSPARC T1.

Bugs b1 and b2 may allow denial-of-service (DoS) at-

tacks. In particular, bug b1 causes the processor to run in

an infinite loop and bug b2 stalls the pipeline infinitely. Al-

though the attacks violate liveness properties, we can iden-

tify security-critical safety properties at the root of the vul-

nerability. For example, the SCI we identified for b1 shows

that the root cause of the vulnerability is that the PC is not

correctly updated.

Bug b8 can be exploited to make the processor ignore an

exception that it should handle. Attackers may leverage this

to bypass some security checks. For example, failing to raise

a bus error exception will potentially allow users to write

into protected memory area.

Bugs b6, b7, or b13 leave the processor open to insecure

control flow. Attacking bug b6 or b7 will cause the processor

to incorrectly set the flag that decides whether branches

should be taken. As a result, the processor may execute a

sequence of instructions of the attacker’s choosing. Bug b13

will incorrectly set the link register, which will cause the

processor to return from a function call incorrectly and thus

run a sequence of unexpected instructions.

Bug b11 can cause the processor to execute the wrong

instruction. Even though the processor would execute the

instruction correctly, the instruction itself in the pipeline

has been contaminated because of subtle timing constraints.

This allows the attackers to change or substitute instructions

according to their needs.

Attacks on bug b12 can cause l.mtspr (Move to

Special-Purpose Register Instruction) to act as a no-op when

moving the content of a general-purpose register to some

special-purpose registers. This bug causes the processor state

to be incorrectly updated.

Bugs b4, b5, b9, and b15 deal with the contamination of

exception-related special-purpose registers. This exposes the

processor to security vulnerabilities because contaminating

the registers that store the pre-exception processor state can

potentially lead to privilege escalation.

Bugs b3, b10, b14, b16, and b17 are related to memory

access. Bugs b3 and b10 can cause an incorrect address cal-

culation or the wrong data to be loaded or stored. Bugs b14,

b16, and b17 contaminate the data transferred between mem-

ory subsystems and registers. A potential attack might be to

modify secret keys by contaminating the memory address or

the data itself when loading or storing the data.

We reproduced these 17 bugs in the OR1200 processor,

which is a 32-bit implementation of the OpenRISC 1000

architecture with Harvard microarchitecture, 5-stage integer

pipeline, virtual memory support (MMU), and basic DSP ca-

pabilities [23]. Our processor implements the basic instruc-

tion set (i.e., none of the extension modules such as floating

point). It is widely used in research projects and embedded

computer environments. For each bug we also developed a

triggering program written in a mixture of C and assembly

that attacks the buggy processor and causes the violation of

some security policies during execution.

4.2 Assertions

Our tool does not yet provide the automatic translation from

SCI to hardware assertions enforcing those SCI. However,

in our experience the process is straightforward and we give

an example showing what is required for translation from

an invariant to an RTL assertion. We leverage the industry

standard Open Verification Library (OVL) for constructing

assertions. All SCI were translated using one of four OVL

assertion templates: always, edge, next, delta. always is used

when the expression is always true; edge is used when the

expression is true at the point when the instruction is sam-

pled; next is used when the expression is true some number

of clock cycles after sampling the instruction; delta is used

when a monitored signal’s updates stay within a range.

Taking the invariant we described in 3.1.6 as an example,

I
.
= risingEdge(l .rfe) → SR == orig(ESR0),

the corresponding assertion for this invariant is

A
.
= next(INSN = l .rfe, SR = ESR0PREV , 1).

This means expression SR = ESR0PREV must be true one

clock cycle after instruction l.rfe is sampled. Note that we

need to store the previous cycle value of ESR0 .

5. Evaluation

In this evaluation we show that 1) our tool effectively gen-

erates SCI from existing security-critical bugs; 2) the gen-

erated SCI stop both the existing security-critical bugs and

new bugs; 3) meaningful SCI not tied to any known security-

critical bugs can be found; and 4) the automatically gener-

ated SCI represent security properties written by experts.

5.1 Invariant Generation

Our tool’s first step is to run a variety of programs on the pro-

cessor to generate candidate invariants. We collected 26GB

of trace data from 17 programs; more trace data results in

more accurate invariant generation. We configured Daikon

with a confidence limit of 0.99, reducing the risk of generat-

ing false-positive invariants that hold by chance in our trace

data set. The filters search for invariants matching our invari-

ant grammar in Figure 2.

We evaluate how the number of programs affect the set of

invariants generated. We use the following programs: Linux

boot, SPEC benchmarks (Parser, Mesa, Ammp, Mcf, Instru,

Gzip, Crafty, Bzip, Quake, Twolf, Vpr), Basicmath, Pi Cal-

culation, Bitcount, FFT, Helloworld. The execution traces

cover all 56 instructions of the OpenRISC (basic instruction

set) architecture. Figure 3 shows the result of this evaluation.

We see that running additional programs may add invariants

to the result set by exercising new features of the processor.

It may also eliminate some invariants from the result set that

cannot be justified by the new trace.

The overall trend of Figure 3 indicates that as the number

of programs increases, the set of unique invariants that we

generate becomes stable. After adding the twolf benchmark,

no new invariants are generated or removed. From this trend,

we extrapolate that if we run enough (finite) programs on the

processor, we will reach a stable set of invariants that can

roughly model the behavior of a processor.

After the initial set of invariants is generated, it is opti-

mized. Table 2 shows the effectiveness of different optimiza-

tion passes in reducing redundant and lengthy raw invariants.

500

5,000

25,000

50,000

75,000

100,000

vmlinux

basicmath
parser

mesa
ammp mcf

instru gzip
crafty bzip

quake
twolf vpr

misc

N
um

be
r

of
 in

va
ria

nt
s

Type
unmodified

new

deleted

Figure 3: Unique invariants generated from executing pro-

grams. The X-axis is aggregative, e.g., basicmath means

invariants generated from running both vmlinux and

basicmath.

Raw after CP after DR after ER

Invariants 106,174 106,174 90,955 88,301

Variables 210,013 171,858 170,517 167,863

Table 2: Effect of invariant optimizations (§3.2) in reducing

the total number of invariants and variables in all invariants.

CP is constant propagation; DR is deducible removal; ER is

equivalence removal.

The optimizations in combination achieve 17% reduction in

terms of the number of invariants and 20% reduction in terms

of the number of total variables in all invariants.

5.2 SCI Identification

The second step for our tool is SCI identification. Given a set

of optimized invariants, a buggy processor and a triggering

program, our tool identifies the affected SCI from the invari-

ant set. Table 3 shows the number of identified SCI for each

of the 17 security-critical bugs we implemented.

In total, our tool identifies SCI for 16 (94%) of the 17

bugs. Interestingly, although bug b1 and b5 are two differ-

ent bugs, our tool identified the same SCI. This shows one

advantage of our tool: the SCI we extract from a particular

security bug are not just applicable to that bug, but rather

potentially to a class of bugs. The only bug for which our

tool fails to identify any SCI is bug b2. The reason is that

no ISA-level invariants are violated by this bug. The bug is

in the pipeline and all software-visible signals remain self-

consistent. Identifying SCI for this bug would require adding

microarchitectural level variables to Daikon’s instrumenter

and generating microarchitectural level invariants.

Table 3 also shows more than one SCI identified per bug

in some cases. This occurs for one of three reasons. The sim-

plest is that the bug violates more than one security prop-

erty. A second reason is that violating a single property may

have multiple consequences. For example, in our implemen-

Bug No. True SCI FP Detected

b1 2 22 X

b2 0 N/A ×
b3 1 8 X

b4 2 2 X

b5 5 28 X

b6 1 5 X

b7 1 1 X

b8 3 0 X

b9 4 0 X

b10 32 0 X

b11 1 0 X

b12 1 4 X

b13 2 0 X

b14 1 0 X

b15 1 25 X

b16 1 0 X

b17 3 2 X

Table 3: SCI identified from the 17 security-critical bugs we

reproduced (see Table 1). Detected means enforcing the SCI

as assertions on the processor can detect the buggy behavior

dynamically.

tation the syscall handler is always at address 0xC00. Bug

b8 violates this property and, therefore, the two invariants

l.sys → PC = 0xC00 and l.sys → NPC = 0xC04, where

l.sys is the syscall instruction, PC is the program counter,

and NPC is the next program counter. A third reason is that a

violation may persist for multiple steps and our SCI are de-

fined per instruction. For example, bug b10 violates the prop-

erty GPR0 = 0. The bug manifests in the add instruction and

violates the invariant l.add → GPR0 = 0. And, as the reg-

ister is not restored to a valid state subsequent instructions

violate analogous invariants, such as l.nop → GPR0 = 0.

The set of identified SCI may include false positives. We

manually validated the identified SCI and found 7 of the

bugs (43.8%) resulted in 0 false positives, while 6 of the bugs

(37.5%) resulted in fewer than 10 false positives (Table 3).

In practice, the false positives in the identified SCI can

be easily spotted (e.g., an SPR must equal 0). We envision

the usage scenario of our tool is that after it identifies SCI,

experts would validate them before putting into a processor.

To further validate that our automatically identified SCI

are useful, we enforce them as assertions in a SPECS-like

system. The result shows that all the 16 security-critical

bugs from which we identified SCI are detected dynamically,

meaning the SCI are effective.

5.3 SCI Inference

In Section 5.2 we show that the SCI we build from the Identi-

fication step can effectively detect security-critical bugs and

some identified SCI can detect multiple different bugs. In

this section, we show that our tool can identify useful SCI

not tied to any particular previously known bug. We use an

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

PC1

P
C

2

SC
Non SC

Figure 4: PCA using selected features. From the learned

elastic net logistic regression model, 24 of the original set of

158 features had non-zero coefficients. PCA was performed

using the 24 selected features on 102 SCI/non SCI. The plot

shows the projection of these invariants in 2 dimensions.

elastic net logistic regression model to infer new SCI from

existing SCI.

We start with our 88,301 invariants, each with 158 fea-

tures, i.e., in our model from Section 3.4, N = 88, 301, P =
158. Our model is supervised, and we leverage the results

from the Identification step to provide labels to train the

model. In particular, we have 54 verified SCI (unique SCI in

Table 3). We label the unique false positives from the Iden-

tification step as non-SCI, a total of 48 invariants.

Of these 102 labeled invariants, we used 70% of the data

as training data and performed the optimization of β and

β0 using the glmnet [18] package in R. We took α = 0.5
and used 3-fold cross validation in the training set to choose

an appropriate λ. Doing so, resulted in λ = .08. When we

tested the model on the test set, we observed 90% accuracy,

validating the quality of the fitted model.

In the constructed model, there were 24 non-zero coef-

ficients from the original set of 158 features (see Table 4).

To evaluate how these 24 features can be used to partition

invariants in high-dimensional feature space, we performed

principle component analysis (PCA) on the 102 labeled in-

variants according to this limited set of 24 selected fea-

tures. Figure 4 shows the projection of these invariants in

2-dimensional space. As expected, using this set of features,

invariants cluster adequately according to class label. This

supports the model’s selection of features as robust candi-

dates for distinguishing SCI from non SCI.

We use the constructed model to further predict the en-

tire set of 88,199 (88,301−102) unlabeled invariants. Ta-

ble 5 shows the results. The model recommends 3,146 out

of the 88,199 invariants as SCI. In the Identification step, we

used the triggering programs to validate an identified SCI.

In this Inference step, we do not have ground truth for the

88,199 invariants, but we manually examined the 3,146 rec-

ommended SCI and spotted 852 clear false positives.

Weight Features

Positive

GPR6 OPB ROR DIV

IM MEMBUS orig(OPA) orig(SPR)

orig(IM) < 6= +

Negative

GPR0 PC SF WBPC

IDPC REGB orig(GPR0) orig(NPC)

orig(NNPC) CONST == >=

Table 4: 24 identified features with non-zero coefficients.

Features with negative weights are associated with SCI. Fea-

tures with positive weights are associated with non-SCI.

Invariants
Inferred

FP
Security

SCI Properties

88,199 3,146 852 33

Table 5: SCI inference results

These inferred SCI can be concisely described as 33 se-

curity properties that can be added, in the form of assertions,

to a processor. In Section 5.4, we show that some of the in-

ferred SCI represent security properties that are not covered

by the SCI found in the Identification step, demonstrating

the advantage of SCI inference.

5.4 Representing Manually Written Security

Properties

To evaluate the efficacy of our tool, we test whether it finds

SCI, either from Identification or Inference, that represent

the manually written security properties of the two state-of-

the-art works: SPECS [22] and Security-Checker [11].

Table 6 shows the result. Of the 27 security critical prop-

erties from these two papers, 3 (p25, p26, p27) are security

bugs outside of processor cores. These are not the target of

this paper. For the remaining 24, 2 of them (p18, p24) need

microarchitectural states and thus our tool cannot generate

these two invariants. Thus, we mainly focus on whether our

tool can identify or infer the remaining 22 security properties

using the 17 security-critical bugs we reproduced.

From the Identification step, 11 (50%) of the 22 security

properties are identified from 12 out of 17 bugs. There are

three interesting findings. The first is that a single security

property can be identified from different bugs and the iden-

tified SCI are different. For example, for bugs b4, b9, and

b15, the identified SCI are different although they belong to

the same security property (p3). The second is that different

security properties can be identified from the same bug, e.g.

p13 and p14 can be identified from b5. Finally, a single SCI

can concisely represent multiple manually written security

properties, e.g. p17, p21 and p23. The SCI for these proper-

ties is risingEdge(l.sys) → PC = 0xC00.

Adding the Inference step, 8 (36%) additional security

properties are found. Two (p10 and p22) are not found be-

No. Security Property Description Class
From From

Ident. Infer.

Properties from SPECS [22]

p1 Execution privilege matches

page privilege

XR X

p2 SPR equals GPR in register move

instructions

RU b12

p3 Updates to exception registers

make sense

XR b4 b9

b15

p4 Destination matches the target CR X

p5 Memory value in equals register

value out

MA b14

p6 Register value in equals memory

value out

MA b16

b17

p7 Memory address equals effective

address

MA X

p8 Privilege escalates correctly XR X

p9 Privilege deescalates correctly XR X

p10 Jumps update the PC correctly CF N

p11 Jumps update the LR correctly CF b13

p12 Instruction is in a valid format IE b11

p13 Continuous Control Flow CF b5

p14 Exception return updates state

correctly

XR b1 b5

p15 Reg. change implies that it is the

instruction target

CR X

p16 SR is not written to a GPR in user

mode

RU

p17 Interrupt implies handled XR b8

p18 Instr unchanged in pipeline IE ⋆

Properties from Security-Checker [11]

p19 SPR modified only in supervisor

mode

RU X

p20 Enter supervisor mode is on reset

or exception

XR X

p21 Exception handling implies ex-

ception mechanism activated

XR b8

p22 Unspecified custom instructions

are not allowed

IE N

p23 Exception handler accessed only

during exception, in supvr mode,

or on reset

XR b8

p24 Page fault generated if MMU de-

tects an access control violation

MA ⋆

p25 UART output changes on a write

command from CPU

�

p26 Only transmit cmd or initializa-

tion change Ethernet data output

�

p27 Debug Unit’s value and ctrl regs

only accessible from supvr mode

�

Table 6: Evaluation against security properties from prior work.

For each property we indicate whether it was found in the identi-

fication (From Ident) or the inference (From Infer) step. The bug

numbers correspond to Table 1. Xmeans the property is found. If

the property is not found it may be because it is not generated from

Daikon (N), it needs micro-architectural state (⋆), or it relates to

HW outside the processor core (�).

No. Security Property Description Class
From From

Ident. Infer.

p28 Flags that influence control flow

should be set correctly

CF b6 b7

p29 Calculation of memory address

or memory data is correct

MA b3

b10

p30 Link address is not modified dur-

ing function call execution

CF X

Table 7: New security properties generated by our tool that

are not covered in prior work.

cause they do not exist in the invariant set generated with

Daikon, and one (p16) is not identified as security critical

although it does exists in the set of generated invariants.

Property p10 is missing because Daikon does not capture

effective addresses (the immediate value shifted left two bits,

sign-extended to program counter width, and then added to

the address of the jump/branch instruction [23]). By adding

the effective address as a derived variable to Daikon, we can

generate this invariant. Property p22 is missing because it

concerns custom instructions, which are part of the extended

instruction set that we did not implement. (Recall, we imple-

ment the basic instruction set in our evaluation.)

Property p16 is not found by our tool, although the asso-

ciated invariant does exist in our generated set of invariants.

The invariant is risingEdge(l.add) → SR 6= OPDEST. It is

neither violated by any of our implemented bugs, nor is it

labeled as security critical by our logistic regression model.

The latter is because in our model the 6= operator is a fea-

ture with high positive weights, meaning invariants with that

operator are likely to be classified as non-security-critical.

Our tool generates 3 new security properties not found by

either SPECS or Security-Checker (Table 7). Two properties

(p28, p29) are identified from bugs during the Identification

phase, and one (p30) is from the Inference phase.

The property (p28) identified from bugs b6 and b7 is an

example of using a derived variable, in this case one that de-

scribes the behavior of correctly setting the control flow flag.

The property (p29) identified from bugs b3 and b10 is related

to calculation. We note that SCIFinder is able to differentiate

between calculations often used for memory addresses and

others, and labels only the former as security critical. For

example, the property GPR0 = 0 is often leveraged during

address calculation and SCIFinder identifies multiple SCI to

enforce it. Whereas invariants related to rotate calculations

are not identified as security critical.

The property found during the Inference step (p30) has to

do with the link address. A link address gives the location of

a function call instruction and is used to calculate where pro-

gram execution should return after function completion [23].

The inferred SCI states that the link address should not be

modified during function execution.

5.5 Classification of Security Properties

The SPECS project classified security-critical processor er-

rata into five classes (invalid register update, execute incor-

rect instruction, memory access, incorrect results, and ex-

ception related) [22]. Inspired by this, we classified the secu-

rity properties related to the processor core into six classes:

five of them are similar to the SPECS classification and we

add one new class that is related to control flow. The classi-

fication results are shown in Tables 6 and 7.

CF stands for control flow related properties; XR stands

for exception related properties; MA represents properties

related to memory access; IE stands for the class of secu-

rity properties that guarantee the processor will execute the

correct and specified instructions; CR represents the class of

security properties about correctly updating results.

Classifying the properties yielded two observations. The

first is that SCIFinder was effective at finding properties

related to exceptions (XR). Of the 27 properties identified by

prior work, 9 fall into the XR category (the largest category

by far – CF and MA are the next largest with 5 properties

each) and SCIFinder was able to find all 9. On the other

hand, SCIFinder was least effective for properties related

to instruction execution (IE). Of the three identified in prior

work, SCIFinder found only one. The two missed properties,

p18 and p22, required microarchitectural state and analysis

of custom instructions, respectively. We caution that these

are observations; the total number of properties is too small

to draw conclusions. However, they do suggest areas where

SCIFinder may shine, as well as opportunities for future

research to strengthen the SCIFinder approach.

5.6 Detecting Unknown Bugs

The SCI have the potential to stop new bugs that have not

been seen before. We cannot measure this directly, as new

bugs would only be found if we happened to run software

that triggered the bug (causing the SCI assertion to fire). In-

stead, we took a set of bugs that we had not used in our

identification or inference phases, added them to the proces-

sor, and ran software that triggers the bugs to see whether

our SCI would fire. For this experiment we use the 14 AMD

errata from the SPECS project. The authors reproduced the

errata in the OR1200 processor and made their code pub-

lic. Our tool is able to detect 12 of the 14 bugs. (By way of

comparison, SPECS was also able to detect 12 bugs.) Five

of these were detected by the Identified SCI, while seven

were detected by the Inferred SCI. This demonstrates that

our automatic SCI are not just applicable to the 17 known

bugs from which they were generated, but are also useful to

detect unknown bugs.

To avoid selection bias we repeat the experiment, but

this time we randomly pick 14 bugs from our set of 28

(both from design documents and from AMD errata lists,

excluding the 3 that use microarchitectural state), for use in

the Identification and Inference steps. We use the remaining

Step Data Size Time

hh:mm:ss

Invariant Generation traces 26GB 11: 21 :00

Optimization invariants 106,174 00: 00 :04

SCI Identification invariants

+bugs

88,301

+16

00: 44 :52

SCI Inference invariants 88,301 <00: 00 :01

Table 8: Execution time. Except for traces, sizes are given

as number of items, e.g., the inference phase reads in 88,301

invariants.

Baseline Initial SCI Final SCI

Logic 10073 LUTs 1.6% 4.4%

Power 3.24 W 0.13% 0.31%

Delay 19.1 ns 0% 0%

Table 9: Hardware overhead. The baseline is the OR1200,

Xilinx xupv5-lx110t-based System-on-Chip. Initial SCI are

the 14 assertions from Identification step. Final SCI are the

33 assertions from both Identification and Inference steps.

14 bugs for testing. Of the test set, only bug b6 is not

detected; the SCI for detecting b6 (risingEdge(l.sfleu) →
(OPA − OPB) ∗ (1− 2 ∗ CF) ≥ 0) is not found.

5.7 Performance

In this section, we evaluate the performance of our tool.

The experiments are performed on a machine with an Intel

Core i7 Processor (quad-core, 2.60GHz) and 8 GB of RAM.

Table 8 shows the CPU time taken for each step of our tool.

The whole process takes about 12 hours. The most expensive

step is the Invariant Generation for 26 GB of trace data. In

practice, a full Invariant Generation step is only performed

once and all subsequent generation is incremental.

We also report on the manual effort needed to validate

the SCI recommended by our tool. It took a graduate stu-

dent roughly 5 hours to go through the entire list of 3,146

recommended SCI to identify false positives (10.5 invari-

ants per minute, on average). Invariants pertaining to one in-

struction were carefully validated first, and those that were

clearly non-invariant (as determined by the ISA) were classi-

fied as false positives. Invariants with the same expression as

the false positives, but pertaining to other instructions, were

then easily searched for and eliminated. Finally, invariants

that belong to only one or a few instructions were validated.

Finally, table 9 shows the hardware overhead incurred by

adding our assertions to the OR1200 design. The additional

logic is less than 5% of the original design, incurs a power

overhead of 0.3%, and adds no delay.

6. Related Work

Use of Security Critical Assertions Prior work has estab-

lished the use of assertions post deployment to strengthen

the security of hardware [4, 10, 11, 22]. Our work builds

upon this literature and we evaluate our semi-automatically

generated invariants against the manually crafted invariants

of prior art.

Extracting Assertions from HW Designs The IODINE

tool automatically extracts from designs ABV assertions

such as one-hot encoding or mutual exclusion between sig-

nals [19]. More recent papers use data mining of simulation

traces to extract assertions [12, 21]. These approaches focus

on extracting assertions for functional verification and are

not concerned with finding processor’s security properties.

Approaches for Protecting Vulnerable HW Techniques

for detecting and recovering from security-critical processor

bugs fall into three categories: hardware-based [8, 27, 29,

30], software-based [20, 25, 32] and a hybrid of hardware

and software [13, 14, 22]. Hardware-based solutions include

adding redundancy to protect against random errors and

checking processor state transitions against a known set of

errata signatures. Software-based solutions include micro-

code patching and binary translation. The hybrid approaches

can provide the best of both worlds: high coverage with low

overhead; the use of assertions for dynamic verification post-

deployment falls into this category.

Data Mining for Security Properties of SW Security prop-

erties in software have been found using human specified

rules [31], by observing instances of deviant behavior [16,

26, 28], or by identifying instances of known bugs [33].

7. Conclusion

We have presented SCIFinder, a methodology and tool-chain

for generating security-critical invariants (SCI). Given a list

of known security-critical errata from a processor and the

processor design we identify a set of SCI that can be used

to dynamically verify the processor’s security. Experiments

show SCIFinder’s practicality and effectiveness in generat-

ing meaningful SCI. It identifies effective SCI for 16 of 17

bugs from input errata plus 12 bugs from AMD errata lists.

The final SCI set covers 86.4% of the manually crafted se-

curity properties and identifies 3 new properties not covered

in prior work.

Acknowledgments

We would like to thank the anonymous reviewers for their

insightful questions and constructive suggestions for im-

provement. This research was supported by the National

Science Foundation under grants CNS-1464209 and CNS-

1651276, and the National Institutes of Health under grants

T32CA201159. Any opinions, findings, conclusions, and

recommendations expressed in this paper are solely those of

the authors.

References

[1] Intel pentium processor statistical analysis of floating point

flaw. Intel White Paper, July 2004.

[2] Revision Guide for AMD Family 16h Models 00h-0Fh Pro-

cessors. Product Revision, 2013.

[3] Intel Core i7-600, i5-500, i5-400 and i3-300 Mobile Processor

Series. Specification Update, 2014.

[4] M. Abramovici and P. Bradley. Integrated circuit security:

New threats and solutions. In Proceedings of the 5th Annual

Workshop on Cyber Security and Information Intelligence Re-

search: Cyber Security and Information Intelligence Chal-

lenges and Strategies, CSIIRW ’09, pages 55:1–55:3, New

York, NY, USA, 2009. ACM.

[5] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2006.

[6] F. E. Allen. Program optimization. In Annual Review in

Automatic Programming, vol. 5, pages 239–307, 1969.

[7] D. Athow. Pentium FDIV: The processor bug that shook the

world. techradar.pro, October 2014.

[8] T. M. Austin. DIVA: A reliable substrate for deep submi-

cron microarchitecture design. In Microarchitecture, 1999.

MICRO-32. Proceedings. 32nd Annual International Sympo-

sium on, pages 196–207, 1999.

[9] A. A. Bayazit and S. Malik. Complementary use of runtime

validation and model checking. In Proceedings of the 2005

IEEE/ACM International Conference on Computer-aided De-

sign, ICCAD ’05, pages 1052–1059, Washington, DC, USA,

2005. IEEE Computer Society.

[10] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin. Security

checkers: Detecting processor malicious inclusions at run-

time. In Hardware-Oriented Security and Trust (HOST), 2011

IEEE International Symposium on, pages 34–39, June 2011.

[11] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin. Evaluating

security requirements in a general-purpose processor by com-

bining assertion checkers with code coverage. In Hardware-

Oriented Security and Trust (HOST), 2012 IEEE International

Symposium on, pages 49–54. IEEE, 2012.

[12] P.-H. Chang and L. C. Wang. Automatic assertion extraction

via sequential data mining of simulation traces. In Design Au-

tomation Conference (ASP-DAC), 2010 15th Asia and South

Pacific, pages 607–612. IEEE, 2010.

[13] K. Constantinides and T. Austin. Using introspective

software-based testing for post-silicon debug and repair. In

Design Automation Conference (DAC), 2010 47th ACM/IEEE,

pages 537–542, June 2010.

[14] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco.

Software-based online detection of hardware defects mech-

anisms, architectural support, and evaluation. In 40th An-

nual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO 2007), pages 97–108, Dec 2007.

[15] T. de Raadt. Intel Core 2. OpenBSD-misc mailing list,

June 2007. http://marc.info/?l-openbsd-isc&

m=118296441702631;.

[16] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,

C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon sys-

tem for dynamic detection of likely invariants. Sci. Comput.

Program., 69(1-3):35–45, Dec. 2007.

[17] H. Foster, A. Krolnik, and D. Lacey. Assertion-Based Design.

Springer US, 2005.

[18] J. Friedman, T. Hastie, and R. Tibshirani. glmnet: Lasso and

elastic-net regularized generalized linear models. R package

version, 1, 2009.

[19] S. Hangal, S. Narayanan, N. Chandra, and S. Chakravorty.

IODINE: A tool to automatically infer dynamic invariants for

hardware designs. In Proceedings of 42nd Design Automation

Conference. IEEE, 2005.

[20] L. C. Heller and M. S. Farrell. Millicode in an IBM zSeries

processor. IBM Journal of Research and Development, 48

(3.4):425–434, May 2004.

[21] S. Hertz, D. Sheridan, and S. Vasudevan. Mining hardware as-

sertions with guidance from static analysis. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions

on, 32(6):952–965, 2013.

[22] M. Hicks, C. Sturton, S. T. King, and J. M. Smith. SPECS: A

lightweight runtime mechanism for protecting software from

security-critical processor bugs. In Proceedings of the Twen-

tieth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS

’15, pages 517–529, Istanbul, Turkey, 2015. ACM.

[23] D. Lampret. OpenRISC 1200 IP core specification, 2001.

[24] S. Ma and J. Huang. Penalized feature selection and classi-

fication in bioinformatics. Briefings in bioinformatics, 9(5):

392–403, 2008.

[25] A. Meixner and D. J. Sorin. Detouring: Translating software

to circumvent hard faults in simple cores. In 2008 IEEE In-

ternational Conference on Dependable Systems and Networks

With FTCS and DCC (DSN), pages 80–89, June 2008.

[26] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim. Cross-

checking semantic correctness: The case of finding file system

bugs. In Proceedings of the 25th Symposium on Operating

Systems Principles, SOSP ’15, pages 361–377, New York,

NY, USA, 2015. ACM.

[27] S. Narayanasamy, B. Carneal, and B. Calder. Patching pro-

cessor design errors. In 2006 International Conference on

Computer Design, pages 491–498, Oct 2006.

[28] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,

M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sul-

livan, W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard.

Automatically patching errors in deployed software. In Pro-

ceedings of the ACM SIGOPS 22Nd Symposium on Operating

Systems Principles, SOSP ’09, pages 87–102, New York, NY,

USA, 2009. ACM.

[29] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari,

B. Calder, and J. Torrellas. Patching processor design errors

with programmable hardware. IEEE Micro, 27(1):12–25, Jan.

2007.

[30] S. R. Sarangi, A. Tiwari, and J. Torrellas. Phoenix: Detecting

and recovering from permanent processor design bugs with

programmable hardware. In Proceedings of the 39th Annual

http://marc.info/?l-openbsd-isc&m=118296441702631;
http://marc.info/?l-openbsd-isc&m=118296441702631;

IEEE/ACM International Symposium on Microarchitecture,

MICRO 39, pages 26–37, Washington, DC, USA, 2006. IEEE

Computer Society.

[31] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. AutoISES:

Automatically inferring security specifications and detecting

violations. In Proceedings of the 17th Conference on Secu-

rity Symposium, SS’08, pages 379–394, Berkeley, CA, USA,

2008. USENIX Association.

[32] S. G. Tucker. Microprogram control for System/360. IBM

Systems Journal, 6(4):222–241, 1967.

[33] F. Yamaguchi, F. Lindner, and K. Rieck. Vulnerability extrap-

olation: Assisted discovery of vulnerabilities using machine

learning. In Proceedings of the 5th USENIX Conference on

Offensive Technologies, WOOT’11, pages 13–13, Berkeley,

CA, USA, 2011. USENIX Association.

[34] H. Zou and T. Hastie. Regularization and variable selection

via the elastic net. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 67(2):301–320, 2005.

	Introduction
	Dynamic Verification for Security
	Design
	Invariant Generation
	Execution Traces
	Daikon
	Invariant Variables
	Invariant Patterns
	Processor Complexity
	Structure of the Invariants

	Optimization
	Constant Propagation
	Deducible Removal
	Equivalence Removal

	Security-Critical Invariant Identification
	Security-Critical Invariant Inference
	False Positives

	Implementation
	Security-Critical Errata
	Assertions

	Evaluation
	Invariant Generation
	SCI Identification
	SCI Inference
	Representing Manually Written Security Properties
	Classification of Security Properties
	Detecting Unknown Bugs
	Performance

	Related Work
	Conclusion

