
Evaluating a Specification for its Support of Mode Awareness using
Discrete and Continuous Model Checking

Alyssa Byrnes1 and Cynthia Sturton1

Abstract— In situations where humans and computers coop-
erate, mode confusion on the part of the human can be danger-
ous. We present a methodology to evaluate a semi-autonomous
system for its support of mode awareness. The methodology
uses discrete-state model checking of the specification and real-
valued model checking of the system in operation. Using the
ISO standard for adaptive cruise control as a case study, we
exhaustively enumerate the instances of four design flaws known
to contribute to mode confusion. We then build a real-valued
model of eight driving scenarios to find which of those instances
of possible mode confusion may lead to a dangerous situation.
We find 116 property violations, and determine 62 of them to
be potentially dangerous.

I. INTRODUCTION

A semi-autonomous system works in concert with a hu-
man operator to achieve a goal. Offloading a portion of
the work to the machine can improve safety, reliability,
and efficiency compared to a solely human effort. Human–
machine cooperation has proven useful in a variety of set-
tings: aviation, industrial automation, nuclear power plants,
medical applications, and most recently, automated driving
aids. Yet, the problem of automation surprises—when the
user is surprised by the behavior of the system—plagues
these systems [1], [2], [3], [4], and can lead to unsafe and
even fatal conditions [5].

A category of automation surprise is mode confusion.
A mode defines a set of behaviors of the machine. The
functionality, the inputs and outputs available, or the cur-
rently controlling entity can all change according to the
mode [6], [7]. Mode confusion can occur if the human cannot
maintain a valid mental model of the machine’s mode or
if the system’s interface is not clear [2]. These two issues
interact: if the system’s state evolution is unpredictable, even
a perfectly designed interface will be insufficient to prevent
mode confusion.

We present a methodology to evaluate the specification1

of a semi-autonomous system for its support of mode aware-
ness in a dynamic physical environment. The methodol-
ogy requires only the specification of the semi-autonomous
system and examines whether the system evolution can be
predictable to the human operator, and if it cannot, what
the consequences to safety might be. By focusing on the
specification we can consider mode awareness early in the
development cycle, before any interface is designed.

1Alyssa Byrnes and Cynthia Sturton are with the Department of Com-
puter Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
27514,USA {abyrnes1,csturton}@cs.unc.edu

1We use “specification” to refer to the enumerated industry standards of
a system.

Prior research has identified numerous categories of design
flaw that can lead to automation surprises [6], [2]. We
examine four of these categories:2 nondeterminism, inconsis-
tent behavior, operator authority limits, and indirect mode
changes. Our insight is that for each category of flaw, a single
property can be written that expresses the absence of the
category. That is, if the specification is flawed, the associated
property will be violated, and an exhaustive enumeration of
these violations will find all flaws of a particular category. We
can therefore use model checking to exhaustively enumerate
all instances of each category of flaw. Unlike prior work
(e.g., [8]), our methodology involves a complete exploration
of the design, rather than the verification of one transition.

We use UCLID [9], [10], a discrete-state formal verifica-
tion tool, to look for violations of the four properties in a
given specification. We use dReach [11], a formal verification
tool that handles nonlinear formulas over real numbers, to
determine whether each of the found property violations may
lead to unsafe conditions in a physical environment.

As a case study, we examine adaptive cruise control
(ACC). Our analysis of the ISO (International Organization
for Standardization) standard finds 116 violations of the
four properties. We develop eight environment scenarios, and
find that of the 116 property violations, 62 could lead to
dangerous situations. Our contributions are:
• A methodology that evaluates an English-language

specification of a semi-autonomous machine for its
support of mode-awareness.

• The formalization of four design flaws known to con-
tribute to mode confusion as properties written in first
order logic, and amenable to verification by model
checking.

• The application of continuous-valued model checking
to prioritize found design flaws for their likelihood to
lead to unsafe conditions in a dynamic environment.

• The evaluation of the ACC ISO standard for its sup-
port of mode awareness, and the identification of 62
instances where the specification does not support mode
awareness and the result may be dangerous on the road.

II. RELATED WORK

The problems that arise when humans and semi-automated
systems work together to achieve a goal have been the subject

2Different researchers have defined the categories differently. We use
the six from Leveson et al. [6], which seem to be comprehensive, and
discard the two categories of flaw—unintended side effects and lack of
appropriate feedback—that are related to non-mode system state and the
interface design, respectively. Those categories are tangential to our central
question of whether a system specification supports mode awareness.



of over 30 years of research covering industrial automation,
aviation, nuclear power plant process control, and medical
applications [3], [2], [1], [12]. The application of formal
methods to identify and prevent these problems represents
its own subfield, and Bolton et al. provide an excellent
review [4]. Here we focus on research specifically targeting
mode confusion and adaptive cruise control systems.

A. Mode Confusion

Sarter and Woods define mode awareness as the ability
for the user to track and anticipate the behavior of the
system [2]. We base the four properties in this paper on
the six flaws identified by Leveson et al. [6]. Butler et al.
formalize properties related to two of the six flaws for their
evaluation of a flight guidance system [8]. They manually
identify the preconditions for each mode transition and then
verify the transitions occur. The approach is not exhaustive,
as there is no guarantee that all such conditions are identified.
Joshi et al. do find an exhaustive list of possible design
flaws in their analysis of a flight guidance system [13].
However, they use an interactive proof checker which is not
fully automated. Others have developed criteria for interface
design to mitigate the risk of mode confusion [14], [15], [12].
That work is orthogonal and complementary to our own.
A well designed interface coupled with a specification that
supports mode awareness will likely yield the best results.

B. Adaptive Cruise Control

Furukawa et al. focus on the interface for adaptive cruise
control and conduct user studies to evaluate how well the
interface supports mode awareness in complicated driving
situations [16]. Horiguchi et al. develop a measure of how
likely an adaptive cruise control interface is to cause mode
confusion and evaluate their metric with a user study [17].
Lee and Ahn use a state transition table-based approach to
look for ambiguities in how the current mode is displayed to
the user [18]. Like our work, they base their analysis on the
ISO standard.3 These studies focus on the interface design
and are orthogonal and complementary to our work.

C. Cyberphysical Model Checking

O’Kelley et al. use dReach to find ranges of safety for a
lane-changing scenario of a car [19]. We use their models as
the basis for our eight environment scenarios. Degani et al.
present a methodology for formalizing a system design plus
a human model that can be reasoned about to find instances
where the system state and the human’s perceived state do
not match and may cause unsafe events [15]. Oishi et al.
implement this methodology [20]. Like our work, theirs uses
both discrete-state and continuous-valued models. Unlike
ours, their work is concerned with finding and defining the
boundaries of the dynamic system that lead to automatic
mode changes. Bass et al. present a similar methodology
using bounded model checking on a human plus system
model to find dangerous scenarios [21], but with discrete
approximations of the continuous environment.

3Their work uses the 2010 version; this work uses the 2018 version.

III. METHODOLOGY

Our methodology involves three phases: analyzing the
specification, modeling user actions, and assessing the con-
sequences to safety. In the first phase we use discrete-state
model checking along with our formalization of standard
design flaws to find possible points of mode confusion in
the specification. Each such point represents a case where the
machine, starting in a state with mode mm, sensing inputs e
from the environment, and receiving inputs u from the user,
will transition to mode m′m, but the user’s mental model of
the system starting from the same state may transition to one
of n possible next modes m1

h,m
2
h, . . . ,m

n
h . This is shown in

Figure 1a. The result of this phase is a complete set of tuples
(m,u, e) that characterize all such points in the specification.

In the second phase (Figure 1b) we build a transition table
that defines what action an ideal user would take for a given
goal, e.g., to go straight or change lanes, and environment—
the location and action of the other cars on the road relative
to the user’s car—when starting in perceived mode mj

h.
In the last phase (Figure 1c), we use continuous-valued

model checking to determine whether the ideal user, in a
given scenario (goal plus environment) and taking action in
accordance with their perception of the current mode, might
end up in a dangerous situation. For each actual state m′m,
each user action ui, and each scenario the model checker
explores how the system will evolve and whether the user’s
car may crash into an environment car before reaching its
goal. We also model the user taking corrective action, albeit
delayed. The following sections describe the three phases.

IV. PHASE 1: ANALYZING THE SPECIFICATION

In phase 1 we find aspects of the specification that could
lead to mode confusion.

A. Adaptive Cruise Control (ACC)

As a case study we target the ACC standard (ISO
15622:2018 [22]). ACC has been in cars internationally since
1998 [23]. With ACC, a car can automatically maintain either
a set speed or a set distance from the car in front. We evaluate
ACC with Full Speed Range of Automation where the car
can come to a complete stop if the car in front stops.

B. Formal Model of ACC Specification

The ACC specification can be modeled as a transition
system M = (V,m,Σ, I, δ) where V is the set of system
variables; m ∈ V is a special variable that indicates the
current mode; Σ is the set of events—inputs from the user
or the environment—that can cause mode transitions; I is
the set of initial valuations to mode m and variables in V ; δ
is a transition relation between pairs of system states, where
each state is characterized by the valuation of mode m and
variables in V and transitions are triggered by events in Σ.

A subset of variables V̂ ⊆ V are visible to the user. In
our model V̂ = {speed}, the current vehicle speed.

Mode can have one of seven values m = {Off, Standby,
Following, Speed Control, Override, Error}. The
two active modes of operation are Following and



(a) Phase 1 (b) Phase 2 (c) Phase 3

Fig. 1: Overview of methodology. In phase 1, model checking enumerates the property violations in the specification. In
phase 2, a transition table defines the human model. In phase 3, For every next-state mode of the machine m′m, for every
scenario, user action u is taken and the resulting situation is evaluated for safety.

Speed Control. In Following, the car’s speed is de-
termined by the distance from the car in front and in
Speed Control the car’s speed is determined by the speed
set by the driver. The car switches between the two modes
based on which speed is lower. The car enters Hold when it
is in Following and the car in front comes to a complete
stop. At this point, a timer starts. If the car in front does not
move in a specific amount of time, the car exits Hold and
goes to Standby. If the car in front does move within the
specified time, the car returns to Following. Lastly, when
the car is in either Speed Control or Following and the
driver presses the gas, the car transitions to Override.

The events Σ = {(u, e) : u ∈ U, e ∈ E} are tuples of user
inputs (U ) and environmental inputs (E).

The transition relation δ is detailed in Table I. Some
transitions were ambiguous; in that case the model includes
all possible transitions. For example, the specification states
that the system can transition from Hold mode to an active
ACC mode automatically, but does not give the transi-
tion conditions nor specifies which ACC active mode. The
model defines it as a nondeterministic transition to either
Following or Speed Control.

C. Properties for Finding Design Flaws

We consider four properties: Operator Authority (OA),
Consistent Behavior (CB), Determinism (Det), and Direct
Mode Changes Only (DMCO). Each property formalizes
desired behavior, i.e., the absence of the associated design
flaw. There is a partial ordering to the properties: OA⇒ CB
⇒ Det. That is, for any model where Operator Authority
is satisfied, Consistent Behavior is satisfied; and for any
model where Consistent Behavior is satisfied, Determinism
is satisfied. There is no strict ordering of Direct Mode
Changes Only with the other three. Among the first three
properties, Operator Authority is the strongest. If OA is true
of the system, it might be reasonable to design an interface
that can handle the burden of making the system usable.
Conversely, a violation of Determinism, which is the weakest
of the ordered three, would indicate a confusing system; it
is unlikely that any interface could make the system usable.

The three ordered properties are related to nondeter-
minism: each considers whether mode transitions behave
predictably for varying levels of fixed internal and environ-
mental state. The more information the user is required to
track in order for the mode to be predictable, the harder it
will be for the user to maintain mode awareness.

Like all properties related to nondeterminism, these three
properties are hyperproperties, rather than trace properties,
and cannot be verified using standard model checking tech-
niques [24]. However, they are amenable to verification
by self-composition [25], [26]. To formally express these
properties, we create two instances of the vehicle model:M1

= (V1,m1,Σ1, I1, δ1) and M2 = (V2,m2,Σ2, I2, δ2) with
events Σ1 = {U1, E1} and Σ2 = {U2, E2}. The properties
are formally stated and evaluated over the asynchronous
composition of the two instances. Direct Mode Changes Only
is a trace property and can be verified by standard model
checking. We describe each of the properties in turn. We use
the notation m′ to indicate the next mode after a transition
and v to indicate the vector of all variables in V .

Property 1 (Direct Mode Changes Only):

(u1 = nil)→ (m1 = m′1).

DMCO states if the user input is nil the mode m does
not change. If DMCO is violated mode transitions can
happen without any user action. An ideal user with a perfect
understanding of the specification has to mentally track the
value of all internal system variables (e.g., time-out timers)
and notice all changes environment changes to correctly track
the current mode and predict the next mode change.

Property 2 (Determinism):

(m1 = m2) ∧ (u1 = u2) ∧ (e1 = e2) ∧ (v1 = v2)

→ (m′1 = m′2).

Determinism says the next mode is determined by current
mode, current variable valuations, user inputs, and envi-
ronment inputs. A violation of Determinism means mode
transitions are unpredictable. Even with perfect knowledge
of the specification, the user cannot predict mode changes
and must rely on the interface to know their current mode.



TABLE I: Transitions of ACC. The last column gives the location of the definition in the specification.

Start Mode Next Mode Transition Condition Specification

Off Standby “ACC Active” button pressed 6.1

Any mode - Off Off “ACC Active” button unpressed 6.1

Standby Following, Speed Control, Hold “ACC” button pressed 6.1

Following, Speed Control, Hold

Error error occurs 6.6

Override driver presses gas 6.3.1.4

Standby
“ACC” button pressed 6.1
Driver presses brake 6.3.1.2

Error Off “ACC Active” button pressed 6.6

Following
Hold car stopped for some t < 3 sec 6.1

Speed Control set speed < following speed 6.1

Speed Control Following following speed < set speed 6.1

Override Following, Speed Control, Hold driver releases gas 6.3.1.4

Hold Following, Speed Control
automatic/random 6.2.4
driver request 6.2.4

Property 3 (Consistent Behavior):

(m1 = m2) ∧ (u1 = u2) ∧ (e1 = e2) ∧ (v̂1 = v̂2)

→ (m′1 = m′2).
CB says that mode transitions depend on current mode,

current valuations to user-visible variables, user inputs, and
environment inputs. If CB is violated the same driver input
in the same starting mode can cause a transition to different
modes depending on the state of hidden system variables. An
ideal user with a perfect understanding of the specification
would have to track the current value of internal system
variables and notice all changes to the environment.

Property 4 (Operator Authority):

(m1 = m2) ∧ (u1 6= nil) ∧ (u2 6= nil) ∧ (u1 = u2)

→ (m′1 = m′2).
OA says that mode transitions depend on current mode

and user inputs. If OA is violated the driver’s input may be
ignored depending on the state of hidden system variables
or inputs from the environment. An ideal user with perfect
understanding of the specification would have to mentally
track the current value of all internal system variables and
the state of the environment. Absent that ability, the user
would have to rely on the interface to understand how or if
their input affected the current mode.

V. PHASE 2: MODELING USER ACTIONS

In phase 2 we model the user’s actions. The model is a
transition table (see Tables II and III) that defines the user’s
action given their goal (to go straight or change lanes), their
environment, and the perceived mode. The table is used in
phase 3 to determine user actions for a given scenario.

VI. PHASE 3: ASSESSING CONSEQUENCES TO SAFETY

In phase 3 we identify those instances of possible mode
confusion that could cause accidents. For each scenario (goal
plus environment), perceived mode m′m, and user action mj

h,

TABLE II: Human Model When Goal is to Go Straight

Enviroment Perceived Mode Action

Front Car Decels

Off Brake
Standby Brake
Following Nothing
Speed Control Brake
Override Brake
Hold NA
Error Brake

Front Car Accels

Off Press Gas Pedal
Standby Press Gas Pedal
Following Nothing
Speed Control Press Gas Pedal
Override Press Gas Pedal
Hold Nothing
Error Press Gas Pedal

we examine whether the user’s car might crash into one of
the other cars on the road.

A. Scenarios

Each scenario involves three cars: the user’s car plus two
other cars on the road. The user has one of two goals:
continue forward or change lanes. The other cars are either
accelerating or decelerating. Table IV lists the scenarios.

B. Modeling Physical Dynamics

The safety assessment uses a model that includes the
physical dynamics of the vehicles and the human actions
and reactions for each possible point of confusion. The
model is defined by the tuple C = (Vu, Vf , Vb, I, T, E,H)
where Vu, Vf , Vb represent the user’s vehicle, front vehicle,
and back vehicles respectively. I represents the initial state
of the vehicles, T represents the goal, E represents the
environment, and H models the human.

In keeping with prior work [19], the vehicles are repre-
sented by a parameterized, nonlinear, 7 degree of freedom
3-D bicycle model [27], V = (B,Ψ, Ψ̇, v, x, y, δ), where B



TABLE III: Human Model When Goal is to Change Lanes

Enviroment Perceived Mode Action

Front Car Decels

Off Release Gas Pedal
Standby Release Gas Pedal
Following Brake
Speed Control Brake
Override Release Gas Pedal
Hold NA
Error Release Gas Pedal

Front Car Accels

Off Press Gas Pedal
Standby Press Gas Pedal
Following Press Gas Pedal
Speed Control Nothing
Override Press Gas Pedal
Hold Press Gas Pedal
Error Press Gas Pedal

TABLE IV: Scenarios Tested

Scenario # Goal Front Car Action Back Car Action

1

Go Straight
Decel Decel

2 Accel

3 Accel Decel
4 Accel

5

Change Lanes
Decel Decel

6 Accel

7 Accel Decel
8 Accel

is slip angle, Ψ is heading angle, Ψ̇ is yaw rate, v is velocity,
x and y are the coordinate positions, and δ is the angle of
the front wheel. The vehicle location is given as a function
of time by the set of ordinary differential equations of the
vehicle model as defined by Althoff et al. [28].

The initial state I determines the initial values for each
parameter in Vu, Vf , and Vb, except Ψ. The trajectory T
determines Ψ = vd ∗ κd, where vd is the desired velocity
and κd is the desired curvature. The desired curvature is de-
scribed by a cubic spline. We use the trajectory planner from
O’Kelley et al. to define the curvature of our vehicle [19].
The environment E determines the rate of acceleration or
deceleration for each vehicle. Finally, the human model
H defines the user’s initial action—as determined by the
perceived mode and the transition tables (Tables II, III)—plus
the user’s corrective action once they realize their mistake,
and the time delay between the two actions.

C. Safety Analysis

For a given instance of the tuple C modeling a possible
point of confusion, continuous-valued model checking is
used to determine for which initial values I would the
user’s car crash into, i.e., have overlapping (x, y) coordinates
with, either of the environment vehicles given the trajectory,
environment, and human model.

The set of initial values I which do not lead to a crash are
the safety set. Let c be an instance of the tuple C in which the
user is not confused, and let c′ be a second instance, identical
to the first except that the user is confused and takes an initial
action followed by delay and then corrective action. If the

safety set for c′ is equal to the safety set for c we say the
point of confusion modeled by c′ is likely not dangerous. If,
on the other hand, the safety set for c′ is a subset of the safety
set for c, then we say the point of confusion is dangerous.

if safetyset(c′) = safetyset(c) then safe

if safetyset(c′) ⊂ safetyset(c) then unsafe

VII. IMPLEMENTATION

A. Phase 1: Analyzing the Specification

We implement the ACC formal model in UCLID, an
automated verification tool [9], [10]. UCLID’s modeling
language is both declarative and imperative and includes
support for the theories of linear integer arithmetic, equality,
arrays, bitvectors, and uninterpreted functions. The ACC
model made use only of the first two, but the additional
theory support would allow UCLID to handle more complex
specifications.

Each of the four properties were expressed in UCLID’s
specification language, which supports a decidable fragment
of quantifier-free first order logic. For the three properties
related to nondeterminism (OA, CD, and Det), we used self-
composition [25], [26] to find violations of the property: the
model comprises two instances of ACC, and the property
was evaluated over the composed two-instance model.

We used UCLID to exhaustively find all violations of
each property. To begin, UCLID is given the model M
and property p, and returns an interpretation to the model
I such that I violates the property: I 6|= p. In the next
iteration, UCLID is given the model M and a new property
p∨ I and returns an interpretation to the model I1 such that
I1 6|= p ∨ I . The exploration continues until either UCLID
finds that the model is satisfied by the newest property:
M |= p ∨ I ∨ I1 ∨ . . . ∨ Im or all interpretations have been
considered. The exploration is guaranteed to terminate, as
the model is finite and therefore there exists a finite number
of interpretations. The iterative exploration is implemented
as a Python wrapper to UCLID.

B. Phase 2: Modeling User Actions

In phase 2 the human’s action is defined for each possible
goal, environment, and perceived mode. The human model
is implemented in Python as a transition table. Phase 3 uses
this Python model when building each verification instance.

C. Phase 3: Assessing Consequences to Safety

We use model checking tool, dReach, and its backend
solver, dReal [11], to implement the model of the physical
dynamics of the vehicles and the human actions and reac-
tions. Each instance in which the user thinks they are in mode
m′h and takes action u, when in fact they are in mode m′m,
is evaluated for each of the eight scenarios. The evaluation
determines whether the user’s car will reach the goal without
crashing into either of the environment cars. The dReal solver
is a decision procedure for nonlinear formulas over real
numbers. Given a system of equations, it returns either δ-
satisfiable, meaning the system of equations are satisfiable



within some range of error δ, or unsatisfiable if there is no
satisfying solution to the equations. We use the front end,
dReach, to describe each scenario: the system of differential
equations that describes each vehicle’s movement, the change
in acceleration and trajectory over time given the human’s
actions, and the goal of the user’s vehicle.

The vehicle parameters and controller parameters were set
according to the values determined empirically by Snider
[29]. We set the starting distance between the user’s vehicle
and environment vehicles at 4.5 meters. The vehicle speed
can range from 0 m/s to 40 m/s. The maximum acceleration
and deceleration are 2.87 m/s2 and 4.33 m/s2 respectively,
as determined by Bokare and Maurya experimentally [30].

When the user is confused about the current mode, and
takes action accordingly, they will always (in our model)
realize their confusion and take corrective action after some
delay. Using experimentally shown responses in adaptive
cruise control scenarios [31], we model the delay at 1.5 s.

VIII. DISCUSSION OF RESULTS

We found 116 property violations in the ACC specifica-
tion. As shown in Table VI, 46 of these violated Determin-
ism, 38 violated Consistent Behavior, 8 violated Operator
Authority, and 24 violated Direct Mode Changes Only. Of
the 116 violations, 62 were found to be dangerous; these
dangerous property violations are described in Table V.

We did not double count violations, but all properties
that violate a weaker determinism property also violate the
stronger property. For example, all violations of Determinism
could be included as a violation of Operator Authority.

We traced these properties to seven ambiguities in the
ISO specification. Each ambiguity causes at least one of
the 62 dangerous property violations. Table VII provides the
details and Figure 2 shows the distribution of each ambiguity
causing violations of the properties.

Fig. 2: Type of Ambiguity Associated with Each Property

Ambiguity 1 (Exiting Standby): Exiting Standby transi-
tions ACC to an active mode, but the specification does
not clarify which one. The car manufacturer is free to
choose either Speed Control or Following. We suggest
strengthening the specification to state that ACC always goes
to Speed Control first.

Ambiguity 2 (Exiting Override): Similarly, exiting
Override transitions ACC to an active mode, but the
specification does not clarify which one. We suggest
strengthening the specification to state that ACC returns to
its prior mode when exiting Override.

Ambiguity 3 (Exiting Hold): The ACC specification al-
lows for automatic transitions from Hold mode to any
other mode, but does not specify under which conditions
those transitions may occur nor what happens when the
user manually exits Hold. We suggest that all automatic
transitions from Hold be fully specified and when the driver
manually exits Hold, ACC should transition to Standby.

Ambiguity 4 (Transition Priority): If multiple events hap-
pen, it is unclear which takes priority. This can lead to 32
potentially dangerous transitions. For example, if the car is in
Speed Control mode, and the car in front slows when the
operator presses the cancel button, the specification does not
state whether the car should transition to Following because
of the reduced speed or Standby because of the user input.
We propose that system errors are given the highest priority,
user inputs the second highest, and internal commands and
environmental inputs the lowest priority.

Ambiguity 5 (Hold Exit Timing): ACC transitions from
Hold to Standby after a set amount of time elapses. Without
knowledge of the internal timer, the driver could think they
are in Hold when they are in Standby, think they are
in Following when they are in Standby, or think they
are in Standby when they are in Following. We suggest
this ambiguity can be handled by the interface, which can
communicate when the transitions happen.

Ambiguity 6 (Error Handling): The user may not know
when the system transitions to Error mode. This ambiguity
led to 11 potentially dangerous transitions. One example
is the transition from Following to Error mode. The
user, expecting the braking and acceleration behavior from
Following mode, may not be prepared to act when needed.
We suggest this ambiguity be handled by the interface.

Ambiguity 7 (Following and Speed Control): ACC
switches between Following and Speed Control

automatically. If the switch is not made clear, the user
may not know which mode they are in. This ambiguity led
to four potentially dangerous transitions. We suggest this
ambiguity be handled by the interface.

IX. CONCLUSION

We analyze the ISO standard for adaptive cruise con-
trol for its support of mode awareness. We exhaustively
enumerate violations of four properties known to support
mode awareness and leverage those findings to discover
seven ambiguities in the specification. Our safety analysis
demonstrates each ambiguity to be potentially dangerous.

X. ACKNOWLEDGMENTS

We thank the anonymous reviewers and Sanjit Seshia
for the helpful feedback. This research is supported by the
National Science Foundation under the Cyber-Physical Sys-
tems Frontier project, VeHiCaL: Verified Human Interfaces,



TABLE V: Dangerous Transitions for Each Scenario

expected next-mode actual next-mode dangerous scenario

Following {Speed Control, Off, Standby, Error} 1, 2, 3, 4
Following Speed Control 1, 2, 3, 4, 5, 6
Hold {Speed Control, Off, Standby, Error} 3, 4
Speed Control Following 5, 6, 7, 8
{Standby, Off, Error, Override} {Following, Speed Control} 5, 6
Speed Control {Standby, Hold, Off, Error, Override} 7, 8

TABLE VI: Count of Dangerous Violations per Property

Property # Violations # Dangerous Viol.

Nondeterminism 46 24
Inconsistent Behavior 38 12
Lack of Operator Authority 8 8
Indirect Mode Change 24 18

Total 116 62

TABLE VII: Count of Dangerous Violations per Ambiguity

Ambiguity # Violations # Dangerous Viol.

Exiting Standby 2 2
Exiting Override 2 2
Exiting Hold 54 25
Transition Priority 60 25
Hold Exit Timing 4 3
Error Handling 50 11
Follow or Spd Control 4 4

Control, and Learning for Semi-Autonomous Systems (grant
No. CNS-1544924). Any opinions, findings, conclusions, and
recommendations expressed in this paper are solely those of
the authors.

REFERENCES

[1] N. B. Sarter, D. D. Woods, C. E. Billings, et al., “Automation
surprises,” Handbook of human factors and ergonomics, vol. 2, 1997.

[2] N. B. Sarter and D. D. Woods, “How in the world did we ever get into
that mode? mode error and awareness in supervisory control,” Human
Factors, vol. 37, 1995.

[3] D. A. Norman, “The problem with automation: inappropriate feedback
and interaction, not over-automation,” Philosophical Trans. of the
Royal Society B, 1990.

[4] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using formal
verification to evaluate human-automation interaction: A review,”
Trans. on Systems, Man, and Cybernetics Part A:Systems and Humans,
vol. 43, 2013.

[5] C. E. Billings, Aviation automation: The search for a human-centered
approach. Mahwah, NJ: Lawrence Erlbaum Associates, 2018.

[6] N. Leveson, L. D. Pinnel, S. D. Sandys, S. Koga, and J. D. Reese,
“Analyzing software specifications for mode confusion potential,” in
Workshop on Human Error and System Development. Glasgow
Accident Analysis Group, 1997.

[7] A. Degani, “Modeling human-machine systems: On modes, error,
and patterns of interaction,” Ph.D. dissertation, Georgia Institute of
Technology, 1996.

[8] R. W. Butler, S. P. Miller, J. N. Potts, and V. A. Carreno, “A formal
methods approach to the analysis of mode confusion,” in 17th Digital
Avionics Systems Conf., vol. 1. AIAA/IEEE/SAE, 1998.

[9] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, “Modeling and verifying
systems using a logic of counter arithmetic with lambda expressions
and uninterpreted functions,” ser. LNCS 2404, E. Brinksma and K. G.
Larsen, Eds., 2002.

[10] S. A. Seshia and P. Subramanyan, “UCLID5: Integrating modeling,
verification, synthesis, and learning,” in MEMOCODE. IEEE, 2018.

[11] S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT solver for
nonlinear theories over the reals,” in International Conf. on automated
deduction. Springer, 2013.

[12] G. A. Jamieson and K. J. Vicente, “Designing effective human-
automation-plant interfaces: A control-theoretic perspective,” Human
Factors, vol. 47, 2005.

[13] Joshi, Miller, and Heimdahl, “Mode confusion analysis of a flight
guidance system using formal methods,” in 22nd Digital Avionics
Systems Conf. IEEE, 2004.

[14] M. Heymann and A. Degani, “Formal analysis and automatic gener-
ation of user interfaces: Approach, methodology, and an algorithm,”
Human Factors, vol. 49, 2007.

[15] “Formal Verification of Human-Automation Interaction,” Human Fac-
tors: The Journal of the Human Factors and Ergonomics Society,
vol. 44, 2002.

[16] H. Furukawa, T. Inagaki, Y. Shiraishi, and T. Watanabe, “Mode aware-
ness of a dual-mode adaptive cruise control system,” in International
Conf. on Systems, Man and Cybernetics, vol. 1. IEEE, 2003.

[17] Y. Horiguchi, R. Fukuju, and T. Sawaragi, “An estimation method
of possible mode confusion in human work with automated control
systems,” in SICE-ICASE International Joint Conf. IEEE, 2006.

[18] S. H. Lee and D. R. Ahn, “Design and verification of driver interfaces
for adaptive cruise control systems,” Journal of Mechanical Science
and Technology, vol. 29, 2015.

[19] M. O’Kelly, H. Abbas, S. Gao, S. Shiraishi, S. Kato, and R. Mang-
haram, “APEX: Autonomous vehicle plan verification and execution,”
2016.

[20] M. Oishi, I. Mitchell, A. Bayen, C. Tomlin, and A. Degani, “Hybrid
verification of an interface for an automatic landing,” in Conf. on
Decision and Control, vol. 2. IEEE, 2002.

[21] E. J. Bass, K. M. Feigh, E. Gunter, and J. M. Rushby, “Formal
modeling and analysis for interactive hybrid systems,” Electronic
Communications of the EASST, vol. 45, 2011.

[22] I. 15622, “Intelligent transport systems–adaptive cruise control
systems–performance requirements and test procedures,” 2018.

[23] P. Bhatia, “Vehicle technologies to improve performance and safety,”
2003.

[24] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, 2010.

[25] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow
by self-composition,” in Computer Security Foundations Workshop.
IEEE, 2004.

[26] R. Shemer, A. Gurfinkel, S. Shoham, and Y. Vizel, “Property directed
self composition,” in International Conf. on Computer Aided Verifica-
tion. Springer, 2019.

[27] R. Rajamani, Vehicle dynamics and control. Springer Science &
Business Media, 2011.

[28] M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” Trans. on Robotics, vol. 30, 2014.

[29] J. M. Snider et al., “Automatic steering methods for autonomous
automobile path tracking,” Robotics Institute, Pittsburgh, PA, Tech.
Rep. CMU-RITR-09-08, 2009.

[30] P. Bokare and A. Maurya, “Acceleration-deceleration behaviour of
various vehicle types,” Transportation research procedia, vol. 25,
2017.

[31] K. Zeeb, A. Buchner, and M. Schrauf, “Is take-over time all that
matters? The impact of visual-cognitive load on driver take-over
quality after conditionally automated driving,” Accident Analysis &
Prevention, vol. 92, 2016.


	Introduction
	Related Work
	Mode Confusion
	Adaptive Cruise Control
	Cyberphysical Model Checking

	Methodology
	Phase 1: Analyzing the Specification
	Adaptive Cruise Control (ACC)
	Formal Model of ACC Specification
	Properties for Finding Design Flaws

	Phase 2: Modeling User Actions
	Phase 3: Assessing Consequences to Safety
	Scenarios
	Modeling Physical Dynamics
	Safety Analysis

	Implementation
	Phase 1: Analyzing the Specification
	Phase 2: Modeling User Actions
	Phase 3: Assessing Consequences to Safety

	Discussion of Results
	Conclusion
	Acknowledgments
	References

