
Mining Security Critical Linear Temporal Logic
Specifications for Processors

Calvin Deutschbein, Cynthia Sturton
The University of North Carolina at Chapel Hill

{cd, csturton}@cs.unc.edu

Abstract—This paper presents UNDINE, a tool to automat-
ically generate security critical Linear Temporal Logic (LTL)
properties of processor architectures. UNDINE handles complex
templates, such as those involving four or more variables, register
equality to a constant, and terms written over register slices. We
introduce the notion of event types, which allows us to reduce the
complexity of the search for a given template. We build a library
of nine typed property templates that capture the patterns that
are common to security critical properties for RISC processors.
We evaluate the performance and efficacy of UNDINE and our
library of typed templates on the OR1200, Mor1kx, and RISC-V
processors.

I. INTRODUCTION

A recent analysis of seven years of published AMD errata
found that a significant fraction (9%) of the errata posed
security vulnerabilities; moreover, each of the 60 processors
studied was affected by at least one security vulnerability [1].
Eliminating these bugs is a challenge. Hardware companies
invest heavily in testing and verifying their designs, but these
techniques work by finding violations of specified properties.
If secure behavior has not been specified, insecure behavior
will not be noticed.

Specification mining automates the process of developing a
set of properties from a given hardware design. The current
state of the art focuses on finding properties that fit known
patterns common across hardware designs, such as one-hot
encoding or alternating bits [2], [3], [4]. While existing tools
can produce tens of thousands of properties for a single design,
they do not produce a security specification.

Prior work in generating security specifications for proces-
sors has relied on human expertise to manually develop a set of
security properties [5], [1], [6]. More recently, SCIFinder used
statistical learning to label a mined property as security critical
or not [7]; however, the technique produced only non-temporal
properties and relied on human expertise to produce the initial
training set of properties. What is missing is a library of the
patterns security critical properties exhibit, analogous to the
one-hot encoding or alternating bit patterns used in functional
specification mining. Given such a library, a new design can
be mined to generate a set of security properties with little
human intervention.

We present UNDINE, a tool for mining security specifica-
tions of processor designs. The specifications take the form of
linear temporal logic formulas and capture properties that are
critical to the security of the processor.

We introduce the notion of event types and we use these
to find the patterns that are common to the manually and
semi-automatically generated security properties of prior work.
Using our event types, we build a library of typed property
templates and develop a specification miner for use with the
typed templates.

To generate the security critical properties of interest, our
miner must be able to handle complex templates, such as
those involving four or more variables, register equality to a
constant, and terms written over register slices. To the best of
our knowledge no existing miner provides all of these features.
We build our miner on top of the Texada specification mining
tool [8]. We modify Texada to accept typing information from
traces and to reason effectively about register slices. We add
pre- and post-processing steps to provide the needed typing
information to traces of execution, apply filters to reduce the
complexity of the search, and compose related properties to
generate a concise set of properties that lend themselves to
simple English descriptions and are critical to security.

We demonstrate the use of our typed property templates and
type-aware specification miner by mining security specifica-
tions of three open source RISC processors: OR1200, Mor1kx,
and RISC-V. Using our library of typed templates, we are able
to automatically mine 25 of the 28 known security critical
properties on OR1200. UNDINE also finds new security critical
properties that require temporal logic to express. We provide
an example exploit for one such property we mine on Mor1kx.

II. TOOL

A. Overview

Figure 1 provides an overview of the UNDINE workflow.
In a preliminary step, the processor design is simulated to
generate traces of execution. Traces provide input to UNDINE,
which works in three steps: preprocessing, mining, and post-
processing. During preprocessing UNDINE converts the traces
of execution to traces of typed events and then applies a filter.
During mining UNDINE takes filtered, typed event traces and
a typed property template, and produces a set of security
critical properties. During postprocessing UNDINE synthesizes
properties to produce a manageable set of properties that can
be understood by the user and are critical to the security of
the processor.

We will use the following security property as a motivating
example while describing this process:

Fig. 1. An overview UNDINE, which uses a modified version of the Texada
specification miner.

a s s e r t property
((˜ ((e x i n s n & ’ hFFFF0000) >> 16 == 8 1 9 2))
| | (i d f l u s h p i p e == 1)) ;

This property was developed manually in prior work [1]
and states that when a syscall instruction is being executed
the instruction pipeline should be flushed at the instruction
decode phase. It is critical to security because a syscall causes
a change in privilege level, and the instruction following a
syscall in the pipeline, which will not be part of the system
call, should not be executed at the elevated privilege level.

B. Simulation

A trace of execution is produced by simulating the register
transfer level (RTL) specification of the design under consid-
eration. The value of each signal in the RTL model is logged
at every clock cycle. More formally, a trace T is an ordered
sequence of time-stamped, signal–value pairs:

T =[(q, x)t, (r, y)t, (s, z)t, . . . ,

(q, x′)t+1, (r, y
′)t+1, (s, z

′)t+1, . . . ,

(q, x′′)t+2, (r, y
′′)t+2, (s, z

′′)t+2, . . .],

where q, r, s represent state-holding signals in the design,
and x, y, z represent numeric values. Tick-marks indicate the
passage of a single clock cycle: if x represents the value of
register q at time t, x′ represents the value of register q at time
t+ 1. We will use this notation throughout the paper. Where
context makes the meaning clear, we will sometimes overload
terms and use q, r, s to mean both the register and its value.

Each signal–value pair in the trace is an event. A standard
value change dump (VCD) file as produced by many simula-
tors suffices as a trace of execution. An excerpt from the VCD
file produced by simulating the OR1200 processor is shown
in Listing 1.

C. Typed Events

Central to the design of UNDINE is the notion of a typed
event. We define five event types.
• register–register (RR): (q1 == q2). Two registers, q1 and q2,

have the same value.

o r 1 2 0 0 c t r l . e x i n s n == 1234
o r 1 2 0 0 c t r l . i d f l u s h p i p e == 1
. . / / t h i s d e n o t e s a change i n t i m e
o r 1 2 0 0 c t r l . e x i n s n == 4321 / / e t c .

Listing 1. Excerpt of a trace of execution from the OR1200 processor.

LTL
.
= G(φ)

φ
.
= φ→ φ | ¬φ | φ | φ ∧ φ | φ ∨ φ

| φ U φ | X φ | e
e
.
= RR | DR | RV | SV | BV

Fig. 2. The grammar of typed LTL properties. The temporal operators
(G,U,X) have the standard definitions of Globally, Until, neXt. The event
types (RR, DR, RV, SV, BV) are as defined in section II-C.

• delta–register (DR): (q′ == q + y). Register q changes by
some value y in the next clock cycle.

• register–value (RV): (q == y). Register q has value y.
• slice–value (SV): (q[i : j] == y). A slice of register q has

value y.
• bit–value (BV): q[i : i + 1] == y. The ith bit of register q

has value y.
Returning to the example, a slice of the register ex insn

is compared to a value, in this case using a bit mask. (This
comparison checks whether the instruction in the execute
phase of the pipeline is a syscall.) This is expressible as
an equivalent slice–value event. The id flushpipe is an
example of a register–value event. The original property can
be restated using our typed events.

a s s e r t property
(˜ e x i n s n [3 1 : 1 6] == 8192 / / SV e v e n t
| | i d f l u s h p i p e == 1) ; / / RV e v e n t

Event types inform the specification mining in two ways:
1) Registers in the design are associated with a particular
type and will only appear in events of the correct type; 2)
Property templates are written in terms of typed events and
only property instances with the correct typing will match a
given template.

D. Grammar of LTL Properties

UNDINE mines for properties by looking for possible instan-
tiations of a given template. It is not limited to a predefined
set of property templates, but rather takes the template as an
input from the user. A user is free to create their own template
or choose one from the library of templates we developed.
Figure 2 defines the language of properties expressible in
UNDINE.

E. Preprocessing

The preprocessor takes as input a set of execution traces
and produces a filtered set of typed event traces ready for

specification mining. There are two tunable parameters to the
preprocessor that determine the trace transformation:
• typing information for signals in the design, and
• register slice size.
In prior work, Zhang et al. found that there is a subset

of registers in the design that are associated with properties
critical to security [7]. We dub these the security-critical
registers. In UNDINE we extend this idea further. We note
that a security-critical register will be used in a property in
a predictable way. For example, the id flushpipe register
from our running example is used in a RV event. In the
security-critical properties developed in prior work [7], [1],
[5] the id flushpipe register appears only in events of
type RV. The first parameter to the preprocessor is the typing
information for the security-critical registers in the design.

Hardware designs often use bit packing, for example, storing
32 individual control bits in a single 32-bit register. Another
design tactic is to encode semantic information in a slice of
a register, as when the highest-order 16 bits of the 32-bit
ex insn register determine whether the instruction is a syscall
instruction. Security properties are often concerned with the
control and semantic information available at the sub-register
level. To enable this, the second parameter to the preprocessor
is the register slice size: the preprocessor will break every
register into its component slices of the given size. As we
discuss in Section II-H, register slicing also reduces the time
complexity of property mining for any given template.

The trace of execution is converted to a filtered trace of
typed events as follows. At each clock cycle in the trace, each
register is split according to the register slice size parameter.
Each register is then labeled with its type as given in the signal
typing parameter. Next, a set of derived events are added to
each clock cycle in the trace. The derived events are calculated
as follows. For every event type that appears in the property
template, for every register of the appropriate type, the set of
possible derived events is added to the trace. The execution
trace from Listing 1 might look like the following after slicing
and typing information have been applied.

e x i n s n [1 5 : 0] == 1234 / / SV
e x i n s n [3 1 : 1 6] == 0 / / SV
i d f l u s h p i p e == 1 / / RV

Finally, at each clock cycle, registers in the execution trace
that are of a type that does not correspond to any of the event
types in the property template under consideration are removed
from the trace.

F. Mining

After preprocessing, the filtered typed event traces and the
property template are pased to the specification miner.

UNDINE is built on top of the Texada LTL Specifications
Miner [8]. Texada takes in a trace of events and a property
template and produces all property instantiations of the given
template that are true of the event trace. We modify Texada
to handle typed events and typed LTL property templates.
With event types, potential properties that would otherwise

match the property template, but have a type mismatch can be
discarded early. The event types provide an effective filter at
both the preprocessing and the mining stage.

Two additional modifications to Texada include discarding
registers with uninitialized values and adding support to rec-
ognize and effectively handle sliced registers.

G. Postprocessing

The postprocessing step combines and simplifies properties
to produce a more manageable set of final properties. First, all
properties that contain an implication are sorted by antecedent.
Properties that have the same antecedent are grouped into a
new property in which all the consequents are ANDed to-
gether. Second, properties containing an implication are sorted
by consequent and all properties with the same consequent are
grouped into a new property in which all the antecedents are
ORed together. Finally, the properties are simplified using the
Z3 SMT solver [9].

H. Complexity

As with most specification miners the time complexity of
UNDINE is exponential in the number of unique terms in the
property template under consideration [10]. Its complexity is
given by eT , where e is the number of unique events in the
set of traces being mined and T is the number of events in
the template.

Register slice size affects the run time of UNDINE in two
ways. If the slice size is aligned with semantic and control
components of a register the templates required to capture the
desired security properties tend to be simpler. If, on the other
hand, the slice size is too big or too small the number of
unique events in the template (T) grows. On the other hand,
smaller slices always reduces the number of unique events in
a trace (e).

III. EVALUATION

A. Property Templates

We developed a library of nine typed LTL templates that
describe the patterns common to security critical properties for
open source, RISC, pipelined processors. These are described
in Table I. The first eight templates in the library come from
studying security critical properties developed, either manually
or semi-automatically, in prior work [7], [5], [1]. The ninth
template comes from our own study of the processor design
specifications.

Columns three and four of Table I list how many properties
each template produced when mining the OR1200 processor
(Section III-F provides details on our evaluation set up).
Column five lists how many of the known security critical
properties of prior work ([7], [5], [1]) were found by each
template. In total our templates find 25 of the 28 security
critical properties of prior work. The 3 properties not found
require a bit shift that is determined dynamically, which is not
supported by the UNDINE grammar.

Template 9 exercises the U (until) LTL operator and is
necessary for finding properties that ensure the processor is

TABLE I
TYPED PROPERTY TEMPLATES

Typed Mined Postproc’d Known
ID Template Properties Properties Properties

1 G(RRa) 2 2 1

2 G(SVa → ¬RRb) 46843 32 2

3 G(SVa → SVb) 8134 376 2

4 G(SVa | ¬SVb) 5794 431 1

5 G((SVa & SVb) → RRc) 1026262 19 14

6 G(SVa → DRb) 13088 4 1

7 G((SVa & SVb) → BVc) 204138 3 1

8 G(SVa → (SVb | RRc)) 525322 648 1

9 RR U G(BV) 134 134 0

initialized correctly. We discuss this template further in the
next section.

B. Mining with Temporal Templates

Often, properties are defined for the processor starting at
the first clock cycle after reset. These assume that processor
state is initialized correctly; if it is not, security may be
compromised without violating any property. Specifying the
sequence of events required for secure initialization requires
temporal operators, something not handled by prior work on
defining security properties.

Using template (9) (RR U G(BV)), we mine properties on
the mor1kx processor and find seven groups of registers that
must be equal to each other until the initialization period has
ended (until ¬reset). These properties are listed in Table II.
The first six properties describe registers that are free to change
their values after reset; the seventh property describes registers
that must always be equal and could therefore have been
captured with the simpler G(BV) template. In Section III-E we
use property (5) from Table II as a case study and examine
how a violation of the property can lead to an exploitable
security vulnerability.

C. Performance with Security Optimizations

We examine the performance benefits of introducing typed
events. Table III compares mining time for each template for
each of three versions of UNDINE: Naive, Security Signal,
and Typed. The Naive implementation uses traces containing
events from all registers, allows any signal to be associated
with an event of any type, and does not include type checking
in the miner. The Security Signal implementation uses traces
with only registers associated with security critical properties,
allows any signal to be associated with an event of any type,
and does not include type checking in the miner. The Typed
implementation uses traces with only registers associated with
security critical properties, uses only events in which signals
have the right type, and includes type checking in the miner.
In all except the most trivial cases, mining is prohibitively
expensive without any typing.

Fig. 3. Slice size affects the mining rate and quantity of output properties.

D. Performance with Slicing

The register slice size is a parameter to the preprocessor
and is adjustable by the user. Smaller slice sizes lead to fewer
possible unique events for a given trace, giving a performance
boost to the miner. However, changing the slice size in either
direction can affect the number of property instantiations for
any given template as well as the rate at which properties can
be mined. We explore this trade-off in Figure 3 using example
template (BV U G(SV → RR).

E. Example Exploit

In the mor1kx processor, the exception, output, and basic
status registers must be equal until initialization completes.
Property (5) (Table II) captures this requirement. The lowest
order bit of the basic status register indicates whether the
processor is in supervisor mode or not. After initialization
the basic status register holds the current status unless an
exception has occurred, in which case the status register is
saved to the exception status register. We add a bug to the
control module of the mor1kx processor that violates this
property. The bug changes the initial value of the exception
status register and modifies the exception status register update
to update all bits except the lowest order bit. As soon as an
exception occurs, the correct value of the supervisor mode bit
is lost. We exploit this bug to put the register in supervisor
mode while executing user level code after an exception.

F. Number of Properties

We evaluate UNDINE on three open source RISC pro-
cessors: mor1kx, OR1200, and RISC-V. Using template (5)
G((SV & SV) → RR we mine each of the three processors
until a stable set of properties is reached.

On OR1200 and mor1kx the execution traces were a series
of assembly instructions chosen from all legal instructions that
could be compiled to run in simulation, a linux boot, the built-
in test suites of the system-on-a-chip, and a hello world C
program (for a system call) compiled to run on bare-metal. On
RISC-V, it was three benchmarks: quicksort, towers, vector-
vector-add and a hello world C program (for a system call)
compiled to run on bare-metal. Figure 4 shows how the set
of properties converges to a steady state as the trace length

TABLE II
PROPERTIES MINED USING TEMPLATE (9) ON MOR1KX

Prop ID Registers equal until reset Description
ctrl lsu adr o[31:0], dbus dat o[31:0], du dat o[31:0],

1 mfspr dat o[31:0], pc decode to execute[31:0], Many address and data fields
pc fetch to decode[31:0], spr bus dat i[31:0], spr bus dat o[31:0]

2 decode rfa adr o[4:0], decode rfb adr o[4:0], decode rfd adr o[4:0], Decode stage register file address registers
3 fetch rfa adr o[4:0], fetch rfb adr o[4:0], wb rfd adr o[4:0] Fetch stage register file address registers
4 ctrl rfd adr o[4:0], execute rfd adr o[4:0], fetch rfa adr o[4:0], wb rfd adr o[4:0] Other register file address registers
5 spr esr[15:0], spr sr[15:0], spr sr o[15:0] Status registers and exception status register
6 ctrl epcr o[31:0], pc execute to ctrl[31:0] Program counter and exception program counter
7 du dat i[31:0], snoop adr i[31:0] Debug ports to databus (globally true)

Typed Naive Security Typed
ID Template Implementation Signals Templates

1 G(RRa) t/o 6.823 0.600

2 G(SVa → ¬RRb) t/o 38.682 1.777

3 G(SVa → SVb) t/o 122.186 7.826

4 G(SVa | ¬SVb) t/o 71.694 6.856

5 G((SVa & SVb) → RRc) t/o t/o 217.988

6 G(SVa → DRb) t/o 122.186 18.445

7 G((SVa & SVb) → BVc) t/o t/o 515.168

8 G(SVa → (SVb | RRc)) t/o t/o 1521.896

9 RR U G(BV) t/o 27.995 0.987

TABLE III
TIME IN SECONDS TO MINE TYPED TEMPLATES BY IMPLEMENTATION (T/O

INDICATES TIMEOUT AT 4 HOURS)

TABLE IV
NUMBER OF PROPERTIES AFTER MINING AND AFTER APPLYING TWO

POSTPROCESSING STEPS USING TEMPLATE (5).

Mining Consequent Antecedent
OR1200 597838 234096 22
mor1kx 755530 135378 26
RISCV 278960 104370 8

and number of traces increase on the RISC-V processor. The
OR1200 and mor1kx processors exhibited similar trends.

The figures show the number of properties produced without
postprocessing. Table IV shows how postprocessing reduces
the final number of properties produced by UNDINE.

Runs to steady state finish in under 15 minutes. Table V
shows the time it takes UNDINE to complete a steady state
run for a given architecture, broken out into different stages.

TABLE V
TIME IN SECONDS FOR EACH OF PREPROCESSING, MINING, AND
POSTPROCESSING FOR STEADY-STATE RUNS BY ARCHITECTURE

Preprocessing Mining Postprocessing
OR1200 34.24 171.36 7.87
mor1kx 1.00 105.79 14.58
RISCV 173.20 842.13 3.26

Fig. 4. Mining on RISCV converges to a steady set of properties as trace
length and number of traces increase.

IV. RELATED WORK

Generating Security Critical Properties for Hardware
Designs: SCIFinder semi-automatically generates security
critical properties for a hardware design [7]. Whereas that
tool produces properties expressible in propositional logic, our
tool can produce both propositional and temporal properties
expressed in linear temporal logic.

Extracting Functional Properties from Hardware De-
signs: General properties that do not focus on security have
been found by looking for instances of known patterns, such as
one-hot encoded signals [2], [11]. An alternative approach is
to use data mining to infer properties from traces of execution
of the design [3], [4], [12]. More recent work has focused on
mining temporal properties from execution traces [13], [14],
[15], [16]. A combination of static and dynamic analysis can
extract properties expressed over words [17].

Mining Specifications for Software: The seminal work in
specification mining comes from the software domain [18]
in which execution traces are examined to infer temporal
specifications in the form of regular expressions. Subsequent
work used both static and dynamic traces to filter out less
useful candidate specifications [19]. More recent work has
tackled the challenges posed by having imperfect execution
traces [20], and by the complexity of the search space [21],
[22], [10]. Daikon, which produces invariants rather than
temporal properties, learns properties that express desired
semantics of a program [23].

Generating Security Properties of Software: In contrast
to the hardware domain, in the software domain a number of
papers have developed security specific specification mining
tools. These tools use human specified rules [24], observe
instances of deviant behavior [25], [26], [23], or identify
instances of known bugs [27].

V. CONCLUSION

In this paper we proposed an assertion mining tool, UN-
DINE, which automatically mines securty critical LTL proper-
ties from RTL specifications of processors. The tool produces
manageable numbers of properties which if violated by a pro-
cessor leave possible vulnerabilities over which exploits can
be readily demonstrated. UNDINE runs in minutes, is usable
across different architectures and can be easily parameterized
if necessary. We also propose a typing system for processor
events for security critical LTL properties.

ACKNOWLEDGMENTS

We would like to thank Rui Zhang for insightful comments
as we developed this work, and the anonymous reviewers
for their helpful feedback. This material is based upon work
supported by the National Science Foundation under Grants
No. CNS-1651276 and CNS-1816637, by the Semiconductor
Research Corporation, Intel, and by a Google Faculty Research
Award. Any opinions, findings, conclusions, and recommen-
dations expressed in this paper are solely those of the authors.

REFERENCES

[1] M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “Specs: A lightweight
runtime mechanism for protecting software from security-critical pro-
cessor bugs,” in Proc. of the Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems. ACM, 2015.

[2] S. Hangal, S. Narayanan, N. Chandra, and S. Chakravorty, “IODINE:
A tool to automatically infer dynamic invariants for hardware designs,”
in Proceedings of 42nd Design Automation Conference. IEEE, 2005.

[3] P.-H. Chang and L. C. Wang, “Automatic assertion extraction via
sequential data mining of simulation traces,” in Design Automation
Conference (ASP-DAC), 2010 15th Asia and South Pacific. IEEE, 2010.

[4] S. Hertz, D. Sheridan, and S. Vasudevan, “Mining hardware assertions
with guidance from static analysis,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 32, no. 6, pp.
952–965, 2013.

[5] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin, “Security checkers:
Detecting processor malicious inclusions at runtime,” in IEEE Int’l
Symposium on Hardware-Oriented Security and Trust (HOST), 2011.

[6] ——, “Evaluating security requirements in a general-purpose processor
by combining assertion checkers with code coverage,” in IEEE Int’l
Symposium on Hardware-Oriented Security and Trust (HOST), 2012.

[7] R. Zhang, N. Stanley, C. Griggs, A. Chi, and C. Sturton, “Identifying
security critical properties for the dynamic verification of a processor,” in
Proc. of the Int’l Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2017.

[8] C. Lemieux, D. Park, and I. Beschastnikh, “General LTL specification
mining,” in Int’l Conf. on Automated Software Engineering. IEEE,
2015.

[9] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Int’l
Conf. on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2008.

[10] M. Gabel and Z. Su, “Symbolic mining of temporal specifications,” in
Int’l Conf. on Software Engineering. ACM, 2008.

[11] E. E. Mandouh and A. G. Wassal, “Automatic generation of hardware
design properties from simulation traces,” in International Symposium
on Circuits and Systems. IEEE, 2012, pp. 2317–2320.

[12] L. Liu, D. Sheridan, V. Athavale, and S. Vasudevan, “Automatic gen-
eration of assertions from system level design using data mining,” in
Int’l Conf. on Formal Methods and Models for Codesign. ACM/IEEE,
2011.

[13] W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining for
verification and diagnosis,” in Design Automation Conference. ACM,
2010.

[14] A. Danese, N. Dalla Riva, and G. Pravadelli, “A-team: Automatic
template-based assertion miner,” in Design Automation Conference.
IEEE, 2017.

[15] A. Danese, T. Ghasempouri, and G. Pravadelli, “Automatic extraction
of assertions from execution traces of behavioural models,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2015.
IEEE, 2015, pp. 67–72.

[16] A. Danese, F. Filini, T. Ghasempouri, and G. Pravadelli, “Automatic
generation and qualification of assertions on control signals: A time
window-based approach,” in IFIP/IEEE International Conference on
Very Large Scale Integration-System on a Chip. Springer, 2015, pp.
193–221.

[17] L. Liu, C. Lin, and S. Vasudevan, “Word level feature discovery to
enhance quality of assertion mining,” in International Conference on
Computer-Aided Design (ICCAD). IEEE/ACM, 2012, pp. 210–217.

[18] G. Ammons, R. Bodı́k, and J. R. Larus, “Mining specifications,” ACM
Sigplan Notices, vol. 37, no. 1, pp. 4–16, 2002.

[19] W. Weimer and G. C. Necula, “Mining temporal specifications for error
detection,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2005, pp. 461–476.

[20] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta:
mining temporal API rules from imperfect traces,” in Proceedings of the
28th international conference on Software engineering. ACM, 2006,
pp. 282–291.

[21] M. Gabel and Z. Su, “Javert: fully automatic mining of general temporal
properties from dynamic traces,” in Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of software engineering.
ACM, 2008, pp. 339–349.

[22] G. Reger, H. Barringer, and D. Rydeheard, “A pattern-based approach to
parametric specification mining,” in Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Press, 2013, pp. 658–663.

[23] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The Daikon system for dynamic detection of
likely invariants,” Sci. Comput. Program., vol. 69, no. 1-3, pp. 35–45,
Dec. 2007. [Online]. Available: http://dx.doi.org/10.1016/j.scico.2007.
01.015

[24] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou, “AutoISES:
Automatically inferring security specifications and detecting violations,”
in Proceedings of the 17th Conference on Security Symposium, ser.
SS’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 379–394.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1496711.1496737

[25] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard, “Automatically patching
errors in deployed software,” in Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, ser. SOSP ’09.
New York, NY, USA: ACM, 2009, pp. 87–102. [Online]. Available:
http://doi.acm.org/10.1145/1629575.1629585

[26] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim, “Cross-checking se-
mantic correctness: The case of finding file system bugs,” in Symposium
on Operating Systems Principles. ACM, 2015.

[27] F. Yamaguchi, F. Lindner, and K. Rieck, “Vulnerability extrapolation:
Assisted discovery of vulnerabilities using machine learning,” in Con-
ference on Offensive Technologies (WOOT). USENIX, 2011.

http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dl.acm.org/citation.cfm?id=1496711.1496737
http://doi.acm.org/10.1145/1629575.1629585

	Introduction
	Tool
	Overview
	Simulation
	Typed Events
	Grammar of LTL Properties
	Preprocessing
	Mining
	Postprocessing
	Complexity

	Evaluation
	Property Templates
	Mining with Temporal Templates
	Performance with Security Optimizations
	Performance with Slicing
	Example Exploit
	Number of Properties

	Related Work
	Conclusion
	References

