
Transys: Leveraging Common Security Properties
Across Hardware Designs

Rui Zhang, Cynthia Sturton
University of North Carolina at Chapel Hill

{rzhang, csturton}@cs.unc.edu

Abstract—This paper presents Transys, a tool for translating
security critical properties written for one hardware design
to analogous properties suitable for a second design. Transys
works in three passes adjusting the variable names, arithmetic
expressions, logical preconditions, and timing constraints of the
original property to retain the intended semantics of the property
while making it valid for the second design. We evaluate Transys
by translating 27 assertions written in a temporal logic and
9 properties written for use with gate level information flow
tracking across 38 AES designs, 3 RSA designs, and 5 RISC
processor designs. Transys successfully translates 96% of the
properties. Among these, the translation of 23 (64%) of the
properties achieved a semantic equivalence rate of above 60%.
The average translation time per property is about 70 seconds.

I. INTRODUCTION

The Spectre [1] and Meltdown [2] attacks, along with
their variants [3], [4], have demonstrated the importance of
validating the security of a processor design. To do so,
one needs a comprehensive set of properties describing the
security requirements of the design. Developing such a set
is challenging. The high-level goals of confidentiality and
integrity of a particular security domain—and availability of
a machine in general—may be well understood, but mapping
these goals to the cycle-by-cycle behavior of specific registers,
signals, and ports in a design is difficult, and a matter of art as
much as science. In practice this effort must be repeated for
each new design, even for new generations of existing designs.

We present Transys, a tool that takes in a set of security
critical properties developed for one hardware design and
translates those properties to a form that is appropriate for
a second design. The insight that led to this work is the
recent research into security specification development and
security validation tools, which uses properties developed
for one processor design in order to evaluate the proposed
methodology on a second design [5], [6], [7]. The properties
must be translated manually, and this process is mentioned
only in passing, but it suggests that the properties crafted for
one processor design can be made suitable for a second design.

We examine the question more closely. We investigate
how the translation may be done programmatically, and we
build Transys to implement our approach. We go beyond
processor cores and include RSA and AES implementations in
our evaluation. We examine properties from the two security
verification methods in use today: assertion based verification
using a restricted temporal logic, and gate level information
flow tracking using set and assert tags. We find that cross-

design, and in the case of a processor core, cross-architecture
security specification translation is feasible and practical.

The problem statement is this: given a property written for
one design, produce an equivalent property suitable for the
verification of a second design.

It is not always clear what “equivalent” means. For exam-
ple, prior work has demonstrated that the following policy,
although relatively simple, is critical to security and holds for
many pipelined RISC architectures [6]:

Policy 1. The zeroth general purpose register (GPR0) must
always contain the value 0.

To ensure that the above policy is upheld for a particular
design D, a designer might craft the following property, which
if proven to hold for all possible traces of execution (along
with a proof that GPR0 is initialized to 0), will enforce the
desired policy.

PD
.
= wr_enable→ rf_addr 6= 0. (1)

Property PD states that if a write to the register file is en-
abled (wr_enable) then the register being written (rf_addr)
is not zero—i.e., general purpose register 0 is not the target
of the write.

However, the same property may not be true of a second
design D′, even though the design enforces the same policy.
Design D′ might require the following property:

PD′
.
= wr_enable→ rf_addr 6= 0 ∨ rf_data = 0, (2)

which states that writes are enabled only when GPR0 is not
the target of the write or when the value being written is 0.
Design D′ does not satisfy property PD and an effort to verify
the property will fail; however the underlying policy that we
care about is upheld.

Given two properties written over the registers, signals,
and ports of two different designs, it is not clear how to
formally define equivalence between them. We therefore take
an operational approach. We start with observations about how
properties are likely to morph from one design to another: for
example, varying pipeline stages may affect in which clock
cycle a signal becomes valid; flags may be laid out differently
in control registers; and additional gating signals may be used
in one design, but not in another. We then define a set of steps
that modify property PD in a set, limited number of ways to
build a property PD′ that is valid for design D′. We build a
system that can reliably translate properties from one design to

another, without requiring a formal definition of the intended
high-level security policies each property is in aid of.

The gist of the approach is to do the translation in three
phases: the first phase substitutes the appropriate signals, ports,
and register names of the second design into the property; the
second phase adjusts the arithmetic expressions and timing
constraints of the newly drafted property; and the third phase
refines the precondition of the new property. Transys takes as
input the property to be translated and the RTL implementation
of both the original design and the new design. No instrumen-
tation or manual modeling of either design is required.

Transys does not obviate the need for human involvement
in security property specification. In fact, manual review of
the generated properties is a required step of the Transys
workflow. Transys does, however, do much of the heavy
lifting for the designer, leveraging work done by others in the
community tackling the security validation of similar designs,
and providing an initial set of security properties. In our
evaluation, we manually analyze the new properties to decide
if they are semantically analogous to the original set.

We have implemented a prototype of Transys on top of
Yosys[8] and it supports translating security assertions for
hardware designs written in Verilog. To evaluate Transys, we
collect 38 AES designs, 3 RSA designs, and 5 RISC processor
designs, along with 27 temporal logic assertions and 11
information flow tracking assertions. Transys can successfully
translate 96% of the properties across the evaluated hardware
designs. Among these, the translation of 23 (64%) of the
properties achieved a semantic equivalence rate of above 60%.
The average translation time per property is about 70 seconds.
The results indicate that Transys can be practically used by
hardware verification teams.

II. SECURITY PROPERTIES

We focus on properties developed for a hardware design
at the register transfer level (RTL). An RTL design defines
the registers, signals, and ports in a hardware module and
describes how data flows through the module in each clock
cycle. Properties are written for use with a particular verifica-
tion method, and each method has an associated specification
language in which the properties can be expressed. We present
the two main logic systems used to express security properties
of hardware designs.

A. Restricted Temporal Logic

Assertion based verification (ABV) is widely used in in-
dustry for the functional validation of hardware designs [9].
Properties expressed in a restricted temporal logic are added,
in the form of assertion statements, to the RTL design and
simulation-based testing or static analysis is used to find
violations. Researchers have recently begun to adapt ABV for
the security validation of a hardware design [10], [5], [7], [6].

The security properties that have been developed to date
make use of existing industry standard libraries for expressing
assertions [11] and are written in a fragment of linear temporal
logic that includes the globally (G) and next (X) operators

LTL(G,X)
.
= G(φ)

φ
.
= s→ s

s
.
= f | Xs

f
.
= a | ¬f | f ∨ f | f ∧ f | f → f

a
.
= t == t | t 6= t | true
t
.
= reg | N | reg+ reg | reg− reg

| reg << N | reg >> N

| reg[N : N]

Fig. 1: The restricted temporal logic used by security properties expressed as
assertions, where reg is a signal, register, or port in the design, and N is the
set of natural numbers.

property : (set_stmt)∗ . . . (assert_stmt)∗

|(set_stmt)∗ . . . (gated_assert_stmt)∗

|(set_stmt)∗ . . . (declass_assert_stmt)∗

set_stmt : ‘set’ reg ‘:=’ tag
assert_stmt : ‘assert’ reg ‘==’ tag

gated_assert_stmt : ‘assert’ reg ‘==’ tag ‘when’ expr
declass_assert_stmt : ‘assert’ reg ‘==’ tag ‘allow’ reg

tag : ‘high’ | ‘low’

Fig. 2: The syntax used to track how information flows through a hardware
design at the gate level. A property is a series of set statements over source
variables and assert statements over sink variables. The assert statements may
be made conditional using when. Declassification is done using allow.

with a syntactic restriction that conforms to the grammar
shown in Figure 1. In particular, the properties are of the
form G(A → B), where A and B are boolean combinations
of arithmetic expressions and may contain the X operator.
Transys can be used to translate these properties.

B. Information Flows

The properties expressible in the temporal logic are trace
properties: individual traces of execution either satisfy or
violate the given property. However, properties about how
information flows through the processor are not immediately
expressible as trace properties, but rather require hyperproper-
ties [12], [13]. Whereas a trace property can be defined by a set
of traces—those traces that satisfy the property, a hyperprop-
erty is defined by a set of sets of traces—those systems that
satisfy the property. Properties about confidentiality, such as
asserting an absence of side channels, or about integrity, such
as asserting which security domains can influence the control
flow of a protected domain are examples of hyperproperties.

These properties can be handled at the language level, using
typed hardware description languages [14], [15], [16]. An
alternative approach is gate level information flow tracking
in which shadow state added to the hardware design tracks
how data flows. Standard trace properties expressed over the
shadow state can then evaluate how information is allowed
to flow through the original design. This approach has the
advantage that existing designs, written in current industry
standard hardware description languages, can be validated.
The approach has been studied in the literature in a series
of papers [17], [18], [19].

Type Description

Memory
Access

P01: Memory value in equals register value out
P02: Register value in equals memory value out
P03: Memory address equals effective address
P04: Calculation of memory address or memory data
is correct

Exception
Related

P05: Execution privilege matches page privilege
P06: Updates to exception registers make sense
P07: Privilege escalates correctly
P08: Privilege deescalates correctly
P09: Exception return updates state correctly
P10: Interrupt implies handled
P11: Enter supervisor mode is on reset or exception
P12: Exception handling implies exception mecha-
nism activated
P13: Exception handler accessed only during excep-
tion, in supvr mode, or on reset

Control
Flow

P14: Jumps update the PC correctly
P15: Jumps update the LR correctly
P16: Continuous Control Flow
P17: Flags that influence control flow should be set
correctly
P18: Link address is not modified during function
call execution

Update
Registers

P19: SPR equals GPR in register move instructions
P20: SR is not written to a GPR in user mode
P21: SPR modified only in supervisor mode

Correct
Results

P22: Destination matches the target
P23: Reg change implies that it is the instruction
target

Instruction
Executed

P24: Instruction is in a valid format
P25: Instructions unchanged in pipeline
P26: Unspecified custom instructions are not allowed

Table I: Security properties of OR1200 processor mined from the specification.

Gate level information flow tracking requires tagging source
variables with the appropriate level (e.g., “high” or “low”)
of information, asserting the correct level is maintained for
sink variables, and deciding when to conditionally disable the
assert or under what circumstances to allow declassification.
Transys can be used to translate these properties as well and
we describe their syntax in Figure 2.

C. Hardware Security Properties

We present the security properties for three classes of
designs: RISC processor cores, AES implementations, and
RSA implementations. Table I shows the security properties of
the OR1200 processor. These security properties are collected
from the literature [10], [5], [6] and can be categorized
as follows: control flow related properties, exception related
properties, memory access related properties, properties to
ensure execution of the correct and specified instructions, and
properties about correctly updating results.

Tables II and III show the security properties of the AES
designs and RSA designs, respectively. These we developed
manually by studying the respective specifications.

Table IV shows information flow properties for AES and
RSA implementations. These properties are collected from
work on gate level information flow tracking [20] and were,
to the best of our knowledge, developed manually.

We used only a subset of the AES properties during the
development of Transys. The rest of the properties we reserved
for use in the evaluation of Transys.

Module Description
Key
Expansion

P27: The round constant for each round of the key
expansion should be correct.
P28: Round keys should be derived from the cipher
key correctly.

Substitution
Box

P29: The S-box should avoid any fixed points and
any opposite fixed points.

Add Round
Key

P30: The subkey is added by combining each byte of
the state with the corresponding byte of the subkey
using bitwise XOR.

Shift Rows P31: The ShiftRows step operates on the rows of the
state; it cyclically shifts the bytes in each row by a
certain offset.

Table II: Security critical properties of AES cryptographic hardware mined
from the specification.

Module Description
RSA Top P32: The output cipher should be different from the

input key.

Table III: Security critical properties of RSA cryptographic hardware mined
from the specification.

Type Description
Confidentiality P33: The key or intermediate results should not

directly flow to a point observable by an attacker.
Integrity P34: The key should never be altered.

Isolation P35: The intermediate encryption results are allowed
to flow to output when the core is working in debug
mode, but are prohibited under normal operation.
P36: The key is safe to flow to the ciphertext while
it should not flow to another location.

Timing
Channel

P37: The secret key should not flow to the ciphertext
ready signal otherwise there would be a timing side
channel.

Table IV: Information flow security properties of cryptographic hardware.

III. PROBLEM STATEMENT

Given an RTL design D1, a property PD1
that is written in

a formal logic stated over the registers, signals, and ports of
design D1, and a second design D2, how can we produce a
second property PD2

that
1) is a valid property for the specification of design D2, and
2) captures the same security policy as property PD1 .

IV. THREAT MODEL

Transys is a tool to ease the development of security critical
properties, and in doing so promote and encourage the security
validation of hardware designs and expand the set of security
critical properties validated.

The end goal is to strengthen the security of our hardware
designs by eliminating bugs in the implementation or flaws in
the design that are exploitable in software, post deployment,
by the attacker. The attacker has knowledge of or can learn
the details of the hardware design and is capable of finding
and designing exploits for any bugs or flaws in the design.

Security validation is not addressing the threat of malicious
trojans that get added during fabrication, nor does it prevent
attacks post-deployment that involve tampering with or mod-
ifying the hardware.

Once the set of properties have been developed for a design
they can be used to detect subsequent malicious modifications
to the design. If the modification violates one of the security

No. Original New Format Simplified
1

A→ B

A ∧ C → B (A ∧ C)→ B
2 A ∨ C → B (A→ B) ∧ (C → B)
3 A→ B ∧D (A→ B) ∧ (A→ D)
4 A→ B ∨D (A ∧ ¬D)→ B

Table V: Possible formats of translated assertions in the new design. The
simplifications are standard propositional rewrite rules.

properties, the violation can be found during verification. (The
method of verification matters here—model checking, execu-
tion monitors in use post-deployment, and symbolic execution
can provide guarantees about coverage, whereas simulation
based testing does not.) We caution, however, that Transys uses
the code of the second design to build the translated property;
a well crafted trojan already extant in the code can affect the
final property. Manual review of the set of properties created
is a required step of the Transys workflow.

V. DESIGN

Transys takes as input two hardware designs and a set of
security-critical properties for the first design, and outputs a
set of translated properties for the second design. For each
property P of the first design, the goal is to produce a new
property P ′ that is written over the registers, signals, and ports
of the second design and that preserves the semantics of P for
the second design. To achieve this goal, Transys must solve
four challenges:

1) The registers, signals, and ports in the original property
may not have counterparts in the second design; if they
do, the counterparts will likely not have the same name.

2) The arithmetic expressions in the original property may
not be appropriate for the second design.

3) The conditions required to enforce a given policy might
differ between designs. For example, in the property
described in the introduction, PD has the form A → B,
but PD′ requires the form A → B ∨ C to capture the
same policy.

4) Policies often have to be stated across multiple clock
cycles. For example, a wr_enable signal set in one clock
cycle may be seen by the register file in the following
clock cycle. Timing details depend on the specifics of
an implementation and can vary across designs. The
translated property will need to take that into account.

A. Overview

Transys works in three passes to address the four challenges
above: variable mapping pass, structural transformation pass,
and constraint refinement pass. We start with an overview of
the three passes and then describe each one in detail in the
following sections. Figure 3 shows the workflow of Transys.
Variable Mapping Pass. To begin, Transys maps the registers,
signals, and ports named in the properties of the first design
to the registers, signals, and ports (hereafter, variables) of the
second design (Section V-B).

We first find the matching code windows of the two designs
to narrow the scope of variables to map. We then extract
statistical, semantic, and structural features of each variable,

Variable
Mapping Pass

Structural
Transformation

Pass

Constraint
Refinement

Pass

Po = Ao -> Bo

P = A -> B

P' = A -> B'

P'' = A' -> B' Transys

Input Property
Design

D1
Design

D2

Output Property

Fig. 3: The workflow of Transys.
Type Feature

Statistical

Variable Type (Input, Output, Wire, Reg)
No. of Blocking Assignments
No. of NonBlocking Assignments
No. of Assignments
No. of Branch Conditions
No. of Always Block Conditions

Semantic Variable Names

Structural
Dependence Graph Depth
No. of Operators
Centroid

Table VI: Features from AST and PDG for variable mapping.

and calculate the distances between each pair of variables from
the two designs. The variable pairs with shortest distance are
used as mapped variables.
Structural Transformation Pass. In the next pass, Transys
uses the Program Dependence Graphs (PDGs) [21] of the two
designs to adjust the arithmetic expressions in the translated
property. We use the PDG of the first design to learn the
relationship between multiple variables in the property, and
we traverse the PDG of the second design to build the arith-
metic expressions of, and capture the analogous relationship
between, the variables in the translated property. In practice
we apply this step to only the consequent part of the property;
we found the structural transformation was not needed for the
antecedent. However, there is no limitation that would prevent
applying this pass to the antecedent as well, should future
properties require it.
Constraint Refinement Pass. In the third pass Transys refines
the constraints of the property by adding terms to the boolean
formula. Starting with the form A→ B, there are four possible
modifications Transys might make. These, along with their
simplified forms, are laid out in Table V. The first and fourth
formats represent a refinement of the original property—
an added constraint under which the property holds—and
Transys will produce properties that require this refinement.
The second and third formats are not refinements of the
original property, but rather introduce new properties of the
second design. This can be seen in the “Simplified” column
of Table V. Transys does not produce these new properties.

B. Variable Mapping Pass

In this pass we are concerned only with mapping variables
named in one design to their appropriate counterpart in the
second design.

1) Matching Windows: Similar to feature-based image
alignment approaches [22], we search for matching variables
within a reasonable range instead of within the entire code
base. Modules in the Hardware Description Language by
nature are good windows for matching: it keeps the semantic
meaning of some functionalities and the size of each module
is often reasonable to search. As the two hardware designs
for assertion translation often share the same specification, we
simply match modules with their names using Equation 4. We
thus narrow down the scope of variables to map and search
the mapped variables within corresponding modules.

2) Extracting Features: For each variable from the two de-
signs within the corresponding matching windows, we extract
three types of features from the Abstract Syntax Tree (AST)
and the Program Dependence Graph (PDG): statistical fea-
tures, semantic features, and structural features (see Table VI).

The statistical features include: the variable type; the num-
ber of times this variable appears in the left-hand-side of
blocking assignments, nonblocking assignments, and assign-
ment statements; and the number of times it appears in the
branch conditions and always block conditions. The statistical
features describe local statistics of a variable within a module.
These features are extracted from the AST of the design.

The semantic features point to the semantic meaning of a
variable. We use the variable name as a feature because it
usually explains what this variable is about. For example, the
variable ex_insn in the OR1200 processor holds the instruction
in the EX pipeline stage. Different design implementations
often share similar variable names for the same variable.

The structural features capture the position of a variable in
a PDG. We choose three features: dependence graph depth,
numbers of operators, and centroid. The dependence graph
depth is the maximum length of paths of the PDG from any
statement that contains the variable to the input ports of the
module. The numbers of operators calculates the number of
times each operation (e.g. &&, ||, �, ==, >, etc.) appears
in the paths from the statements to the input ports in the
PDG. The centroid measures the centrality of the dependence
graph [23]. We assign each operator a weight (we use the same
weight for every operator) and calculate the centrality of all
the paths from the variable to the input ports of the PDG.

3) Matching Variables: To match variables of two hardware
designs, we calculate distances between the features of pairs
of variables, one from each design. The variable pairs with
shortest distance are used for drafting the assertions.

For statistical features, we use the Euclidean distance for
distance calculation:

dstat(p, q) =
√
(q1 − p1)2 + · · ·+ (qn − pn)2 (3)

For semantic features, we use the Sørensen-Dice index [24]
for distance between two strings calculation:

dseman(s1, s2) = 1− 2× |pairs(s1) ∩ pairs(s2)|
|pairs(s1)|+ |pairs(s2)|

(4)

where pairs(s) is a set of character pairs in string s. The
Sørensen-Dice index satisfies two requirements: (1) a signifi-

Design 1

always @(round_i)

begin

case (round_i)

1: rcon_o = 1;

2: rcon_o = 2;

3: rcon_o = 4;

......

end

Design 2

initial

begin

rcon[0] = 8'h01;

rcon[1] = 8'h02;

rcon[2] = 8'h04;

rcon[3] = 8'h08;

......

end

Fig. 4: Code snippets from AES designs.
Design 1

assign w0 = key[127:96];

assign keyout[127:96] =

w0^tem^rcon(rc);

Design 2

always @*
begin

w0 = key[127:096];

w4 = w0^subword1^{rcon1,24'b0};

w8 = w4^subword2^{rcon2,24'b0};

w12 = w8^subword3^{rcon3,24'b0};

.....

end

Fig. 5: Code snippets from AES designs.

cant substring overlap should point to a high level of similarity
between the strings; (2) two strings which contain the same
words, but in a different order, should be recognized as being
similar. The factor 2 ensures that when the two strings are
exactly the same, the distance is 0.

For structural features, we use Euclidean distance (Equa-
tion 3). Each feature—depth, number of operators, and
centroid—appears as a term in the calculation.

We combine the three distances by assigning each of them
a weight, and thus the distance between two variables is:

d(v1, v2) = αdseman + βdstat + γdstruct (5)

where v1 and v2 are variables from the first and second
designs, respectively. When assigning values to parameters
α, β, and γ, we empirically choose α to be the largest as
the semantic meanings of variable names are usually similar
between designs. We choose β to be the smallest as the
detailed implementation are often different between designs,
thus the structural information will be less similar.

C. Structural Transformation Pass

In the structural transformation pass, we amend the arith-
metic expressions that make up each of the terms in the
property. We start by describing the challenges we met in
translating the properties after the variable mapping pass. We
then discuss our observations and solutions to the challenges.

1) Challenges: We identify three types of structural dissim-
ilarities between designs, which Transys must handle: mapping
state to array, mapping one to many, and mapping constants.

Mapping state to array refers to the case where a variable
is updated according to a state machine in one design, but
in another design, the variable is an array that stores all the
possible values at different states of the state machine. Figure 4
shows code snippets of two AES implementations of the key
expansion. In Design 1, the round constant rcon_o changes
every time the state machine changes to the next state. In
Design 2, all possible values of rcon are stored in an array.

Mapping one to many refers to the case where a variable
from one design can be mapped to several variables in another
design. For example, one design might use temporary variables
to store the intermediate results of long calculations or avoid
large arrays, and a second design might not. Figure 5 shows
code snippets from two AES cores. The variable keyout in
Design 1 maps to the concatenation of variables w0, w4, w8,
and w12 in Design 2. Mapping many to one is the dual case
and also requires structural transformation.

The last type is mapping the constant values used in one
design to the analogous constant values of a second design.
For example, the syscall instruction is encoded differently in
OpenRISC cores versus RISC-V cores. In some cases it is
possible to find a linear transformation from the constant of
one design to its semantic equivalent in the second design, but
in other cases, such as with the syscall encoding, it is not.

2) Transformation Algorithm: We observe that if in the first
design, the variables in the property are related to each other,
the correlation among the variables in design two are often
explicitly stated in the code. Thus, we leverage the PDG to
build the arithmetic expressions of, and capture the analogous
relationship between, the variables in the translated property.

As shown in Algorithm 1, we first check whether in the first
design, the variables in the property are in the same PDG. If
not, we assume that in the second design, the variables in the
translated property are also not in the same PDG. In this case,
we use the translation result of the Variable Mapping Pass as
the result for this pass.

Otherwise, we leverage the PDG to build the property. We
take the mapped variable with the highest score (max_var) and
check whether the other mapped variables are in the same
PDG as the max_var. If not, we move to the next variable in
the vector of mapped variables and check again. We iterate
until all variables in the translated property are in the same
PDG as max_var. Then we find the variable with the second
highest score (line 10).

Finally, we use a propagation algorithm in the PDG to
build the new property. The propagation algorithm takes in
two variables: a starting point variable, and an ending point
variable (max_var is usually taken as the starting point). The
ending point variable can be either an ancestor or a descendant
of the starting point in the dependency graph. We explore both
the ancestors and descendants of the starting point variable
in the PDG until we hit the ending point variable. During
the exploration of each node in the PDG, we replace the
intermediate variables until the ending point variable is shown
in the property. We stop at the ending point variable so that the
property can cover the logic involving the mapped variables
but does not include too long of a calculation.

There is a timing issue during the propagation. Every time
we encounter a nonblocking assignment, we add a Next (X)
to the property (or equivalently, a prev), indicating that there
will be a delay of one clock-cycle for this assignment. Sec-
tion VI shows an example of how we handle the nonblocking
assignment timing.

ALGORITHM 1: Transformation Pass
Input : The property generated from the VM Pass P
Input : A set of PDGs of the Design 1 pdgSet1
Input : A set of PDGs of the Design 2 pdgSet2
Input : A map of variable mapping scores vScoreMap
Output: A new property P ′

1 newAssertSet ← ∅;
2 if in_same_pdg(P, pdgSet1) then
3 max_var ← max_score(P, vScoreMap);
4 for var in P do
5 for v in vScoreMap[var] do
6 if in_same_pdg(max_var, v, pdgSet1) then

break ;
7 end
8 substitute(P , var, v);
9 end

10 var ← max_score(P -{max_var}, vScoreMap);
11 P ′ ← propagate(max_var, var);
12 else
13 P ′ ← P ;
14 end
15 return P’;

D. Constraint Refinement Pass

At this point, we have a draft property of Design 2 in the
form P ′

.
= A → B. We first check whether P ′ is a valid

property of Design 2. If it is, we are done. If it is not, then
we continue with the constraint refinement pass. The goal of
this step is to refine A to A′, such that P ′′ .= A′ → B is a
valid property of Design 2.

We first introduce notation and define the problem; we then
describe the algorithm.

1) Notation and Problem Statement: A hardware design
unrolled for multiple clock cycles can be represented as a
boolean formula φ in conjunctive normal form (CNF): φ .

=
(lp∨ lq)∧ (lr ∨ ls∨ lt)∧ . . ., which is written as a conjunction
of clauses ω, where each clause is a disjunction of literals l
(e.g., ω .

= (lp ∨ lq)). A literal is either a variable xi or its
negation ¬xi.

Let φD2
be the CNF formula representing Design 2 unrolled

for some finite but unbounded number of clock cycles. P is a
valid property of Design 2 if and only if the boolean formula
φD2 ∧ ¬P is unsatisfiable:

φD2 |= P ⇔ (φD2 ∧ ¬P) UNSAT (6)

If φD2
∧ ¬P is satisfiable, in other words, if P is not a

valid property of Design 2, then we look for a sequence of
conjuncts A1 ∧ A2 ∧ . . . ∧ An such that the formula F

.
=

φD2 ∧ ¬P ∧ A1 ∧ A2 ∧ . . . ∧ An is unsatisfiable. Using the
new conjuncts, we define P ′ as follows:

P ′
.
= (A1 ∧A2 ∧ . . . ∧An ∧A)→ B (7)

Then φD2
∧ ¬P ′ is equivalent to F : F ⇔ φD2

∧ ¬P ′, and
therefore equisatisfiable with F . If we are successful in findng
A1∧A2∧ . . .∧An that make F unsatisfiable, then φD2

∧¬P ′
will also be unsatisfiable, and P ′ will be a valid property of
the design: φD2 |= P ′.

There are two possible cases when F is unsatisfiable. The
first case is that the subformula φD2 ∧ A1 ∧ A2 ∧ ... ∧ An is

ALGORITHM 2: Refinement Pass
Input : A CNF formula φ
Input : The property generated from the T Pass P ′

Output: A new property with refined antecedent P ′′

1 if φ ∧ ¬P ′ is UNSAT then return P ′;
2 for t in range(1,MAX_SEQ) do
3 Ωt ← {ωi|(ωi in φ) ∧ (P ′t in ωi)};
4 for ωi in Ωt do
5 Ω′t ← {ωj |(ωj in φ) ∧ (¬l in ωj) ∧ (l in ωi)};
6 for ωj in Ω′t do
7 S ← ∅; step ← 0;
8 ωl ← ωi � ωj ;
9 S ← S ∪ {l|l in ωl};

10 while step < MAX_STEP or False not in ωl or
ωl changes do

11 ωante ← find_ante(ωl, S);
12 S ← S ∪ {l|l in ωante};
13 ωl ← ωante � ωl;
14 step ← step +1;
15 end
16 Ante ←

∧
l in ωl,l 6=I′t

λ(l, 0);

17 if φ∧ Ante is SAT then
18 return P ′∧ ¬Ante;
19 else
20 end
21 end
22 end
23 end
24 return Not Found;

unsatisfiable. In this case, the negation of the new conjuncts
¬(A1∧A2∧ ...∧An) is itself a valid property of φD2

. We are
not interested in this case as it does not relate to the original
property we are translating. The second case is that φD2 ∧
A1 ∧A2 ∧ ... ∧An is satisfiable, and F = φD2

∧ ¬P ∧A1 ∧
A2 ∧ ...∧An is unsatisfiable. In this case, A1 ∧A2 ∧ ...∧An

are the preconditions of the property P . This is the refinement
of the constraints of the translated property.

Constraint Refinement Problem. Given φD, the CNF repre-
sentation of a hardware design unrolled a finite but unbounded
number of clock cycles, and a draft property P such that
φD ∧ ¬P is satisfiable, find a sequence of n conjuncts
A1 ∧A2 ∧ ... ∧An such that:

• φD ∧A1 ∧A2 ∧ ... ∧An is satisfiable, and
• φD ∧ ¬P ∧A1 ∧A2 ∧ ... ∧An is unsatisfiable.

2) Constraint Refinement Algorithm: The constraint refine-
ment algorithm works by finding conflict clauses in the CNF
representation of the design. For each literal l appearing in the
clause ω that contains B (the consequent of the property), the
algorithm searches for a clause ω′ in φD such that ¬l appears
in the clause. These two clauses are conflict clauses. If we
force all other literals appearing in ω and ω′ to evaluate to
false, then φD will be unsatisfiable.

Let λ(l, v) be a function that takes in a literal l ∈ {x,¬x}
and a truth value v ∈ {true, false} and returns a new literal
l′ ∈ {x,¬x} such that l′ evaluates to true when l evaluates

to v.

λ(l, v) =

x if l = x, v = true

x if l = ¬x, v = false

¬x otherwise

Given a CNF formula φ, if there exist conflict clauses ωi and
ωj in φ, where ωi = li1∨ ...∨ lis∨xc, and ωj = lj1∨ ...∨ ljt∨
¬xc, then φ∧λ(li1, 0)∧ ...∧λ(lis, 0)∧λ(lj1, 0)∧ ...∧λ(ljt, 0)
is unsatisfiable. This is because xc ∧ ¬xc is unsatisfiable. By
assigning all other literals in the two clauses ωi and ωj to 0,
subformula ωi ∧ ωj can be simplified to xc ∧ ¬xc, which is
unsatisfiable. Thus, P = ¬(λ(li1, 0)∧...∧λ(lis, 0)∧λ(lj1, 0)∧
... ∧ λ(ljt, 0)) is a property of φ.

Algorithm 2 takes a CNF formula φD and the property
to be refined P ′ as inputs. It first checks whether P ′ is a
valid property of φD, if it is, the algorithm just returns P ′.
Otherwise, it searches for clauses that contain the property P ′

(line 3), and for each clause that contains P ′, it searches for
its conflict clauses (line 5). By combining the results of these
two sets of clauses, the algorithm produces the new property
for φD.

3) Greedy Search: The results we obtained from combining
ωi and ωj often do not include any interesting preconditions,
but just a restatement of the property P ′. This is because when
unrolling the design together with the invariant, some clauses
to connect the invariant with the design need to be added to
φD. To get the preconditions, we have to search further.

We first define the resolve operator �: given two clauses ωi

and ωj , for which there is a unique variable x such that one
clause has a literal x and the other has ¬x, ωi � ωj contains
all the literals of ωi and ωj with the exception of x and ¬x.

Starting from the conflict clauses (line 8), we search for
more clauses that can introduce potential precondition vari-
ables (line 11). ωl keeps track of the current resolved clause.
Every time we find a new conflict clause, we resolve ωl with
the new clause (line 13). The new ωl clause can still make φ
unsatisfiable. We keep expanding the resolved clause, until we
reach the maximum step, or False shows in ωl, or ωl does not
change any more (line 10). Then we generate the antecedent
from ωl and check whether it satisfies the requirements (line
16). If yes, we output the new invariant; otherwise, we keep
on searching (line 17-19).

During the search in find_ante, we search for clauses
greedily. The goal is to keep the antecedent short to be readable
and managable. Thus, every time we find a conflict clause, we
only find the one that introduces one new variable to ωl (we
use a set S to keep track of the found variables).

4) Timing in the Assertions: A property P ′ is asserted at
each clock cycle: φ ∧ ¬P ′ .

= φ ∧ ¬P ′t=1 ∧ ¬P ′t=2 ∧ ... ∧
¬P ′t=MAX_SEQ. To determine the timing constraints in the
assertion, the search for conflict clauses takes place only within
a specific clock cycle (φ ∧ ¬P ′t=ti , line 2 in Algorithm 2),
instead of all clock cycles together (φ ∧ ¬P ′).

The generated property P ′′ from the refinement pass can
contain literals in different time steps. We rank them according
to the timing information, and add the delays between them.

E. Property Does not Exist

A property of one design may not be true of a second design.
This can happen when the two designs implement different
specifications or when one of the designs implements only part
of the specification. For example, some of the AES designs we
collected implemented only encryption and did not implement
decryption. Thus, the properties related to decryption cannot
be translated to these designs. Another example is that for
RISC-V processors, there are three privilege levels, but for
OpenRISC processors, there are only two privilege levels.
Thus, properties related to the middle privilege level of the
RISC-V processor do not have corresponding properties in the
OpenRISC processors. In these cases Transys will typically
fail to produce a translation, which is a reasonable outcome.

F. Bugs in the Code

The structural transformation and constraint refinement
passes leverage the second design itself to translate the prop-
erty. This raises a concern: If there is a bug in the design, it
will be captured in the translated property. This is true. Transys
is meant to be used as an aide to the verification team tasked
with writing security critical properties of a design. Transys
does the heavy lifting of producing a candidate translation,
but it does not obviate the need for human involvement in
property design. A manual review of the translated properties
is a required part of the workflow.

VI. IMPLEMENTATION

We implement Transys based on the Yosys Open Syn-
thesis Suite [8], a framework for Verilog synthesis. Transys
is implemented in C++ with approximately 4,500 lines of
code. The assertions are implemented in SystemVerilog. Each
Pass is implemented as a command in Yosys: the Variable
Mapping Pass and the Transformation Pass are implemented
as new commands (match_variables and transform), and
the Refinement Pass is implemented by modifying the sat

command. We also implement three assisting commands for
building the program dependence graphs (build_pdg), parsing
security assertions to a standard format (read_assertlist) and
adding assertions to the designs for refinement and validation
(append_assertlist).

We build the PDGs on the Register Transfer Level Interme-
diate Language (RTLIL) representation in Yosys. Each node
in the PDG is a Cell or a Wire object, which represents the
netlist data; or a Switch, a Case, or a Sync object, which
represents the decision trees and synchronization declarations;
or an assignment block, which we build to represent the assign
statements. Each edge represents either the control or data
dependence. To build the PDG, we first convert the objects
into nodes. An edge from node A to node B is added if the
inputs to B depend on the outputs of A.

For the timing delays caused by non-blocking assignments
from the Transformation Pass, we add a state machine to
keep track of the signal values in different clock cycles.
For example, if we have an assertion (a == prev(b)), the
implementation of this assertion is:

always @(posedge clk)

begin

prev_b <= b;

end

assert property (a == prev_b);

VII. EVALUATION

Our evaluation aims to answer the following questions: (1)
whether Transys can successfully translate security-critical as-
sertions from one design to another; (2) whether the translated
assertions are valid and capture the meaning of the original
assertions; (3) whether Transys is practical in terms of run-
time; (4) how the translation results are affected by bugs in
the second design.

A. Experiment Setup and Dataset

The experiments are performed on a machine with the Intel
Xeon E5-2620 V3 12-core CPU (2.40GHz, dual-socket) and
62GB RAM. We evaluate Transys on 38 AES designs, 3 RSA
designs, and 5 RISC processor designs in total.

Specifically, we collect 36 open-source AES cores from
GitHub and OpenCores. Of these, 18 are implemented in
Verilog and are evaluated. The remaining 20 are written in
SystemVerilog, which Transys currently does not support. In
addition, we collect 20 AES cores with injected trojans from
TrustHub [25], [26]. We also collect 11 open-source RSA
cores from GitHub, OpenCores, and TrustHub, and 3 of the
them are implemented in Verilog. For CPU designs, we collect
5 open-source RISC processor, 3 of them are implementations
of the OpenRISC architecture (OR1200, Espresso, Cappuc-
cino) and 2 of them are implementations of the RISC-V
architecture (OpenV, Picorv32).

To evaluate Transys on the AES and RSA designs, we
draft 17 assertions for 3 designs to feed as input to Transys
(see Table VII). We also collect 14 information-flow security
assertions for AES and RSA cores from the IFT Model
project [20] (see Table IX). These assertions are drafted for 3
AES and 3 RSA implementations, and cover properties about
confidentiality, integrity, isolation and timing channels. The
first 9 assertions in Table IX are drafted for general AES
and RSA designs, and the last 5 assertions are drafted for
specific malicious designs. Thus, we use the first 9 asser-
tions for our translation evaluation. We use the last 5 for
evaluating the security impact of translated assertions (see
Section VII-G). To evaluate Transys on the processor designs,
we collect 10 security assertions for OR1200 processors from
the SPECS [5], Security Checkers [10], and SCIFinder [7]
projects (see Table VIII). These assertions represent the 6 types
of security properties in Table I.

B. Translation Results

To evaluate whether Transys can successfully translate
security-critical assertions from one design to another, we
test whether it can successfully generate valid assertions for
the new designs. Table X shows the main translation results.
Figures 6, 7, 8, and 9 show the detailed results of the
translation rate for each assertion.

A No. Assertions
A27-01 (keysched.round_i == 1) → (keysched.rcon_o == ’h1)
A27-02 (keysched.round_i == 2) → (keysched.rcon_o == ’h2)
A27-03 (keysched.round_i == 3) → (keysched.rcon_o == ’h4)
A27-04 (keysched.round_i == 4) → (keysched.rcon_o == ’h8)
A27-05 (keysched.round_i == 5) → (keysched.rcon_o == ’h10)
A27-06 (keysched.round_i == 6) → (keysched.rcon_o == ’h20)
A27-07 (keysched.round_i == 7) → (keysched.rcon_o == ’h40)
A27-08 (keysched.round_i == 8) → (keysched.rcon_o == ’h80)
A27-09 (keysched.round_i == 9) → (keysched.rcon_o == ’h1b)
A27-10 (keysched.round_i == 10) → (keysched.rcon_o == ’h36)
A28-01 (keysched.state == 4) → (keysched.next_key_reg[31:0] ==

keysched.next_key_reg[63:32] ⊕ keysched.last_key_i[31:0])
A28-02 (keysched.state == 4) → (keysched.next_key_reg[63:32] ==

keysched.next_key_reg[95:64] ⊕ keysched.last_key_i[63:32])
A28-03 (keysched.state == 4) → (keysched.next_key_reg[95:64] ==

keysched.next_key_reg[127:96] ⊕ keysched.last_key_i[95:64])
A28-04 (keysched.state == 4) → (keysched.next_key_reg[127:96]

== keysched.col_t ⊕ keysched.last_key_i[127:96] ⊕
{keysched.rcon_o, 32’h0})

A29-01 (aes_sbox.d ⊕ aes_sbox.a != 8’hff)
A29-02 (aes_sbox.d != aes_sbox.a)
A32-01 (rsa.msg_in != rsa.msg_out)

Table VII: Security critical assertions of cryptographic hardware. Assertion
A27-01—10 and A28-01—04 are drafted for the AES09 design; Assertion
A29-01—02 are for AES11; Assertion A32-01 is for RSA03. The first number
in A No. refers to the property number in Table II.

ANo. Example Assertions
A01 ((or1200_ctrl.ex_insn&’hFC000000)�26==’h21)→

(or1200_rf.rf_dataw==dcpu_dat_o)
A03 ((or1200_ctrl.ex_insn&’hFC000000)�26==’h21)→

(dcpu_adr_o==operand_a+ex_simm)
A04 (or1200_rf.rf_we==1)→(or1200_rf.rf_addrw!=0)|

(or1200_rf.rf_dataw==0)
A08 ((or1200_ctrl.ex_insn&’hFC000000)�26==9)→

(or1200_sprs.to_sr==or1200_except.esr)
A09 ((or1200_ctrl.ex_insn&’hFC000000)�26==9)→

(or1200_genpc.pc==or1200_except.epcr)
A15 ((or1200_ctrl.ex_insn&’hFC000000)�26==1)→

(or1200_rf.rf_addrw==9)
A17 ((or1200_ctrl.ex_insn&’hFFE00000)�21==1826)&

(operand_a>operand_b)→(or1200_sprs.to_sr[9]==1)
A19 ((or1200_ctrl.ex_insn&’hFC000000)�26==48)→

(or1200_sprs.spr_dat_o==operand_b)
A23 ((or1200_ctrl.ex_insn&’hFC000000)�26==’h38)→

((or1200_ctrl.ex_insn&’h03e00000)�21==or1200_rf.addrw)
A26 ((or1200_ctrl.ex_insn&’hFC000000)�26!=’h1c)

Table VIII: Security critical assertions of the OR1200 design. The first number
in A No. refers to the property number in Table I.

(1) For AES designs, the overall translation rate is 93%.
The 8 failures in the Transformation Pass occur in translating
A28 to the AES08 design, and A29 to the AES06 and AES12
designs. The reason that the Transformation Pass fails is that
the highest-score variable found in the first pass is incorrect,
making it impossible to find a subgraph in the PDG that
includes at least two variables in the assertions.

For the AES05 design, the implementation of one module
is missing in the code we collected, which caused 16 failures
in the Refinement Pass. Transys can translate the assertions
in the first two passes, but fails in the third pass as the code
is incomplete. This shows that our first two passes do not
rely on the completeness of the code base, but the third pass
requires that the code should be complete. If we comment
out the part of the code that instantiates the missing module

A No. Assertion Core
A36-01 set key[0] := high; assert cipher[0] == high AES-04
A36-02 set key[1] := high; assert cipher[7:0] == high AES-04
A36-03 set key[1] := high; assert cipher[31:0] == high AES-04
A36-04 set key[1] := high; assert cipher[63:0] == high AES-04
A33-06 set indata[1] := high; assert count[1] == low RSA-03
A36-05 set inExp[1] := high; assert cipher[1] == high

when ready == 1
RSA-03

A36-06 set inExp[0] := high; assert cipher[0] == low RSA-03
A37-01 set inExp[0] := high; assert ready == low RSA-03
A37-02 set inExp[1] := high; assert ready == low RSA-03
A33-01 set key[0] := high; assert Antena == low AES-T400
A33-02 set key[0] := high; assert TSC_SHIFTReg[0]

== low
AES-T400

A33-03 set key[0] := high; assert Capacitance[0] == low AES-T1100
A33-04 set key[1] := high; assert Capacitance[1] == low AES-T1100
A33-05 set key[1]:=high; assert Capacitance[0] == high AES-T1100

Table IX: Information flow assertions of cryptographic hardware. The first
num in A No. refers to the property num in Table IV, III.

in the original design, Transys can successfully translate the
assertions to AES05.

(2) For AES designs with trojans, Transys successfully
translates all assertions to the 20 trojan-injected AES designs.
For example, as shown in Figure 7, Transys translates 4
AES Information Flow Tracking assertions written in the
AES-04 design (a trojan-free design) to the 20 AES designs
with different trojans injected. The trojans include leaking the
secret key through AM radio, leakage current, spread spectrum
communications, and draining the battery to cause denial-of-
service [25], [26]. In this case, the translated assertions can
potentially be used to detect the injected trojans.

(3) For processor designs, we translate assertions from the
OR1200 to 5 processor designs in two different architectures.
We found that the assertions A19 and A26 do not exist in the
two RISC-V cores: A19 and A26 are about the l.mtspr in-
struction and custom instructions, which are not implemented
in the two RISC-V cores.

We first evaluate the remaining 46 of the 50 total transla-
tions, and among those the translation rate is 85%. Among
the 7 failed cases, 3 of them fail in the Transformation Pass
and 4 of them fail in the Refinement Pass—Transys cannot
find valid preconditions to make the consequent true. All the
failed cases happen when we try to translate the assertions
from OR1K designs to RISC-V designs: 2 of them are to the
OpenV core, and 5 of them are to the Picorv32 core.

We separately evaluate the 4 translations for which the as-
sertion does not exist in the target design. Transys successfully
translates 3 of them. These 3 new assertions are valid but the
policies they capture are different than the original assertions’
policies. The false positive rate here is 75%.

(4) For RSA designs, we translate 1 assertion mined from
the specification, and 5 Information Flow Tracking assertions.
All of them are successfully translated to the new designs.

(5) We also test Transys by translating the assertions back
to the original designs. Transys successfully translates all as-
sertions back to the original designs. This implies the variable
mapping pass can map the variables to themselves, and the
second and third pass preserve the structure of the assertions.

Designs Total Translations Total Succ Fail in VM Pass Fail in T Pass Fail in R Pass Total Transl. Rate
AES 360 336 0 8 16 93%
AES w/ Trojan 400 400 0 0 0 100%
CPU 46 39 0 3 4 85%
RSA 18 18 0 0 0 100%
Total 824 793 0 11 20 96%

Table X: Main results of assertion translation for 18 AES designs, 20 AES designs with trojans, 5 processor designs, and 3 RSA designs.

0

50

100

150

#
of

tr
an
sl
.

A27-01
to A27-10

A28-01
to A28-04

A29-01
to A29-02

A36-01
to A36-04

Assertion Id. (grouped as ranges)

0

20

40

60

80

100

R
at
io

(%
)

n
/
a

Transl. ratio Valid ratio

Fig. 6: AES01—AES18 translation
results: total transl. number and suc-
cess transl. rate.

0

50

100

150

#
of

tr
an
sl
.

A27-01
to A27-10

A28-01
to A28-04

A29-01
to A29-02

A36-01
to A36-04

Assertion Id. (grouped as ranges)

0

20

40

60

80

100
R
at
io

(%
)

n
/
a

Transl. ratio Valid ratio

Fig. 7: AES-T100—AES-T2100
transl. results: total transl. number
and success transl. rate.

0

1

2

3

#
of

tr
an
sl
.

A32-01A33-06A36-05A36-06A37-01A37-02

Assertion Id.

0

20

40

60

80

100

R
at
io

(%
)

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

Transl. ratio Valid ratio

Fig. 8: RSA01—RSA03 translation
results: total transl. number and suc-
cess transl. rate.

0
1
2
3
4
5

#
of

tr
an
sl
.

A01 A03 A04 A08 A09 A15 A17 A19 A23 A26

Assertion Id.

0

20

40

60

80

100

R
at
io

(%
)

Transl. ratio Valid ratio

Fig. 9: CPU translation results: total
transl. number and success transl.
rate.

C. Quality

To evaluate the quality of the translated assertions, we
first check whether the translated assertions are valid for the
target design using the model checking tool Cadence IFV.
We then manually review the assertions alongside the design
specifications to determine whether the translated assertions
are semantically equivalent to the original assertions.

1) Validity: We check whether the translated assertions
are valid by adding them to the target designs and running
Cadence IFV. Figures 6, 7, 8, and 9 shows the results. For
the nine Information Flow Tracking assertions, we do not have
the tool to check the validity of the translated assertions (167 in
total) and thus their validity result is not available. All the other
626 translated assertions can pass verification by Cadence IFV,
indicating that the assertions Transys generates are valid.

2) Equivalence: Figures 10, 11, 12, and 13 show the results
of the equivalence checking. Type equivalence refers to the
case that the translated assertion and the original assertion
belong to the same type or module of security properties,
as given in column 1 of Tables I, II, III, and IV. Semantic
equivalence refers to the case that the translated assertion and
the original assertion are semantically the same.

The translation of assertions to trojan-injected AES designs
achieves 100% semantic equivalence rate. For other designs,
the translation of 23 (64%) assertions has type and semantic
equivalence rate above 60% (between 60% and 100%). The
translations of the remaining 13 (36%) assertions have type
and semantic equivalence rate between 20% to 50%. The
low rates mainly happen in two cases: the translation of
Information Flow Tracking assertions and the translation from
OpenRISC cores to RISC-V cores.

The main reason for the translated assertions to fail to
capture the meaning of the original assertion is because the
variable mapping pass fails to map to an accurate variable or
even fails to map to the correct module in the target design. In

No. Translation Results

Original (keysched.state == 4) → (keysched.next_key_reg[31:0] ==
keysched.next_key_reg[63:32] ⊕ keysched.last_key_i[31:0])

AES01 (round_ctr_reg[0]) & (key_mem_we) & (!round_ctr_inc) →
(key_mem_new == key[255:128])

AES02 u1.r1.t0.w0 == u1.r1.t0.key[127:96]
AES03 (key_exp.key_start==1)&(key_exp.round[1:0]==2’b01)→#1

(key_exp.wr_data==prev(key_exp.key_in[255:192]))|
(key_exp.wr3==0)

AES04 a1.k0b == a1.k0a ⊕ a1.k4a
AES05 n.a.
AES06 (!u0.kld)→#1(u0.w[0]==prev(u0.w[0]⊕u0.subword⊕u0.rcon))
AES07 a1.k0a == prev({a1.k0[31:24] ⊕ rcon, a1.k0[23:0]})
AES08 n.a.
AES09 (keysched.state == 4) → (keysched.next_key_reg[31:0] ==

keysched.next_key_reg[63:32] ⊕ keysched.last_key_i[31:0])
AES10 AES_CORE_DATAPATH.KEY_EXPANDER.key[3] ==

AES_CORE_DATAPATH.KEY_EXPANDER.key_in[31:0]
AES11 (!u0.kld) → #1 (u0.w[1] == prev(u0.w[0] ⊕ u0.w[1] ⊕

u0.subword ⊕ u0.rcon))
AES12 w0_next == sbox_out ⊕ rcon ⊕ w0
AES13 w4 == key[127:96] ⊕ subword ⊕ 16777216
AES14 w4 == w0 ⊕ subword ⊕ {rcon2[31:24],24’b0}
AES15 wNext[1] == w[1] ⊕ wNext[0]
AES16 roundkey_text == mixcolumns_text ⊕ okey
AES17 roundkey_text == mixcolumns_text ⊕ okey
AES18 w7 == key[127:96] ⊕ key[95:64] ⊕ key[63:32] ⊕ key[31:0]

⊕ subword ⊕ 16777216

Table XI: The results of translating A28-01 to 18 AES designs.

all our experiments, we choose the parameters in the Variable
Mapping Phase empirically to be α : β : γ = 3 : 2 : 1. This
combination works well in most cases, but not all of them.

D. Case Studies

In this section, we show 3 examples: (1) translation from
one AES design to another AES design; (2) translation from
one processor design to two different processor designs from
two architectures (OR1K architecture and RISC-V architec-
ture); (3) translating an Information Flow Tracking assertion
from one trojan-free AES design to a trojan-injected design.

A27-01
to A27-10

A28-01
to A28-04

A29-01
to A29-02

A36-01
to A36-04

Assertion Id. (grouped as ranges)

0

20

40

60

80

100

R
at
io

(%
)

Type Equiv. Semantic Equiv.

Fig. 10: Type and semantic equiv. for
AES01—AES18 designs.

A27-01
to A27-10

A28-01
to A28-04

A29-01
to A29-02

A36-01
to A36-04

Assertion Id. (grouped as ranges)

0

20

40

60

80

100

R
at
io

(%
)

Type Equiv. Semantic Equiv.

Fig. 11: Type and semantic equiv. for
AES-T100—AES-T2100 designs.

A32-01A33-06A36-05A36-06A37-01A37-02

Assertion Id.

0

20

40

60

80

100

R
at
io

(%
)

Type Equiv. Semantic Equiv.

Fig. 12: Type and semantic equiv. for
RSA01—RSA03 designs.

A01 A03 A04 A08 A09 A15 A17 A19 A23 A26

Assertion Id.

0

20

40

60

80

100

R
at
io

(%
)

Type Equiv. Semantic Equiv.

Fig. 13: Type and semantic equiv. for
CPU designs.

Pass Translation Results
VM
Pass

(key_exp.pstate==4)→(key_exp.key_in[31:0]==
key_exp.key_in[63:32]⊕key_exp.key_in[31:0])
(key_exp.pstate==4)→ (key_exp.wr_data==key_exp.key_in[255:192])

ST (key_exp.pstate==4)→ (key_exp.wr_data==key_exp.key_in[191:128])
Pass (key_exp.pstate==4)→ (key_exp.wr_data==key_exp.key_in[127:64])

(key_exp.pstate==4) → (key_exp.wr_data==key_exp.key_in[63:0])
i_key == key_exp.key_in
(key_exp.key_start==1)&(key_exp.round[1:0]==2’b01)→#1
(key_exp.wr_data==prev(key_exp.key_in[255:192]))|(key_exp.wr3==0)

CR
Pass

(key_exp.key_start==0)&(key_exp.key_start_L==1)
&(key_exp.round[1:0]==2’b01)→#1
(key_exp.wr_data==prev(key_exp.key_in[191:128]))|(key_exp.wr3==0)
(key_exp.key_start==0)&(key_exp.wr3==1)&(key_exp.init_wr3==1)
&(key_exp.round[1:0]==2’b01)→#1
(key_exp.wr_data==prev(key_exp.key_in[127:64]))|
(key_exp.wr3==0)
(key_exp.key_start==0)&(key_exp.wr3==1)&(key_exp.init_wr4==1)
&(key_exp.round[1:0]==2’b01)→#1
(key_exp.wr_data==prev(key_exp.key_in[63:0]))|
(key_exp.wr3==0)
i_key == key_exp.key_in

Table XII: Detailed results of translating A28-01 to the AES03 design. VM:
Variable Mapping, ST: Structural Transformation, CR: Constraint Refinement.

1) Example 1: We show the details of translating the
assertion A28-01 from AES09 to all AES designs. Table XI
shows the resulting assertions. For the assertions in AES02,
AES03, AES12, we classify them as in the same type as
the original assertion, but not as having equivalent semantics.
For the assertions in AES16 and AES17, they belong to the
calculation of round keys, and thus are neither type equivalent
nor semantically equivalent to the original assertion.

Table XII shows the detailed results of translating assertion
A28-01 from AES09 to AES03. After the Variable Mapping
Pass, keysched.next_key_reg and keysched.last_key_i are
both mapped to key_exp.key_in. The assertion generated is
not valid yet. After the Transformation Pass, Transys outputs
5 assertions. These assertions are generated from the part of
the PDG that contains the variable key_exp.key_in. Only the
5th assertion is valid. Finally, from the Refinement Pass, all
the 4 assertions are refined and are valid. It is worth noting
that the antecedents generated from the Refinement Pass are
neither close to the part of the code of the consequent nor
similar to the original code, and thus it would be difficult for
a human to figure them out manually.

2) Example 2: Table XIII shows the translation results
for translating assertion A04 to five processor designs. The
translation fails in the Refinement Pass when translating
the assertion to the OpenV design. For the other designs,
Transys can successfully generate valid assertions. The trans-

No. Translation Results

Original (or1200_rf.rf_we==1)→(or1200_rf.rf_addrw!=0)|
(or1200_rf.rf_dataw==0)

OR1200 (or1200_rf.rf_we==1)→(or1200_rf.rf_addrw!=0)|
(or1200_rf.rf_dataw==0)

Espresso (mor1kx_rf_espresso.rfa_o_use_last)&
(mor1kx_rf_espresso.result_last[0]==0)&
(mor1kx_rf_espresso.rfd_last==mor1kx_rf_espresso.rfa_r)&
(mor1kx_rf_espresso.rfa_adr_i[0])&
(mor1kx_rf_espresso.rfa_o[0]==0)→
(mor1kx_rf_espresso.rfa_adr_i6=0)|
(mor1kx_rf_espresso.rfa_o==0)

Cappuccino mor1kx_rf_cappuccino.rf_wradr==
mor1kx_rf_cappuccino.wb_rfd_adr_i
(mor1kx_rf_cappuccino.rf_wradr)&
(mor1kx_rf_cappuccino.rf_wrdat)→
(mor1kx_rf_cappuccino.rf_wrdat==0)|
(mor1kx_rf_cappuccino.rf_wraddr!=0)

OpenV n.a.
Picorv32 picorv32.dbg_mem_rdata == picorv32.mem_rdata

Table XIII: The results of translating A04 to 5 CPU designs.

lated assertions for the OR1200, Espresso, and Cappuccino
processors are semantically equivalent. These three designs
are all implementations of the OR1K architecture and it is
easier to translate assertions among them. The assertion for
the Picorv32 does not capture the same semantic meaning,
but it also belongs to the type of security properties that are
relavent to the memory.

3) Example 3: In this example, the Information Flow
Tracking assertion A36-01 for the AES04 design is translated
to the AES-T400 design. In the AES-T400 design, the injected
trojan utilizes an unused pin to generate an RF signal that
can be used to transmit the key bits. The leaked data can
be received by an AM radio, and can be interpreted with a
specific beep scheme. The trojan is implemented in two addi-
tional modules: AM_Transmission and Trojan_Trigger. When
a predefined plaintext is observed, the trojan will be triggered
and the AM_Transmission module will output the key to the
Antena signal following the beep scheme to leak data.

Ideally, the key will flow only to the output ciphertext
(A36-01). The result of our translation for A36-01 to the
AES-T400 design is: set key[0] := high; assert cipher[0]

== high. This indicates that Transys can successfully translate
the assertion to a new design and is not influenced by the two
additional modules of the trojan.

E. Performance

We evaluate the total time it takes for Transys to translate
each assertion from a source design to a target design. Fig-

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

AES Design No.

0

20

40

60

80

A
vg
.
T
im

e
(s
)

Mean

01 02 03

RSA Design No.

0.0

0.2

0.4

0.6

A
vg
.
T
im

e
(s
)

Mean

OR1200 Espresso Cappucino OpenV PicoRV32
0

100

200

300

400
A
vg
.
T
im

e
(s
)

Mean

Fig. 14: Translation time for the AES, RSA and CPU designs.

ure 14 shows the results. The translation times for the trojan-
injected AES designs are similar to the time for the trojan-free
AES design, and are not shown due to space constraints.

We observe that the translation time varies across different
designs, depending on their complexity. The average times
for translating one assertion for AES designs, RSA designs
and CPU designs are 28.8 seconds, 0.46 seconds, and 189
seconds, respectively. For AES and RSA designs, most of
the translation time is spent on the Refinement Pass. For
processor designs, most of the translation time is spent on
the Variable Mapping Pass. The maximum average property-
translation time is 436.8 seconds for the OR1200 design. The
results suggest that Transys is practical enough to be used
by hardware designers on a daily basis to quickly generate
security assertions through translating existing ones.

F. Effectiveness of Each Pass

We evaluate the effectiveness of each pass on translating
assertions across the AES designs and the processor designs.
Tables XIV and XV show the ratio of valid results at the end
of each pass. We observe that each pass increases the valid-to-
invalid ratio substantially, indicating that each pass is effective.

G. Security Impact

In this section, we discuss the security impact of the
translated information flow tracking assertions when there is
a vulnerability in the code. Assertions A33-01—A33-05 in
Table IX can detect trojans in AES-T400 and AES-T1100 [20].
We translate these five assertions to the AES cores with
trojans.

We do not have access to the information flow tracking
tool [20] needed to add the tracking logic necessary to verify
whether the translated assertions can detect trojans. Therefore,
we instead compare the translated assertions with the original
assertions, and compare the trojans between designs. If the
assertions are logically equivalent, and the information leakage
circuits are the same other than the triggering mechanism, then
we infer that the translated assertions would detect the injected
trojans as well.

Table XVI shows the results. The translated assertions of
A33-01 and A33-02 would detect trojans in three AES designs,

Assertion VM Pass ST Pass CR Pass
Total Transl. 360 352 336
Valid Ratio 14% 52% 93%

Table XIV: Accumulative valid ratio of each pass for AES designs.

Assertion VM Pass ST Pass CR Pass
Total Transl. 46 43 39
Valid Ratio 39% 59% 85%

Table XV: Accumulative valid ratio of each pass for CPU designs.

Orig Assert No. Trans. assert can detect trojans in
A33-01, A33-02 AES-T1600, AES-T1700, AES-T400
A33-03, A33-04 AES-T100, AES-T1000, AES-T1100, AES-T1200
A33-05 AES-T200, AES-T700, AES-T800, AES-T900

Table XVI: Results of security impact of translated assertions to detect trojans
in AES cores.

and the translated assertions of A33-03—A33-05 would detect
trojans in eight AES designs. For the remaining nine trojan-
injected designs, we do not have assertions that can detect the
trojans and therefore we cannot determine whether translated
assertions would detect them.

H. Bugs in the Code

We discuss three examples to show the translation results
of Transys when there is a bug in the design. For different
types of bugs, the translation results of Transys can be: failing
to translate, outputting trivially true assertions, or propagating
the bug to the resulting assertions.

1) Translation Failed: The first example shows the case
of translation failure. In the AES05 design we mentioned in
Section VII-B, part of the code base is missing. When we use
Transys to translate the assertions to the AES05 design, we get
the error message in the Refinement Pass showing that some
modules or cells are not part of the design. Thus, one possible
reason for translation failure is missing parts of the code. This
corresponds to the case of no refinement output at all.

2) Trivial Assertions: The second example shows the case
that a certain constraint should be explicitly stated in the
design, but it is not. We show the GPR0 bug in the OpenRISC
cores. In the OR1K specification, the general purpose register
R0 should always be set to zero [27]. A violation of this
property can lead to malicious modification of the memory
data or memory address in calculation. This bug exists in both
the Espresso and the Cappuccino designs [6].

We translate the assertion that enforces R0 to always
be 0 (A04 in Table VIII) from the OR1200 to both the
Espresso and the Cappuccino designs. The results are shown
in Table XIII. The result assertion for the Espresso design can
be simplified to (mor1kx_rf_espresso.rfa_adr_i 6=0)→
(mor1kx_rf_espresso.rfa_adr_i6=0). The result
assertion for the Cappuccino design can be
simplified to (mor1kx_rf_cappuccino.rf_wraddr6=0)→
(mor1kx_rf_cappuccino.rf_wraddr 6=0). In both cases, the
assertions are trivially true (A → A) and there are no other
valid and meaningful assertions. Thus, a bug in the design
due to missing constraints is reflected in translation results
that only have trivially true assertions.

3) Overly Restrictive Assertions: The third example shows
the case that some malicious or buggy code are explic-
itly added in the design. For the AES assertion A29-02
from the AES11 design, Transys successfully translate it to
the AES18 design: aes_sbox.a != aes_sbox.d. This assertion
states the security property that the S-box should avoid
any fixed points. We then maliciously modify the S-box
design in AES18 such that when the input to the S-box is
8’hff, it should output 8’h16 but instead outputs 8’hff. We
then run Transys to translate this assertion again and we
get the new assertion: (aes_sbox.a[7] 6= aes_sbox.d[7]) →
(aes_sbox.a 6= aes_sbox.d). This new assertion is valid for
the buggy design. With the additional antecedent, hardware
experts can easily identify the bug and the condition to trigger
it.Thus, a malicious bug in the design can manifest itself in
the translated assertions (typically as additional antecedents).

VIII. RELATED WORK

Property driven hardware security. There has lately been
a call for “property driven hardware security” [28], [29],
[30] that advocates building security specifications into the
hardware design workflow, automating the process of doing
so, and developing quantifiable measures of security. We see
Transys as a contribution in response to this call.
Developing security specifications. A body of work on the
use of execution monitors in processor designs has pro-
duced a set of security properties for various open source
designs [31], [10], [32], [5]. These properties were developed
manually. Subsequent work showed how to partially automate
the process [7], and tackled temporal properties [33], but still
required an initial set of manually written properties for each
design under consideration. With Transys, the work done to
specify properties for one design can be leveraged to bootstrap
property generation for a second design.
Extracting assertions from hardware designs. Considering
properties beyond those critical to security, there is a body of
work on specification mining from hardware designs. The Io-
dine tool looks for possible instances of known design patterns,
such as one-hot encoding or mutual exclusion between signals,
and creates assertions that encode the found patterns [34].
More recent papers use data mining of simulation traces
to extract more detailed assertions [35], [36] or temporal
properties [37]. While these techniques are not concerned with
finding security properties, they provide lessons on how to
scale assertion extraction effectively.
Assertion based verification of hardware designs. The
properties developed by Transys can be encoded as assertions
and added to the design under review, at which point standard
assertion based verification (ABV) techniques can be used
to find property violations [38]. These techniques include
simulation-based testing [39] and formal static analysis [40],
[41], and are implemented in both commercial [42] and
open source tools [43]. Software-style symbolic execution has
also proven to be effective at finding property violations in
hardware designs [44], [6].

Language based verification. A body of work has emerged
on developing new or extending current hardware descrip-
tion languages for hardware verification. One language based
approach uses typed hardware description languages, which
can enforce security policies by construction [16], [45], [14],
[15]. A second language based approach uses a formally
defined language to first specify a policy and then refine the
specification to a provably correct design [46], [47], [48].
Tracking information flow in hardware. Information Flow
Tracking logic can be added at the gate level [17] or register
transfer level [49] of a hardware design, and can capture timing
flows [18], [19] or data flows [50]. While there is a trade-off
to be made between precision and performance [51], [52],
these techniques can demonstrate whether sensitive inputs to
a design, e.g., the key material input to a cryptographic core,
is directly or indirectly visible in the output signals. As with
language based verification, this approach can provide strong
guarantees, but also requires modifying the original design,
either by adding tracking logic or, as in the case of CPUs,
redesigning from the ground up to provide provable isolation
between software contexts [53], [54].
Software code clone detection. Our Variable Mapping Pass
is inspired by research in software code clone detection. The
techniques used are token-based [55], [56], [57], semantic-
based [58], [59], [60], [61], graph-based [62], [63], [64],
and tracelet-based [65] approaches. Genius [63] uses features
extracted from control flow graphs and converted to high-level
numeric feature vectors to conduct searches. The approach
is scalable and robust to code variation. Gemini [64] uses
a graph-based deep learning approach and achieves high
accuracy and high speed. Our approach combines graph and
semantic-based features and adapts them to RTL code.

IX. CONCLUSION

In this work, we advocate building security properties for
new designs by leveraging existing properties. We present
Transys, an automated tool that translates given security asser-
tions from one hardware design to another in three passes—
variable mapping, structural transformation and constraint
refinement. Transys is able to translate 27 temporal logic
assertions and 11 information flow tracking assertions across
38 AES designs, 3 RSA designs, and 5 RISC processor
designs. The overall translation success rate is 96%. Among
them, the translations of 23 (64%) assertions achieve semantic
equivalence rates of above 60%. The average translation time
per assertion is about 70 seconds.

ACKNOWLEDGMENTS

We would like to thank our shepherd, Dr. Yan Shoshi-
taishvili, and the anonymous reviewers for their helpful and
insightful feedback. This material is based upon work sup-
ported by the National Science Foundation under Grant No.
CNS-1816637. Any opinions, findings, conclusions, and rec-
ommendations expressed in this paper are solely those of the
authors.

REFERENCES

[1] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P’19), 2019.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[3] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,” in Proceedings of the 27th USENIX Security Symposium.
USENIX Association, August 2018.

[4] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre Returns! Speculation Attacks using the Return Stack Buffer,”
in 12th USENIX Workshop on Offensive Technologies (WOOT 18).
Baltimore, MD: USENIX Association, 2018. [Online]. Available:
https://www.usenix.org/conference/woot18/presentation/koruyeh

[5] M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “SPECS:
A Lightweight Runtime Mechanism for Protecting Software from
Security-Critical Processor Bugs,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’15. New York,
NY, USA: ACM, 2015, pp. 517–529. [Online]. Available: http:
//doi.acm.org/10.1145/2694344.2694366

[6] R. Zhang, C. Deutschbein, P. Huang, and C. Sturton, “End-to-end
automated exploit generation for validating the security of processor
designs,” in Proceedings of the International Symposium on Microar-
chitecture (MICRO). IEEE/ACM, 2018.

[7] R. Zhang, N. Stanley, C. Griggs, A. Chi, and C. Sturton, “Identifying
security critical properties for the dynamic verification of a processor,”
in Proceedings of the ACM Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2017.

[8] C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/.
[9] C. N. Coelho and H. D. Foster, Assertion-Based Verification.

Boston, MA: Springer US, 2004, pp. 167–204. [Online]. Available:
https://doi.org/10.1007/1-4020-2530-0_5

[10] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin, “Security Checkers:
Detecting processor malicious inclusions at runtime,” in Hardware-
Oriented Security and Trust (HOST), 2011 IEEE International Sym-
posium on, June 2011, pp. 34–39.

[11] M. T. Harry Foster, Kenneth Larsen, “Introduction to the new accellera
open verification library,” 2006.

[12] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” J. Comput.
Secur., vol. 18, no. 6, pp. 1157–1210, Sep. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1891823.1891830

[13] L. V. Nguyen, J. Kapinski, X. Jin, J. V. Deshmukh, and T. T. Johnson,
“Hyperproperties of real-valued signals,” in Proceedings of the 15th
ACM-IEEE International Conference on Formal Methods and Models
for System Design. ACM, 2017, pp. 104–113.

[14] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A Hardware
Design Language for Timing-Sensitive Information-Flow Security,” in
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’15. New York, NY, USA: ACM, 2015, pp. 503–516.
[Online]. Available: http://doi.acm.org/10.1145/2694344.2694372

[15] A. Ferraiuolo, R. Xu, D. Zhang, A. C. Myers, and G. E.
Suh, “Verification of a Practical Hardware Security Architecture
Through Static Information Flow Analysis,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’17.
New York, NY, USA: ACM, 2017, pp. 555–568. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037739

[16] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf, “Caisson: A Hardware Description Language for
Secure Information Flow,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’11. New York, NY, USA: ACM, 2011, pp. 109–120.
[Online]. Available: http://doi.acm.org/10.1145/1993498.1993512

[17] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong,
and T. Sherwood, “Complete information flow tracking from the
gates up,” in Proceedings of the 14th International Conference on

Architectural Support for Programming Languages and Operating
Systems (ASPLOS). New York, NY, USA: ACM, 2009, pp. 109–120.
[Online]. Available: http://doi.acm.org/10.1145/1508244.1508258

[18] A. Ardeshiricham, W. Hu, and R. Kastner, “Clepsydra: Modeling timing
flows in hardware designs,” in International Conference on Computer-
Aided Design (ICCAD). IEEE/ACM, Nov 2017, pp. 147–154.

[19] B. Mao, W. Hu, A. Althoff, J. Matai, J. Oberg, D. Mu, T. Sherwood, and
R. Kastner, “Quantifying timing-based information flow in cryptographic
hardware,” in Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design. IEEE Press, 2015, pp. 552–559.

[20] W. Hu, A. Ardeshiricham, M. S. Gobulukoglu, X. Wang, and R. Kastner,
“Property specific information flow analysis for hardware security veri-
fication,” in Proceedings of the International Conference on Computer-
Aided Design (ICCAD). ACM, 2018, pp. 89:1–89:8.

[21] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[22] R. Szeliski, Image Alignment and Stitching. Boston, MA: Springer
US, 2006, pp. 273–292. [Online]. Available: https://doi.org/10.1007/
0-387-28831-7_17

[23] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets,”
in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014,
pp. 175–186. [Online]. Available: http://doi.acm.org/10.1145/2568225.
2568286

[24] L. R. Dice, “Measures of the amount of ecologic association between
species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945. [Online].
Available: http://www.jstor.org/stable/1932409

[25] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in 2013 IEEE 31st Inter-
national Conference on Computer Design (ICCD), 2013, pp. 471–474.

[26] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware trojans and maliciously affected circuits,”
Journal of Hardware and Systems Security, pp. 85–102, 2017. [Online].
Available: https://doi.org/10.1007/s41635-017-0001-6

[27] D. Lampret, “OpenRISC 1200 IP core specification,” 2001. [On-
line]. Available: http://www.isy.liu.se/en/edu/kurs/TSEA44/OpenRISC/
or1200_spec.pdf

[28] W. Hu, A. Althoff, A. Ardeshiricham, and R. Kastner, “Towards property
driven hardware security,” in Microprocessor and SOC Test and Verifi-
cation (MTV), 2016 17th International Workshop on. IEEE, 2016, pp.
51–56.

[29] W. Hu, A. Ardeshiricham, and R. Kastner, “Identifying and measuring
security critical path for uncovering circuit vulnerabilities,” in Inter-
national Workshop on Microprocessor and SOC Test and Verification
(MTV), Dec 2017, pp. 62–67.

[30] R. Kastner, W. Hu, and A. Althoff, “Quantifying hardware security using
joint information flow analysis,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2016. IEEE, 2016, pp. 1523–1528.

[31] M. Abramovici and P. Bradley, “Integrated Circuit Security: New
Threats and Solutions,” in Proceedings of the 5th Annual Workshop on
Cyber Security and Information Intelligence Research: Cyber Security
and Information Intelligence Challenges and Strategies, ser. CSIIRW
’09. New York, NY, USA: ACM, 2009, pp. 55:1–55:3. [Online].
Available: http://doi.acm.org/10.1145/1558607.1558671

[32] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin, “Evaluating security
requirements in a general-purpose processor by combining assertion
checkers with code coverage,” in Hardware-Oriented Security and Trust
(HOST), 2012 IEEE International Symposium on. IEEE, 2012, pp. 49–
54.

[33] C. Deutschbein and C. Sturton, “Mining security critical linear
temporal logic specifications for processors,” in Proceedings of
the International Workshop on Microprocessor and SoC Test,
Security, and Verification (MTV). IEEE, 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8746060

[34] S. Hangal, S. Narayanan, N. Chandra, and S. Chakravorty, “IODINE:
A tool to automatically infer dynamic invariants for hardware designs,”
in Proceedings of 42nd Design Automation Conference. IEEE, 2005.

[35] P.-H. Chang and L. C. Wang, “Automatic assertion extraction via
sequential data mining of simulation traces,” in Design Automation
Conference (ASP-DAC), 2010 15th Asia and South Pacific. IEEE, 2010,
pp. 607–612.

[36] S. Hertz, D. Sheridan, and S. Vasudevan, “Mining hardware assertions
with guidance from static analysis,” Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, vol. 32, no. 6, pp.
952–965, 2013.

[37] W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining
for verification and diagnosis,” in Proceedings of the 47th Design
Automation Conference, ser. DAC. ACM, 2010, pp. 755–760. [Online].
Available: http://doi.acm.org/10.1145/1837274.1837466

[38] H. Foster, Applied Assertion-Based Verification: An Industry Perspective,
ser. Foundations and Trends(r) in Electronic Design Automation. Now
Publishers, 2009. [Online]. Available: https://books.google.com/books?
id=hL6d2t6Oh4EC

[39] L.-T. Wang, Y.-W. Chang, and K.-T. Cheng, Electronic Design Automa-
tion: Synthesis, Verification, and Test. Morgan Kaufmann, 2009.

[40] D. Brand, “Verification of Large Synthesized Designs,” in Proceedings
of the IEEE/ACM International Conference on Computer Aided Design
(ICCAD-93). IEEE, 1993.

[41] D.Lin, E.Singh, C.Barrett, and S.Mitra, “A structured approach to post-
silicon validation and debug using symbolic dquick error detection,” in
Proceedings of the IEEE International Test Conference, 2015.

[42] “Cadence Verification Suite.” [Online]. Available:
https://www.cadence.com/content/cadence-www/global/en_US/home/
tools/system-design-and-verification.html

[43] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-Strength
Verfication Tool,” in Comuter Aided Verification (CAV). Lecture Notes
in Computer Science, 2010.

[44] R. Zhang and C. Sturton, “A recursive strategy for symbolic execution
to find exploits in hardware designs,” in Proceedings of the International
Workshop on Formal Methods and Security (FMS). ACM, 2018.

[45] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam,
R. Kastner, T. Sherwood, B. Hardekopf, and F. T. Chong, “Sapper:
A Language for Hardware-level Security Policy Enforcement,” in
Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 97–112.
[Online]. Available: http://doi.acm.org/10.1145/2541940.2541947

[46] M. Vijayaraghavan, A. Chlipala, Arvind, and N. Dave, “Modular
deductive verification of multiprocessor hardware designs,” in Computer
Aided Verification, ser. Lecture Notes in Computer Science, D. Kroening
and C. S. Păsăreanu, Eds. Springer International Publishing, 2015,
vol. 9207, pp. 109–127. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-21668-3_7

[47] T. Braibant and A. Chlipala, “Formal verification of hardware
synthesis,” in Computer Aided Verification, ser. Lecture Notes in
Computer Science, N. Sharygina and H. Veith, Eds. Springer
Berlin Heidelberg, 2013, vol. 8044, pp. 213–228. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-39799-8_14

[48] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind,
“Kami: A platform for high-level parametric hardware specification and
its modular verification,” in Proceedings of the 22nd ACM SIGPLAN
International Conference on Functional Programming (ICFP’17), 2017.

[49] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,” in
Proceedings of the Conference on Design, Automation & Test in Europe
(DATE). European Design and Automation Association, 2017, pp.
1695–1700.

[50] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner,
“Information flow isolation in i2c and usb,” in Proceedings of the 48th
Design Automation Conference. ACM, 2011, pp. 254–259.

[51] A. Becker, W. Hu, Y. Tai, P. Brisk, R. Kastner, and P. Ienne, “Ar-
bitrary precision and complexity tradeoffs for gate-level information
flow tracking,” in Design Automation Conference (DAC), 2017 54th
ACM/EDAC/IEEE. IEEE, 2017, pp. 1–6.

[52] W. Hu, A. Becker, A. Ardeshiricham, Y. Tai, P. Ienne, D. Mu, and
R. Kastner, “Imprecise security: quality and complexity tradeoffs for
hardware information flow tracking,” in Computer-Aided Design (IC-
CAD), 2016 IEEE/ACM International Conference on. IEEE, 2016, pp.
1–8.

[53] M. Tiwari, X. Li, H. M. Wassel, F. T. Chong, and T. Sherwood,
“Execution leases: A hardware-supported mechanism for enforcing
strong non-interference,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 2009, pp. 493–
504.

[54] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf,
R. Kastner, F. T. Chong, and T. Sherwood, “Crafting a usable micro-
kernel, processor, and i/o system with strict and provable information
flow security,” in ACM SIGARCH Computer Architecture News, vol. 39,
no. 3. ACM, 2011, pp. 189–200.

[55] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
July 2002.

[56] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: finding copy-paste
and related bugs in large-scale software code,” IEEE Transactions on
Software Engineering, vol. 32, no. 3, pp. 176–192, March 2006.

[57] W. M. Khoo, A. Mycroft, and R. Anderson, “Rendezvous: A
Search Engine for Binary Code,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, ser. MSR ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 329–338. [Online].
Available: http://dl.acm.org/citation.cfm?id=2487085.2487147

[58] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue, “MUDABlue:
an automatic categorization system for open source repositories,” in 11th
Asia-Pacific Software Engineering Conference, Nov 2004, pp. 184–193.

[59] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow, “Leveraging
semantic signatures for bug search in binary programs,” in Proceedings
of the 30th Annual Computer Security Applications Conference, ser.
ACSAC ’14. New York, NY, USA: ACM, 2014, pp. 406–415.
[Online]. Available: http://doi.acm.org/10.1145/2664243.2664269

[60] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in 2015 IEEE Symposium
on Security and Privacy, May 2015, pp. 709–724.

[61] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 364–374. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337267

[62] H. Flake, “Structural comparison of executable objects,” in In Proceed-
ings of the IEEE Conference on Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA), 2004, pp. 161–173.

[63] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: ACM, 2016, pp. 480–491.
[Online]. Available: http://doi.acm.org/10.1145/2976749.2978370

[64] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song,
“Neural network-based graph embedding for cross-platform binary
code similarity detection,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17.
New York, NY, USA: ACM, 2017, pp. 363–376. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134018

[65] Y. David and E. Yahav, “Tracelet-based code search in executables,” in
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’14. New York,
NY, USA: ACM, 2014, pp. 349–360. [Online]. Available: http:
//doi.acm.org/10.1145/2594291.2594343

