
SEED Labs – Heartbleed Attack 1

Heartbleed Attack Lab

Copyright c© 2016 Wenliang Du, Syracuse University.
The development of this document was partially funded by the National Science Foundation under Award
No. 1303306 and 1318814. This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. A human-readable summary of (and not a substitute for) the license is
the following: You are free to copy and redistribute the material in any medium or format. You must give
appropriate credit. If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original. You may not use the material for commercial purposes.

Modified for COMP435, Fall 2017 by Cynthia Sturton, UNC-Chapel Hill.

1 Overview

The Heartbleed bug (CVE-2014-0160) is a severe implementation flaw in the OpenSSL library, which en-
ables attackers to steal data from the memory of the victim server. The contents of the stolen data depend on
what is there in the memory of the server. It could potentially contain private keys, TLS session keys, user
names, passwords, credit cards, etc. The vulnerability is in the implementation of the Heartbeat protocol,
which is used by SSL/TLS to keep the connection alive.

The objective of this lab is for students to understand how serious this vulnerability is, how the attack
works, and how to fix the problem. The affected OpenSSL version range is from 1.0.1 to 1.0.1f. The
version in our Ubuntu VM is 1.0.1.

2 Lab Environment

In this lab there are two machines: the attacker client and the victim server. You can set up two VMs that
can communicate, or you can use a single machine that runs both the server process and the client code. In
either case you’ll use the pre-built SEEDUbuntu12.04 VM. The instructions for using two separate VMs
follow. (There are no special instructions needed for using a single VM, just create the VM and you are
ready.)

The website used in this attack can be any HTTPS website that uses SSL/TLS. However, since it is
illegal to attack a real website, we have set up a website in our VM, and conduct the attack on our own
VM. We use an open-source social network application called ELGG, and host it in the following URL:
https://www.heartbleedlabelgg.com. Warning: Do not under any circumstance, attack real
websites.

Important Note: If you have updated the version of OpenSSL installed on the VM (you might have
done this while working on the Crypto Hash Lab), this lab won’t work; the newest version of OpenSSL
has patched the Heartbleed vulnerability. You can reinstall the VM to revert back to the earlier version of
OpenSSL.

Using Two VMS You will create two VMs, one called the attacker machine and one called the victim
server. The VMs need to use the NAT-Network adapter for the network setting. This can be done by going
to the VM settings, picking Network, and clicking the Adaptor tag to switch the adapter to NAT-Network.
Make sure both VMs are on the same NAT-Network.



SEED Labs – Heartbleed Attack 2

I want to know whether my 
connection is still alive…

Server, are u still there? if 
so, return “ABC”(3 
characters) to me.

TLS/SSL

User wants the message 
“ABC”(3 characters)

“ABC” (3 characters)

Both of us are still connected. We 
should keep the connection alive…

TLS/SSL

TLS/SSL

TLS/SSL

TLS/SSL

Figure 1: Overview of the Heartbeat Protocol

We need to modify the /etc/hosts file on the attacker machine to map the server name to the IP ad-
dress of the server VM. Search the following line in /etc/hosts, and replace the IP address 127.0.0.1
with the actual IP address of the server VM that hosts the ELGG application.

127.0.0.1 www.heartbleedlabelgg.com



SEED Labs – Heartbleed Attack 3

3 Lab Tasks

Complete the following tasks and submit your observations and screenshots in a PDF file, which you will
submit on Sakai. Your answers should be short. You will be limited in some cases to answers of roughly
2-4 sentences. Your screenshots should be small, less than 1 MB.

Before working on the lab tasks, you need to understand how the heartbeat protocol works. The heartbeat
protocol consists of two message types: HeartbeatRequest packet and HeartbeatResponse packet. Client
sends a HeartbeatRequest packet to the server. When the server receives it, it sends back a copy of the
received message in the HeartbeatResponse packet. The goal is to keep the connection alive. The protocol
is illustrated in Figure 1.

3.1 Task 1: Launch the Heartbleed Attack.

In this task, students will launch the Heartbleed attack on our social network site and see what kind of
damages can be achieved. The actual damage of the Heartbleed attack depends on what kind of information
is stored in the server memory. If there has not been much activity on the server, you will not be able to
steal useful data. Therefore, we need to interact with the web server as legitimate users. Let us do it as the
administrator, and do the followings:

1. Visit https://www.heartbleedlabelgg.com from your browser.

2. Login as the site administrator. (User Name:admin; Password:seedelgg)

3. Add Boby as friend. (Go to More -> Members and click Boby -> Add Friend)

4. Send Boby a private message.

Include your CS login in any content you send or post. For example, in a private message to Boby, in-
clude your CS login in the subject line, message data, or both. You will be asked to submit screenshots of the
data you recover, and as proof that you completed the task (rather than reusing someone else’s screenshot),
we will look for your login to appear in any message data.

After you have interacted with the server as a legitimate user, you can launch the attack and see what
information you can get out of the victim server. Writing the program to launch the Heartbleed attack from
scratch is not easy, because it requires the low-level knowledge of the Heartbeat protocol. Fortunately, other
people have already written the attack code. Therefore, we will use the existing code to gain first-hand
experience in the Heartbleed attack. The code that we use is called attack.py, which was originally
written by Jared Stafford. We made some small changes to the code for educational purposes. You can
download the code from the lab’s web site (http://www.cis.syr.edu/˜wedu/seed/Labs_12.
04/Networking/Heartbleed/attack.py), change its permission so the file is executable. You can
then run the attack code as follows:

$ ./attack.py www.heartbleedlabelgg.com

You may need to run the attack code multiple times to get useful data. Your task is to retrieve the
following information from the target server.

1. Admin user name and password.

2. User’s activity (what the user has done).

3. The exact content of a private message.



SEED Labs – Heartbleed Attack 4

Submit a screenshot: For each piece of secret data that you steal from the Heartbleed attack, submit a
screenshot showing the attack successfully revealing the data. Make sure your CS login is part of the
content of the private message revealed by your attack.

3.2 Task 2: Find the Cause of the Heartbleed Vulnerability

In this task, students will compare the outcome of the benign packet and the malicious packet sent by the
attacker code to find out the fundamental cause of the Heartbleed vulnerability.

The Heartbleed attack is based on the Heartbeat request. This request just sends some data to the server,
and the server will copy the data to its response packet, so all the data are echoed back. In the normal case,
suppose that the request includes 3 bytes of data ”ABC”, so the length field has a value 3. The server will
place the data in the memory, and copy 3 bytes from the beginning of the data to its response packet. In the
attack scenario, the request may contain 3 bytes of data, but the length field may say 1003. When the server
constructs its response packet, it copies from the starting of the data (i.e. “ABC”), but it copies 1003 bytes,
instead of 3 bytes. These extra 1000 types obviously do not come from the request packet; they come from
the server’s private memory, and they may contain other user’s information, secret keys, password, etc.

Type(request)

Payload[Payload_length]

Padding[padding_length]

Payload_length

Type(response)

Payload[Payload_length]

Padding[padding_length]

Payload_length

“ABC”

Memory 

=

Request packet Response packet

Figure 2: The Benign Heartbeat Communication

In this task, we will play with the length field of the request. First, let’s understand how the Heartbeat
response packet is built from Figure 2. When the Heartbeat request packet comes, the server will parse the
packet to get the payload and the Payload length value (which is highlighted in Figure 2). Here, the
payload is only a 3-byte string "ABC" and the Payload length value is exactly 3. The server program
will blindly take this length value from the request packet. It then builds the response packet by pointing to
the memory storing "ABC" and copy Payload length bytes to the response payload. In this way, the
response packet would contain a 3-byte string "ABC".

We can launch the HeartBleed attack like what is shown in Figure 3. We keep the same payload (3 bytes),
but set the Payload length field to 1003. The server will again blindly take this Payload length
value when building the response packet. This time, the server program will point to the string "ABC" and
copy 1003 bytes from the memory to the response packet as a payload. Besides the string ”ABC”, the extra
1000 bytes are copied into the response packet, which could be anything from the memory, such as secret



SEED Labs – Heartbleed Attack 5

Type(request)

Payload[Payload_length]

Padding[padding_length]

Payload_length+1000

Type(response)

Payload[Payload_length+
1000]

Padding[padding_length]

Payload_length+1000

Memory 

=

Extra data

“ABC”
Request packet Response packet

Figure 3: The Heartbleed Attack Communication

activity, logging information, password and so on.
Our attack code allows you to play with different Payload length values. By default, the value is

set to a quite large one (0x4000), but you can reduce the size using the command option "-l" (letter ell)
or "--length" as shown in the following examples:

$./attack.py www.heartbleedlabelgg.com -l 0x015B
$./attack.py www.heartbleedlabelgg.com --length 83

Your task is to play with the attack program with different payload length values and answer the follow-
ing questions:

Question 2.1: As the length variable decreases, what kind of difference can you observe?

Question 2.2: As the length variable decreases, there is a boundary value for the input length vari-
able. At or below that boundary, the Heartbeat query will receive a response packet without attaching
any extra data (which means the request is benign). Please find that boundary length. You may need
to try many different length values until the web server sends back the reply without extra data. To
help you with this, when the number of returned bytes is smaller than the expected length, the pro-
gram will print "Server processed malformed Heartbeat, but did not return
any extra data."

3.3 Task 3: Countermeasure and Bug Fix

In this task you will implement the best-practice countermeasure (patching the bug) and describe how the
patch works.

3.3.1 Task 3.1

To fix the Heartbleed vulnerability, the best way is to update the OpenSSL library to the newest version.
This can be achieved using the following commands. It should be noted that once it is updated, it is hard to



SEED Labs – Heartbleed Attack 6

go back to the vulnerable version. Therefore, make sure you have finished the previous tasks before doing
the update. You can also take a snapshot of your VM before the update.

#sudo apt-get update
#sudo apt-get upgrade

Submit a screenshot: Try your attack again after you have updated the OpenSSL library. Take a screenshot
of what you observe trying the attack after upgrading OpenSSL.

3.3.2 Task 3.2

The objective of this task is to figure out how to fix the Heartbleed bug in the source code. Below we present
the sourcecode that was introduced in December 2011. You may view the exact commit which introduced
the bug here: https://github.com/openssl/openssl/commit/4817504d069b4c5082161b02a22116ad75f822b1

struct ssl3_record_st
{
unsigned int length; /* How many bytes available */
[...]
unsigned char *data; /* pointer to the record data */
[...]

} SSL3_RECORD;

struct
{
HeartbeatMessageType type; /* 1 byte: request or the response */
uint16 payload_length; /* 2 bytes: the length of the payload */
opaque payload[HeartbeatMessage.payload_length];
opaque padding[padding_length];

} HeartbeatMessage;

The SSL3 RECORD is a basic building block of SSL communications. It has a length field giving
the length of the received message (in this case, a Heartbeat message) and a pointer (data) to the actual
message. The message is formatted as a HeartbeatMessage. This struct has a payload length field
which gives the (client-provided) length of the payload. The payload field is the client-provided data that
should be sent back in the Heartbeat response.

The following code snippet shows how the server copies the data from the request packet to the response
packet.

Listing 1: Process the Heartbeat request packet and generate the response packet
1 /* Allocate memory for the response, size is 1 byte
2 * message type, plus 2 bytes payload length, plus
3 * payload, plus padding
4 */
5

6 unsigned int payload;
7 unsigned int padding = 16; /* Use minimum padding */
8



SEED Labs – Heartbleed Attack 7

9 /* Read from type field of HeartbeatMessage first.
10 * After this instruction, the pointer
11 * p will point to the payload_length field of HeartbeatMessage. */
12 hbtype = *p++;
13

14

15 /* Read from the payload_length field of HeartbeatMessage.
16 * This function reads 16 bits from pointer p and stores
17 * the value in the local INT variable "payload". */
18

19 n2s(p, payload);
20

21 pl=p; // pl points to the beginning of the payload content
22

23 if (hbtype == TLS1_HB_REQUEST)
24 {
25 unsigned char *buffer, *bp;
26 int r;
27

28 /* Allocate memory for the response, size is 1 byte
29 * message type, plus 2 bytes payload length, plus
30 * payload, plus padding
31 */
32

33 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
34 bp = buffer;
35

36 // Enter response type and length
37 *bp++ = TLS1_HB_RESPONSE;
38 s2n(payload, bp);
39

40 /* Copy payload
41 * pl is the pointer that points to the beginning
42 * of the payload content */
43

44 memcpy(bp, pl, payload);
45 bp += payload;
46

47 // Random padding
48 RAND_pseudo_bytes(bp, padding);
49

50 // this function will copy the 3+payload+padding bytes
51 // from the buffer and put them into the heartbeat response
52 // packet to send back to the request client side.
53 OPENSSL_free(buffer);
54 r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer,
55 3 + payload + padding);
56 }

Describe a solution: Please point out the problem from the code in Listing 1 and describe a solution to
fix the bug (i.e., what modification is needed to fix the bug). You do not need to recompile the code; just
describe how you can fix the problem in your lab report. Your answer should include a snippet of C code
(pseudo code will suffice), and a description of where the new code should be placed.



SEED Labs – Heartbleed Attack 8

4 Submission

On Sakai in a pdf document titled: a4 youronyen.pdf submit the following items:

1. Three screenshots of the attack revealing the admin’s user name and password, some user activity, and
the exact content of a private message. The private message must contain your CS login.

2. Task 2 Question 2.1: Describe your observation. What difference do you observe as the variable
length decreases?

3. Task 2 Question 2.2: What is the boundary at or below which no extra data is returned? Provide your
answer as a decimal (not hex) value

4. Task 3.1: Screenshot of attack output after updating the OpenSSL library

5. Task 3.2: Describe how to fix the code. Your answer should include a snippet of code (pseudo code
will suffice), a description of how the new code fixes the vulnerability, and instructions for where the
new code should be placed.

References

[1] Heartbleed attack - Implementation: https://alexandreborgesbrazil.files.wordpress.com/
2014/04/hearbleed attack version a 1.pdf

[2] Heartbleed attack - Interesting explanation: http://xkcd.com/1354/


