
Evaluating Security Specification Mining for a
CISC Architecture

Calvin Deutschbein and Cynthia Sturton
University of North Carolina at Chapel Hill

201 S. Columbia St.
Chapel Hill, 27599

{cd, csturton}@cs.unc.edu

Abstract—Security specification mining is a relatively
new line of research that aims to develop a set of security
properties for use during the design validation phase of the
hardware life-cycle. Prior work in this field has targeted
open-source RISC architectures and relies on access to
the register transfer level design, developers’ repositories,
bugtracker databases, and email archives. We develop
Astarte, a tool for security specification mining of closed-
source, CISC architectures. As with prior work, we target
properties written at the instruction set architecture (ISA)
level. We use a full-system fast emulator with a lightweight
extension to generate trace data, and we partition the
space of security properties on security-critical signals
in the architecture to manage complexity. We evaluate
the approach for the x86-64 ISA. The Astarte frame-
work produces roughly 1300 properties. Our automated
approach produces a categorization that aligns with prior
manual efforts. We study two known security flaws in
shipped x86/x86-64 processor implementations and show
that our set of properties could have revealed the flaws.
Our analysis provides insight into those properties that
are guaranteed by the ISA, those that are required of the
operating system, and those that have become de facto
properties by virtue of many operating systems assuming
the behavior.

I. INTRODUCTION

Validating the security of a processor starts at the spec-
ification and design phases. The current industry practice
for security validation is a mostly manual approach.
Designers and testers study the specification and design
and reason about the necessary and desired security
properties of the processor.

Recently, researchers have developed tools to semi-
automatically generate properties that capture the secu-
rity goals of the design [1], [2]. These properties are
expressed in SystemVerilog using the industry-standard
Open Verification Library (OVL) format [3], making
them suitable for use with existing simulation-based ver-

ification [4] and formal static analysis [5], [6] methods.
An automated approach to security property specifica-
tion is a first step toward a systematic, comprehensive
security validation process.

However, the current security property specification
tools were developed for, and are applicable to, only
open-source RISC processors. In this paper we develop
security specification mining for x86 processor designs.
In turning our attention to the x86 instruction set archi-
tecture (ISA) we face three challenges. First, the size of
the ISA makes even a semi-manual approach prohibitive;
Second, x86 is closed-source and prior approaches for
mining security properties relied on access to both the
source code and the developers’ repositories, bugtracker
databases, and email forums; Third, compared to today’s
RISC architectures, x86 offers a richer landscape of secu-
rity features and privilege modes, increasing the number
and complexity of the associated security properties.

We present Astarte, a fully automatic security speci-
fication miner for x86. A challenge with mining secu-
rity critical properties is automatically identifying those
properties that are relevant for security, that if vio-
lated would leave the processor vulnerable to attack.
In general, there is no fixed line separating functional
properties from security properties. The environment in
which a processor operates and the attacker’s motivation
and capabilities may move some properties across the
security-critical boundary in either direction.

In theory, a design would be validated as correct
against a complete specification with well defined and
proven security policies. In practice, however, the spec-
ification is neither complete, well defined, nor proven
secure. It is up to the security validation team to deter-
mine whether, and to what degree, a given design may
be vulnerable to attack.

Prior work tackled this problem by analyzing existing
design bugs and manually sorting them as exploitable



or not exploitable [1]. However, this approach is labor
intensive and does not easily scale to x86. Furthermore,
perhaps more relevant for our purposes, this approach
requires knowledge of and access to the details of
known design bugs culled from developers’ archives,
code repositories, and bugtacker databases, which we do
not have for the closed-source x86 designs.

We therefore take a different approach. We focus
our attention on mining properties that are relevant to
the various control signals that govern security-critical
behavior of the processor. These properties are by def-
inition important for the correct and secure behavior
of the processor, which in turn is important for the
correct implementation of the security primitives that
operating systems and software rely one. In this respect,
our approach is inspired by prior, manual efforts [7], [8],
[9].

We tackle the complexity of the architecture by inde-
pendently considering the space of properties for each in-
struction preconditioned on the value of a single security-
relevant control signal. In other words, we partition the
specification with respect to each control signal. It is
perhaps counter-intuitive that this approach works; it
would seem necessary to consider all possible combina-
tions of all security-relevant signals for every instruction
in order to produce meaningful security properties. Yet,
when we compare our found properties to prior manual
efforts and to known bugs in shipped x86 products, we
find that considering the security-relevant control signals
independently produces valuable properties.

We implement Astarte on top of Daikon [10], a
popular invariant miner, and we use the QEMU emula-
tor [11] to produce traces of execution. Astarte produces
roughly 1300 properties. We evaluate these properties
against manually discovered security properties and two
historical exploitable bugs in x86. Of the 29 previously
identified security properties, Astarte generates 23, and
the remaining 6 require processor state unimplemented
in QEMU. Astarte generates the properties that could
have detected the two exploitable bugs as well.

By generating trace data during the boot of four
different operating systems we are able to differentiate
between properties that are likely enforced by the pro-
cessor from those that must be enforced by the operating
system. Our analysis also provides insight into properties
that are not specified, but that operating systems have
come to rely on.

Our main contribution is a security specification miner
for closed-source, x86 architectures and its evaluation for
the Intel x86 (Ivy Bridge) processor. The novelty in our

approach includes:
• a partitioning of the security specification with

respect to each security-relevant control signal;
• automatically identifying the control signals of in-

terest;
• differentiating between processor-level properties

and operating system-level properties; and
• identifying de facto security-critical properties that

operating systems have come to rely on.

II. PROPERTIES

The Astarte framework generates properties written
over ISA-level state. Properties describe the constraints
and behavior of ISA state for a given instruction. For
example, the property in Figure 1a states that when the
in instruction executes, the I/O privilege level (IOPL, as
given by bit 13 of the EFLAGS register) must be greater
than or equal to the current privilege level (CPL, as given
by bit 13 of the Code Segment register).

A property may refer to the state of a signal or
register both before and after the instruction executes.
For example, the property in Figure 1b refers to the state
of the IOPL flag before and after execution of the addl

instruction. It states that if the I/O privilege level remains
unchanged during the addl instruction, then the current
privilege level must be 3.

in→ EFL[13] ≥ CS[13]

(a) After the in instruction executes IOPL must be greater
than CPL

addl ∧ EFL[13] = orig(EFL[13])→ CS[13] = 3

(b) If the addl instruction does not modify IOPL then CPL
must be 3

Fig. 1: Example properties

III. ASTARTE DESIGN

A. Overview

Astarte works in three phases: trace generation, prop-
erty mining, and post-processing. Figure 2 provides an
overview of the Astarte workflow. In the first phase we
generate traces of execution of the processor. Without
access to the source code of the processor design, we
can not use a simulator to generate traces of processor
execution as prior work has done. Instead we use QEMU,
an x86 emulator, to emulate processor execution. QEMU
translates blocks of code at a time, and as such produces
traces of basic blocks. The miner requires traces of



Fig. 2: An overview Astarte, which uses a modified
version of the Daikon specification miner.

individual instructions, so Astarte extends the generated
traces so that each event in the trace represents a single
instruction. This extension is sound with respect to the
generated properties. In keeping with prior art, Astarte
tracks processor state that is visible to software; the final
security properties are written over this software-visible
state. We emulate the processor loading and running four
different operating systems as well as running software
on the bare (emulated) metal.

In the second phase Astarte mines the traces of
execution looking for security properties. We build the
miner on top of the Daikon invariant generation tool [10].
The closed-source nature of x86 processors precludes
our using known, exploitable design bugs to differentiate
security-critical properties from functional properties as
was done by Zhang et al. [1] when targeting RISC
processors. Furthermore, the complexity of the many
x86 protection modes and their associated control flags
overwhelms the miner. In an initial experiment we let
the naive miner run for 7 days, and the result was
hundreds of millions of invariants generated, with only
a fraction of those invariants representing useful security
properties. We address this as follows: Astarte partitions
the state space of the processor on each of a small
handful of security-critical control signals, and generates
invariants within each partition. The approach may seem
counter-intuitive: Astarte is treating the control signals
as independent of each other, when in fact different
combinations of control signals may represent different
protection modes within the processor. Yet, we find that
it is effective; the result is a manageable set of mean-
ingful security invariants covering the various protection
modes.

In the third phase, post-processing, Astarte combines
like invariants, integrates results across multiple runs of
the miner (e.g., using traces generated from different op-
erating systems), and simplifies expressions. The result
is a manageable set of security properties.

B. Trace Generation

To generate traces of execution we use QEMU, a full
system, open source machine emulator [12]. Running

a processor in emulation allows us visibility into the
processor’s state. On a QEMU-emulated x86 CPU we
can boot an operating system, run user-level applications,
and extract log data about the state of the CPU as
software executes. The log data forms the basis of
the execution traces over which security properties are
mined.

QEMU dynamically translates machine instructions
from the target architecture (in our case, x86) to the host
architecture. To ease portability QEMU translates first to
an intermediate language and then to the host instruction
set. To improve performance QEMU translates a block
of machine instructions at a time, rather than translating
line by line.

A QEMU translation block (TB) is akin to a basic
block [13]. It is a sequence of instructions with a single
entry point—the first instruction in the TB—and a single
exit point—the last instruction in the TB. A TB ends at
any instruction that modifies the program counter, such
as syscall, sysenter, or jmp, or at a page boundary.

The translated TBs can be cached and reused, reducing
translation time. However, translating a block of code
at a time obscures CPU state at instruction boundaries.
In other words, QEMU maintains consistent target CPU
state at TB boundaries rather than at instruction bound-
aries.

From the QEMU execution logs, we can pull events
corresponding to the execution of a single TB. An event
shows the sequence of instructions that make up the TB
and the CPU state after the TB executes:

〈instruct1, instruct2, . . . , instructn〉(r0, r1, . . . , rm)

In the above, (r0, . . . , rm) represents the state of the
m ISA-level registers after the TB executes. A trace of
events gives us the CPU state at every TB boundary.
The first event in a QEMU trace is always the single
instruction ljmpw, which jumps to the code entry point.
A trace of TBs might look like this:

〈ljmpw〉(r00, r01, . . . , r0m)

〈instruct1, instruct2, . . . , instructn〉(rn0 , rn1 , . . . , rnm)

. . .

〈instruct1, instruct2, . . . , instructj〉(r∗0, r∗1, . . . , r∗m)

The CPU state logged at the end of the first TB
gives us the CPU state before the second TB
executes. However, for our purposes, we need the
CPU state at every instruction boundary, not just
every TB boundary. Given the single logged event



〈instruct1, instruct2, . . . , instructn〉(rn0 , rn1 , . . . , rnm),
we require an extended trace of events:

〈instruct1〉(r10, r11, . . . , r1m) (1)

〈instruct2〉(r20, r21, . . . , r2m) (2)

. . .

〈instructn〉(rn0 , rn1 , . . . , rnm) (3)

Producing the extended trace of events would require
an emulator that translates code line-by-line. But, the
emulator still needs to be fast enough to boot operating
systems and run application-level code. Therefore, we
take a middle approach: we use QEMU as our emulator
and build a lightweight extension to generate partial per-
instruction events. For every TB in a trace, the event
generator creates a new sequence of events, one event
for each instruction in the TB. Each event lists the
instruction executed and partial information about the
CPU state. Any software-visible register that can be
modified by the instruction is marked as invalid, and
all other registers retain their value from the previous
event. The generated event corresponding to the last
instruction in the TB has the full CPU state as given
by the original QEMU event. Continuing with the above
extended trace of events, and considering the second
event at line (2) in the trace, ∀i, 0 ≤ i ≤ m either r2i = r1i
or r2i = invalid.

The event generator errs on the side of soundness: if
it is possible for an instruction to change an aspect of
CPU state, the generator assumes it does. We used the
Intel Software Developer Manuals [14] as our reference
when building the event generator.

C. Property Mining

We use the Daikon invariant detector [10] as the base
for the Astarte property mining. We build a custom front-
end that reads in the extended traces of events produced
in the first phase, and outputs a trace of observations
suitable for Daikon.

Daikon was developed for use with software pro-
grams: it looks for invariants over state variables for each
point in a program. Our front-end treats x86 instructions
as program points; Daikon therefore will find invariants
over ISA variables for each x86 instruction.

Daikon can handle individual program modules with
relatively few program points and few program variables,
it is not intended for analysis of entire programs [15].
The amount of ISA state and the number of instructions
in x86 is too large for Daikon to handle. The amount
of trace data required to achieve coverage of a single

addl ∧ orig(IOPL) = 0 ∧ IOPL = 0
addl ∧ orig(IOPL) = 0 ∧ IOPL = 1
addl ∧ orig(IOPL) = 1 ∧ IOPL = 0
addl ∧ orig(IOPL) = 1 ∧ IOPL = 1

TABLE I: Four partitions of IOPL for instruction addl

instruction, and the size of the state over which to find
invariant patterns for a single instruction overwhelm
Daikon.

To mitigate the complexity, for each instruction
Astarte partitions the space of properties on individual
control signals.

1) Partitioning on Control Signals: For each instruc-
tion, Astarte separately considers the space of invariants
over ISA state for that instruction, preconditioned on
a single control bit. The key insight is that if Astarte
chooses the control bits wisely, the partitioning not
only mitigates performance and complexity issues with
Daikon, it also produces sets of properties that are critical
to security, and we can then classify the properties by
their precondition. The properties that make up each
class provide some insight into the modes and behaviors
of the processor governed by the preconditioning control
signal.

For each control signal, how Astarte partitions the
space of invariants for a single instruction depends on the
control signal. For a one-bit signal Astarte creates four
partitions, one for each combination of signal values be-
fore and after the instruction executes. For example, with
the IOPL flag and addl instruction, Table I shows the
four partitions of the space of invariants. Each row of the
table represents one of the four possible antecedents of
a property. The four antecedents represented in the table
completely partition the space. For signals longer than
one bit Astarte divides the space of invariants into two
partitions for each instruction: instruct∧ orig(reg) =
reg and instruct ∧ orig(reg) 6= reg.

The set of properties produced for a particular pre-
conditioning signal tell us something about the behavior
governed by that signal. For example, providing CPL 6=
orig(CPL) as a precondition will mine properties related
to how the current privilege level (CPL) of the processor
is elevated and lowered.

2) Identifying Control Signals: The first step is to
choose which control signals to use as preconditions.
We manually organize the x86 ISA state by category
and then let Astarte find the meaningful signals within
a category. Here we consider the signals available as
variables in QEMU as well as the x86 registers:



• General Purpose Registers: EAX, EBX, ECX, EDX
• Interrupt Pointer: EIP
• Control Registers: EFL, CR0, CR2, CR3, CR4,

EFER
• Bitflags: II, A20, SMM, HLT, CPL
• Current Segments: CS, SS, DS
• Special Segments: ES, FS, GS, LDT, TR
• Descriptor Tables: GDT, IDT
• Debug Registers: DR0, DR1, DR2, DR3, DR6, DR7
• Command Control: CCS, CCD, CC0
Of these, we select three categories to focus on:

Control Registers, Bitflags, and Current Segments. These
registers contain fields that control security critical state,
such as privilege levels and location of page tables. We
chose these categories based on our knowledge of the
x86 ISA. Initially, we had only the Control Registers and
QEMU Bitflags, but our initial evaluation led us to add
the Current Segments. We expect other categories may
also yield interesting properties. Because each control
signal is analyzed independently of the others, additional
categories of ISA state can be analyzed without incur-
ring a combinational explosion in performance cost. (In
Section V-E we discuss the cost.)

During the signal-finding phase Astarte unpacks reg-
isters to consider one- and two-bit fields separately. It
then looks for and discards any unused fields. It does this
by looking for fields that keep a constant value. Astarte
collapses all x86 instructions into a single pseudo-
instruction and runs the property miner on this modified
trace. Any found properties of the form reg = N are an
indication that for all instructions reg has the constant
value N and is therefore unused. Astarte discards these
flags from further consideration. At the end of this phase
we are left with 24 signals of interest.

D. Postprocessing

The Daikon miner produces tens of millions of prop-
erties. In post-processing Astarte removes invalid proper-
ties, removes redundant properties, and combines similar
properties into a format that is easier to read.

1) Intersection Across Trace Sets: Astarte runs the
Daikon miner separately for each set of traces represent-
ing separate operating system boots and bare-metal exe-
cution. In the first step of post-processing properties from
different traces are combined by taking the intersection
of all sets with shared elements within a precondition.
This ensures that no property that is invalidated by any
one trace persists in the property set. It also generalizes
properties to the implementation being studied, rather
than to just a single trace.

2) Transitive Closure: Frequently, especially in the
case of single bit values, many registers will take on the
same value and Daikon will return many such equality
properties. To make these properties more manageable,
Astarte takes the transitive closure of all the equality
properties and, instead of lists of pairwise equalities,
equality properties are presented as sets of registers
that are equal. For example, given the three invari-
ants andb → orig(CPL) = 3, andb → CPL =
DS DPL, and andb → CPL = orig(CPL), the post-
processor would return as a single property andb →
{orig(CPL), 3, CPL, DS DPL}=, where the notation {}=
indicates that any two signals in the set are equal
(∀r, s ∈ {}=, r = s).

instruct ∧ precondition→
{〈var〉, 〈var〉, . . .}=

In the next stage, properties that share a common
instruction and invariant precondition are combined to
form larger properties that more completely express
processor behavior with regard to a control signal. These
properties are similar to the previous properties with the
sole exception of having multiple sets of equal values,
registers, or bits.

instruct ∧ precondition→
{〈var〉, 〈var〉, . . .}=
{〈var〉, 〈var〉, . . .}=
{〈var〉, 〈var〉, . . .}=
. . .

3) OS-Specific Values: In some cases, general purpose
registers take on a particular value or set of values for
an operating system. These values may differ across
operating systems, but there is an underlying pattern that
is upheld across operating systems and that is critical to
security. For example, values must be word aligned or in
a canonical form. To identify these properties the post-
processor applies a bit mask to equalities between values
and general purpose registers to find which bits change
and which do not.

4) Identify Global Properties: As a final step Astarte
ensures that all properties are specific to a control
signal by comparing against global properties. Recall that
Astarte identifies control signals of interest in the first
phase. Eleven of the 24 identified signals were found to
produce properties specific to those bits. The remaining



13 signals all preconditioned the same global properties.
During postprocessing Astarte removes any of these
global properties from the sets of properties produced
for each of the 11 control signals. These properties are
necessarily not specific to a control signal since they
have been found to hold globally.

IV. IMPLEMENTATION

The Astarte framework is written in Python. Exten-
sions to the QEMU trace generation, the front-end for
Daikon, and the post processor are written in Python.
We use QEMU emulating Ivy Bridge 2013 Intel Xeon E3
1200 v2 processor to generate traces of execution. Traces
were generated by running disk images within QEMU
with debug options to log instructions and processor state
(-d in asm,cpu) with output logged to a file and parsed
into traces of execution that could be passed to a miner.

V. EVALUATION

We evaluate the Astarte framework on its ability to
find security properties of the x86 architecture.

We aim to answer the following research questions:
1) Can Astarte efficiently generate high-quality asser-

tions to prevent known CPU security bugs?
2) How effective are the control signals we use to par-

tition the space of properties in achieving effective
security properties?

3) Does Astarte produce a manageable number of
properties?

The experiments are performed on a machine with an
Intel Core i5-6600k (3.5GHz) processor with 8 GB of
RAM.

A. Trace Data

To avoid capturing only properties enforced by, or
relevant to, a specific operating system we generate trace
data while booting multiple operating systems. We boot
two Linux distributions (Ubuntu and Debian), Solaris,
seL4, and FreeDOS ODIN.

To achieve high instruction coverage we use Fast
PokeEMU [16], a tool for testing consistency between
hardware and the QEMU emulator. Fast PokeEMU re-
peatedly executes an instruction with varying inputs to
achieve high path coverage within an instruction with
high probability without relying on manual test genera-
tion. We execute these instructions on the “bare metal”
QEMU emulator.

Over all traces, Astarte modeled 333 distinct instruc-
tions while the Intel specification describes 611. Review-
ing the specification we find that of the 278 instructions

Mnemonic Description Number

aes AES acceleration 6
k mask register operations 13
p packed value operations 87
sha SHA acceleration 7
v vector operations 162

TABLE II: Unmodelled instructions

not modeled by Astarte over the trace set, 275 fall into
one of five categories: AES and SHA acceleration, mask
register operations, packed value operations, and vector
operations (see Table II).

We analyzed 10.2GB of trace data comprising 4.1 mil-
lion instruction executions. We expect this trace volume
to be sufficient: Amit et al. [17] found that in fewer
than 1k iterations of tests of 4096 instructions—a trace
volume similar to our own—most known complex race
conditions could be found.

B. Control Signals

Of the 24 control signals identified prior to mining
(Section III-C2), 11 govern a class of properties precon-
ditioned on that signal. The remaining 13, when used
as a precondition, produced only properties common to
all preconditions; in other words, they do not govern
a particular set of behaviors. Table III shows the 11
control signals along with their common name and a
brief description.

C. Effect of Postprocessing

At the end of the property mining phase (Sec. III-C),
Daikon produces 13,722,294 properties across all in-
structions and preconditions. After taking the intersection
of properties across distinct trace sets and taking the
transitive closure of properties, we are left with 122,122
properties. Identifying the global properties reduces the
total to 1,393 properties, a reduction of close to five
orders of magnitude from the naive property total. These
properties average 6 implied clauses each per precon-
dition. Each class of properties, defined by a single
preconditioning control signal, has 127 properties on
average. The distribution of the number of properties
and average property size by control signal is shown in
Table IV.

D. Assessing the Properties with Respect to Security

To evaluate the efficacy of the Astarte framework in
producing properties relevant for security we consider
two case studies, the 2015 SMM bug from Domas [18]
and the SYSRET bug described by Xen [19]. Both



Bit/Reg Flag Name Description

CPL CPL Current privelege level CPL (or CS DPL) gives the current ring from 0 to 3 while in protected mode
SMM SMM System Management Mode If set, processor is in SMM (ring -2)
EFL[6] ZF Zero Flag Indicates zero result of arithmetic
EFL[9] IF Interrupt enable flag Determines whether to handle maskable hardware interrupts
EFL[11] OF Overflow Flag Indicates overflow result of arithmetic
CR0[0] PE Protected Mode Enable If set, processor is in protected mode
CR0[1] MP Monitor co-processor Controls interaction of WAIT/FWAIT instructions with TS flag in CR0
EFL[4] AF Adjust Flag Indicates arithmetic carry or borrow over four least significant bits
CS CS Code Segment The currently used program code segment (changes only, not values)
SS SS Stack Segment The currently used program stack segment (changes only, not values)
DS DS Data Segment The currently used program data segment (changes only, not values)

TABLE III: Control signals that govern a class of properties preconditioned on that signal

Bit/Reg Flag Clauses Properties Clauses per
Property

CPL CPL 235 59 4.0
SMM SMM 335 60 5.6
EFL[6] ZF 1182 286 4.1
EFL[9] IF 1102 164 6.7
EFL[11] OF 390 46 8.5
CR0[0] PE 1159 173 6.7
CR0[1] MP 777 68 11.4
EFL[4] AF 1402 244 5.7
CS CS 465 55 8.5
SS SS 432 52 8.3
DS DS 480 50 9.6

Total 8571 1393 6.2

Globals 4187 246 17.0

TABLE IV: Number of implied clauses in a property by
control signal

of these cases received considerable attention from the
security and research communities and, thanks to their
efforts to reverse engineer the bugs, we have information
about the technical details of the bugs beyond the high-
level information provided by Intel’s errata documents.
For each case study we examine whether the properties
generated by Astarte could have caught these bugs. We
also compare the properties generated by Astarte to
the set of x86 security properties manually written by
Brown [9]. Tables V and VI show the results.

1) SMM: At Black Hat 2015, Dumas [18] disclosed
the Memory Sinkhole escalation vulnerability in SMM.
The vulnerability allows an OS-level attacker to enter
System Management Mode and execute arbitrary code.
The attack relies on using the call instruction with
a particular parameter while in SMM. The security
properties discovered by Astarte would disallow this
exploit. The properties prohibit the execution of the call
instruction while in SMM.

No. Property Found Ctrl Astarte
Signal Property

1 CALL → SMM=0 X SMM G5
2 SYSRET → canonical(ECX) X CPL 5, 7

TABLE V: Finding case study properties with Astarte

2) SYSRET: This vulnerability, as described by Xen
[19] arises from the way in which Intel processors imple-
ment error handling in their version of AMD’s SYSRET
instruction. If an operating system is written according
to AMD’s specification, but run on Intel hardware, an
attacker can exploit the vulnerability to write to arbitrary
addresses in the operating system’s memory.

The crux of the vulnerability has to do with when the
Intel processor checks that, when returning to user mode,
the address being loaded into the RIP register from
the RCX register is in canonical form. Astarte generates
properties that require RCX to always be in canonical
form when the current privilege level is elevated, which
would prevent the vulnerability. It is interesting to note
that Astarte only finds this property over traces produced
by operating systems, an indication that this desired
behavior is not enforced by the hardware and must be
enforced by an operating system, as is indeed the case.

3) Manually Developed Properties: Brown studied
the Intel specification and crafted 29 properties they
found to be critical to security [9]. The Astarte properties
cover 23 of the 29 manually written properties. The
remaining 6 properties required exercising processor
state unimplemented in QEMU.

E. Performance

Generating the trace data took approximately 8 hours,
processing the traces to make them suitable for Daikon
took 57 minutes, identifying control bits on which to



No. Property Found Ctrl Astarte
Signal Property

1 IN/OUT/INS/OUTS → IOPL ≥ CPL X CS[13] G65, G68-71, G104-107,
G243-244

2 !(JMP/CALL/RET/SYS*) → CS=orig(CS) X CS 298, 300, 302, 304, 306,
308-309, 311-313, 315,
317-318, 320-322, 324,
326, 328, 330-332, 335-
337, 339, 341-343, 345,
347-349, 351

3 POPF/IRET & !CPL=0 → EFL 13=orig(EFL 13) X EFL[13] G72, G111-G112, G206
4 STI/CLI & CPL > EFL 13 → EFL 9=orig(EFL 9) X EFL[9] G53, G141
5 IRET & EFL 9=orig(EFL 9) & CPL > EFL 13 → EFL 9=orig(EFL 9) X EFL[9] 1044-1045
6 IRET & CPL 6= 0 → EFL 13=orig(EFL 13) X CS[13] G72, G206
7 SYSEXIT → CPL=0 X CS[13] 3, 7
8 SYS* → CPL ≤ DPL X CS[13] 37, 39
9 SYS* → CS DPL ≤ CPL X CS[13] 37, 39
10 JMP/CALL(FAR) & CS 6=orig(CS)→ DPL = CPL X CS 15, 16, G18
11 JMP/CALL(FAR) & CS 6=orig(CS)→ DPL ≤ CPL X CS 15, 16, G18
12 CALL(FAR) & CS 6=orig(CS)→ CPL ≤ DPL X CS 15, 16
13 JMP(FAR) & CS 6=orig(CS)→ DPL ≤ CPL X CS G18
14 JMP/CALL(FAR) & CS 6=orig(CS)→ CS DPL ≤ orig(CPL) X CS 15, 16, G18
15 RET & CS 6=orig(CS) → CS DPL≥ CPL X CS G35, G72, G90, G120,

G206, G224
16 SS 6=orig(SS) → SS DPL=CPL X SS G245
17 DS 6=orig(DS) → DS DPL≥CPL X DS G245
18 CS[11]=1 CS[12]=0 X CS G245
19 SS[9]=1 & SS[12]=0 & SS[11]=0 X SS G245
20 DS[9]=DS[11]=DS[12]=1 X DS G245
21 IRET & EFL 13 → CS DPL ≤ SS DPL X CS[13] G35, G72, G90, G120,

G206, G224

22 SYSENTER & CR0 0=1→CS=val,EIP=val,SS=val,SP=val X CS[13] 37, 39
23 SYSEXIT & CR0 0=1→CS=val,EIP=old EIP,SS=val,SP=val X CS[13] 37, 39

24-25 Properties over unimplemented MSRs - unknown
26-29 Properites requiring unimplemented VMX instructions - unknown

TABLE VI: Finding manually crafted properties with Astarte

partition the property space took 44 minutes. Mining
along all preconditions took approximately 16 hours with
each control bit costing roughly 44 minutes. Overall, the
Astarte framework completed the property generation in
29 hours.

We completed the full mining process for 24 con-
trol signals as preconditions. Excluding unused control
signals from consideration provided a speedup of of
5.82x. Comparing all control signals pairwise rather
than treating them independently would have yielded
1936 preconditions over the the 24 bits used, or 262144
comparisons over all possible bits, giving speedups of
44.00x and 5957.82x respectively. (When computing
these speedups, we do assume that control bits all take
roughly the same amount of time to mine. We found all
mined control bits completed within tens of seconds of
each other; we believe it reasonable to assume this timing

trend would apply to other untested preconditions.)

F. Operating System-Enforced Properties

When mining over traces from different operating
systems, we note that some properties are found over
all operating systems and some over only a subset of
operating systems or only on bare metal traces with
no operating system. In Figure 3 we show how many
operating systems are found to enforce each property.
Figure 4 shows for each property enforced by 1, 2, or 3
operating systems, which operating system it is enforced
by.

We found that properties were predominantly enforced
either by a single operating system or by all operating
systems. We interpret properties enforced by a single
operating system to likely fall into two main possibilities:
either the properties are well-founded properties that,
when enforced, make the operating system more secure



Fig. 3: Distribution of properties by how many OSes are
found to enforce them shows clustering around one or
every OS.

Fig. 4: Within the properties implemented by a subset
of the OSes, Linux and seL4 enforce many unique
properties and Solaris and FreeDOS enforce properties
with each other or with Linux.

in some way, or that they are false positives and found
only within a single operating system for this reason. In
manual inspections of properties, we found that many
of the properties unique to Linux and seL4 were related
to ensuring the safety of the specific implementations of
system calls used by the operating system. Unsurpris-
ingly more properties were enforced on Linux and seL4
which have the highest usage levels and most rigorous
theoretical assurances respectively. The remainder of
unique properties governed specific instruction usage
from specific processor states only exercised by that
operating system that may or may not be associated with
security.

We interpret properties enforced by all operating
systems to be necessary implementation features as
changing any one of them would would likely cause
compatibility issues across many operating systems. We
extend this understanding to properties implemented by

all but one operating system, especially as the operating
system most frequently missing was seL4. As seL4 by
design has provably correct behavior it cannot rely on
undocumented or incidental features. Without the burden
of provable correctness and security enforcement, other
operating systems may make reasonable assumptions of
processor behavior. These assumptions may eventually
become part of the processor specification if many oper-
ating systems come to rely on them, making it difficult
for hardware designers to modify the expected, though
undocumented, behavior.

The few properties enforced by just two operating
systems usually govern behavior of a very specific type
of system call that is enforced by precisely two operating
systems. A few properties govern specific instruction
usage enforced by precisely two operating systems.
Similarly, these may be best practice or false positive
properties.

There were also a few properties found to be enforced
on bare metal traces but not operating system traces. We
regard these as either false positives or these are vestigial
properties that persist in hardware but OSes no longer
need to rely upon.

G. Properties in the Specification

To provide a sense for how difficult the properties
generated by Astarte would be to find manually, we
developed a scoring function for properties that con-
sidered each bit or register within a property against
how many times that bit or register is referenced in
the Intel Software Developers Manuals [14] to give a
sense of how many pieces of discrete information must
be considered to generated a property. Figure 6 shows
the cumulative distribution function of this specification
score for properties.

Properties typcially would require reviewing approxi-
mately 7000 mentions (median 6874, mean 7088) with
a minimum of 413, a maximum of 19669, and about
8.9 million in total. The distribution is nearly uniform
with slight clustering at the minimum and slightly longer
tails on the maximum. Figure 5 shows how many dis-
crete mentions of each bit or register occur in the ISA
specification.

VI. RELATED WORK

Generating Security Critical Properties for Hard-
ware Designs: The first security properties developed
for hardware designs were manually crafted [8], [7], [9].
SCIFinder semi-automatically generates security critical
properties for a RISC processor design [1]. Recent



Fig. 5: Different bits or registers may be mentioned from
1s to 1000s of times in the specification.

Fig. 6: Different properties may requiring considering
from 100s to 10000s of mentions in the specification.

hackathons have revealed the types of properties needed
to find exploitable bugs in the design of a RISC-based
system-on-chip [20]. Our tool builds on this prior work
to generate properties for closed-source CISC (x86)
processors.

Extracting Functional Properties from Hardware
Designs: General properties that do not focus on security
have been found by looking for instances of known
patterns, such as one-hot encoded signals [21], [22].
An alternative approach is to use data mining to infer
properties from traces of execution of the design [23],
[24], [25]. More recent work has focused on mining
temporal properties from execution traces [26], [27],
[28], [29]. A combination of static and dynamic analysis
can extract properties expressed over words [30].

Mining Specifications for Software: The seminal
work in specification mining comes from the software
domain [31] in which execution traces are examined
to infer temporal specifications in the form of regular
expressions. Subsequent work used both static and dy-

namic traces to filter out less useful candidate specifica-
tions [32]. More recent work has tackled the challenges
posed by having imperfect execution traces [33], and
by the complexity of the search space [34], [35], [36].
Daikon, which produces invariants rather than temporal
properties, learns properties that express desired seman-
tics of a program [10].

Generating Security Properties of Software: In con-
trast to the hardware domain, in the software domain a
number of papers have developed security specific spec-
ification mining tools. These tools use human specified
rules [37], observe instances of deviant behavior [38],
[39], [10], or identify instances of known bugs [40].

VII. CONCLUSION

In this paper we proposed Astarte, a framework
for mining security critical properties from a closed
source, CISC architecture. Astarte produces manageable
numbers of properties that capture the behavior of the
processor under security-relevant control signals. Astarte
addresses issues of complexity and closed-source designs
not seen in RISC-based security specification miners. We
evaluated the efficacy of the properties generated and the
performance of the framework.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their helpful feedback. This material is based upon work
supported by the National Science Foundation under
Grant No. CNS-1816637 and by the Semiconductor
Research Corporation (SRC). Any opinions, findings,
conclusions, and recommendations expressed in this pa-
per are solely those of the authors.

REFERENCES

[1] R. Zhang, N. Stanley, C. Griggs, A. Chi, and C. Sturton,
“Identifying security critical properties for the dynamic
verification of a processor,” in Proceedings of the Twenty-
Second International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).
ACM, 2017, pp. 541–554. [Online]. Available: http://doi.acm.
org/10.1145/3037697.3037734

[2] C. Deutschbein and C. Sturton, “Mining security critical linear
temporal logic specifications for processors,” in Proceedings
of the International Workshop on Microprocessor and SoC
Test, Security, and Verification (MTV). IEEE, 2018. [Online].
Available: https://ieeexplore.ieee.org/document/8746060

[3] H. Foster, K. Larsen, and M. Turpin, “Introduction to the New
Accellera Open Verification Library,” 2006.

[4] L.-T. Wang, Y.-W. Chang, and K.-T. Cheng, Electronic Design
Automation: Synthesis, Verification, and Test. Morgan Kauf-
mann, 2009.

[5] R. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verfication tool,” in Comuter Aided Verification (CAV).
Lecture Notes in Computer Science, 2010.

http://doi.acm.org/10.1145/3037697.3037734
http://doi.acm.org/10.1145/3037697.3037734
https://ieeexplore.ieee.org/document/8746060


[6] D. Brand, “Verification of large synthesized designs,” in Pro-
ceedings of the International Conference on Computer Aided
Design (ICCAD). IEEE/ACM, 1993.

[7] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin, “Security
checkers: Detecting processor malicious inclusions at runtime,”
in International Symposium on Hardware-Oriented Security
and Trust (HOST). IEEE, June 2011, pp. 34–39. [Online].
Available: https://calhoun.nps.edu/handle/10945/35004

[8] M. Hicks, C. Sturton, S. T. King, and J. M. Smith,
“SPECS: A lightweight runtime mechanism for protecting
software from security-critical processor bugs,” in Proceedings
of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS). ACM, 2015, pp. 517–529. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694366

[9] M. Brown, “Cross-validation processor specifications,” Univer-
sity of North Carolina at Chapel Hill, Master’s Thesis, 2017.

[10] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao, “The Daikon system
for dynamic detection of likely invariants,” Science of Computer
Programming, vol. 69, no. 1-3, pp. 35–45, Dec. 2007. [Online].
Available: http://dx.doi.org/10.1016/j.scico.2007.01.015

[11] F. Bellard, “QEMU, a fast and portable dynamic translator,”
in Proceedings of the USENIX Annual Technical Conference
(ATC). USENIX Association, 2005. [Online]. Available:
https://dl.acm.org/citation.cfm?id=1247401

[12] QEMU. [Online]. Available: https://www.qemu.org/
[13] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:

Principles, Techniques, and Tools. Addison Wesley, 2006.
[14] “Intel 64 and IA-32 architectures soft-

ware developer manuals,” Intel. [Online]. Avail-
able: http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html

[15] Daikon. [Online]. Available: https://plse.cs.washington.edu/
daikon/

[16] Q. Yan and S. McCamant, “Fast PokeEMU: Scaling generated
instruction tests using aggregation and state chaining,” in
Proceedings of the 14th International Conference on Virtual
Execution Environments (VEE). ACM, 2018, pp. 71–
83. [Online]. Available: http://doi.acm.org/10.1145/3186411.
3186417

[17] N. Amit, D. Tsafrir, A. Schuster, A. Ayoub, and E. Shlomo,
“Virtual CPU validation,” in Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP). ACM,
2015, pp. 311–327. [Online]. Available: http://doi.acm.org/10.
1145/2815400.2815420

[18] C. Domas, “The memory sinkhole: An architectural privelege
escalation vulnerability,” Black Hat USA, 2015. [Online].
Available: https://www.blackhat.com/docs/us-15/materials/us-
15-Domas-The-Memory-Sinkhole-Unleashing-An-x86-
Design-Flaw-Allowing-Universal-Privilege-Escalation.pdf

[19] “The Intel SYSRET privilege escalation,” Xen Project.
[Online]. Available: https://xenproject.org/2012/06/13/the-intel-
sysret-privilege-escalation/

[20] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi,
H. Khattri, J. M. Fung, A.-R. Sadeghi, and J. Rajendran,
“Hardfails: Insights into software-exploitable hardware bugs,”
in 28th USENIX Security Symposium. USENIX Association,
2019, pp. 213–230. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity19/presentation/dessouky

[21] S. Hangal, S. Narayanan, N. Chandra, and S. Chakravorty,
“IODINE: A tool to automatically infer dynamic invariants for

hardware designs,” in Proceedings of 42nd Design Automation
Conference (DAC). IEEE, 2005.

[22] E. El Mandouh and A. G. Wassal, “Automatic generation of
hardware design properties from simulation traces,” in Interna-
tional Symposium on Circuits and Systems (ISCAS). IEEE,
2012, pp. 2317–2320.

[23] P.-H. Chang and L. C. Wang, “Automatic assertion extraction
via sequential data mining of simulation traces,” in Proceedings
of the 15th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC). IEEE, 2010, pp. 607–612.

[24] S. Hertz, D. Sheridan, and S. Vasudevan, “Mining hardware
assertions with guidance from static analysis,” Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 32, no. 6, pp. 952–965, 2013.

[25] L. Liu and S. Vasudevan, “Automatic generation of system level
assertions from transaction level models,” Journal of Electronic
Testing, vol. 29, no. 5, pp. 669–684, Oct. 2013. [Online].
Available: http://dx.doi.org/10.1007/s10836-013-5403-y

[26] W. Li, A. Forin, and S. A. Seshia, “Scalable specification
mining for verification and diagnosis,” in Proceedings of the
47th Design Automation Conference (DAC). ACM, 2010,
pp. 755–760. [Online]. Available: http://doi.acm.org/10.1145/
1837274.1837466

[27] A. Danese, N. D. Riva, and G. Pravadelli, “A-TEAM:
Automatic template-based assertion miner,” in Proceed-
ings of the 54th Design Automation Conference (DAC).
ACM/EDAC/IEEE, June 2017, pp. 1–6.

[28] A. Danese, T. Ghasempouri, and G. Pravadelli, “Automatic
extraction of assertions from execution traces of behavioural
models,” in Design, Automation Test in Europe Conference
Exhibition (DATE), March 2015, pp. 67–72.

[29] A. Danese, G. Pravadelli, and I. Zandonà, “Automatic gen-
eration of power state machines through dynamic mining of
temporal assertions,” in Design, Automation Test in Europe
Conference Exhibition (DATE), March 2016, pp. 606–611.

[30] L. Liu, C. Lin, and S. Vasudevan, “Word level feature discovery
to enhance quality of assertion mining,” in International Confer-
ence on Computer-Aided Design (ICCAD). IEEE/ACM, Nov
2012, pp. 210–217.

[31] G. Ammons, R. Bodı́k, and J. R. Larus, “Mining specifications,”
in Proceedings of the 29th Symposium on Principles of
Programming Languages (POPL). ACM, 2002, pp. 4–16.
[Online]. Available: http://doi.acm.org/10.1145/503272.503275

[32] W. Weimer and G. C. Necula, “Mining temporal specifications
for error detection,” in Proceedings of the 11th International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). Springer-Verlag, 2005, pp.
461–476. [Online]. Available: http://dx.doi.org/10.1007/978-3-
540-31980-1 30

[33] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das,
“Perracotta: Mining temporal API rules from imperfect traces,”
in Proceedings of the 28th International Conference on Software
Engineering (ICSE). ACM, 2006, pp. 282–291. [Online].
Available: http://doi.acm.org/10.1145/1134285.1134325

[34] M. Gabel and Z. Su, “Javert: Fully automatic mining of general
temporal properties from dynamic traces,” in Proceedings of
the 16th International Symposium on Foundations of Software
Engineering (FSE). ACM, 2008, pp. 339–349. [Online].
Available: http://doi.acm.org/10.1145/1453101.1453150

[35] G. Reger, H. Barringer, and D. Rydeheard, “A pattern-based
approach to parametric specification mining,” in 28th Interna-
tional Conference on Automated Software Engineering (ASE).
IEEE/ACM, 2013, pp. 658–663.

https://calhoun.nps.edu/handle/10945/35004
http://doi.acm.org/10.1145/2694344.2694366
http://dx.doi.org/10.1016/j.scico.2007.01.015
https://dl.acm.org/citation.cfm?id=1247401
https://www.qemu.org/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://plse.cs.washington.edu/daikon/
https://plse.cs.washington.edu/daikon/
http://doi.acm.org/10.1145/3186411.3186417
http://doi.acm.org/10.1145/3186411.3186417
http://doi.acm.org/10.1145/2815400.2815420
http://doi.acm.org/10.1145/2815400.2815420
https://www.blackhat.com/docs/us-15/materials/us-15-Domas-The-Memory-Sinkhole-Unleashing-An-x86-Design-Flaw-Allowing-Universal-Privilege-Escalation.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Domas-The-Memory-Sinkhole-Unleashing-An-x86-Design-Flaw-Allowing-Universal-Privilege-Escalation.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Domas-The-Memory-Sinkhole-Unleashing-An-x86-Design-Flaw-Allowing-Universal-Privilege-Escalation.pdf
https://xenproject.org/2012/06/13/the-intel-sysret-privilege-escalation/
https://xenproject.org/2012/06/13/the-intel-sysret-privilege-escalation/
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
http://dx.doi.org/10.1007/s10836-013-5403-y
http://doi.acm.org/10.1145/1837274.1837466
http://doi.acm.org/10.1145/1837274.1837466
http://doi.acm.org/10.1145/503272.503275
http://dx.doi.org/10.1007/978-3-540-31980-1_30
http://dx.doi.org/10.1007/978-3-540-31980-1_30
http://doi.acm.org/10.1145/1134285.1134325
http://doi.acm.org/10.1145/1453101.1453150


[36] M. Gabel and Z. Su, “Symbolic mining of temporal
specifications,” in Proceedings of the 30th International
Conference on Software Engineering (ICSE). ACM, 2008,
pp. 51–60. [Online]. Available: http://doi.acm.org/10.1145/
1368088.1368096

[37] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou, “AutoISES:
Automatically inferring security specifications and detecting
violations,” in Proceedings of the 17th USENIX Security
Symposium. USENIX Association, 2008, pp. 379–394.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1496711.
1496737

[38] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan,
W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard,
“Automatically patching errors in deployed software,” in
Proceedings of the 22nd Symposium on Operating Systems
Principles (SOSP). ACM, 2009, pp. 87–102. [Online].
Available: http://doi.acm.org/10.1145/1629575.1629585

[39] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim,
“Cross-checking semantic correctness: The case of finding
file system bugs,” in Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP). ACM, 2015, pp. 361–
377. [Online]. Available: http://doi.acm.org/10.1145/2815400.
2815422

[40] F. Yamaguchi, F. Lindner, and K. Rieck, “Vulnerability
extrapolation: Assisted discovery of vulnerabilities using
machine learning,” in Proceedings of the 5th USENIX
Conference on Offensive Technologies (WOOT). USENIX
Association, 2011, pp. 13–13. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2028052.2028065

http://doi.acm.org/10.1145/1368088.1368096
http://doi.acm.org/10.1145/1368088.1368096
http://dl.acm.org/citation.cfm?id=1496711.1496737
http://dl.acm.org/citation.cfm?id=1496711.1496737
http://doi.acm.org/10.1145/1629575.1629585
http://doi.acm.org/10.1145/2815400.2815422
http://doi.acm.org/10.1145/2815400.2815422
http://dl.acm.org/citation.cfm?id=2028052.2028065
http://dl.acm.org/citation.cfm?id=2028052.2028065

	Introduction
	Properties
	Astarte Design
	Overview
	Trace Generation
	Property Mining
	Partitioning on Control Signals
	Identifying Control Signals

	Postprocessing
	Intersection Across Trace Sets
	Transitive Closure
	OS-Specific Values
	Identify Global Properties


	Implementation
	Evaluation
	Trace Data
	Control Signals
	Effect of Postprocessing
	Assessing the Properties with Respect to Security
	SMM
	SYSRET
	Manually Developed Properties

	Performance
	Operating System-Enforced Properties
	Properties in the Specification

	Related Work
	Conclusion
	References

