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Using formal methods requires first developing the properties to be verified, which is a difficult and 
time-consuming task. This article describes our research on automating the property generation process 
for information-flow properties that are critical to the security of hardware designs.

O ne barrier to using formal methods is not hav-
ing the right properties to prove. Formal meth-

ods, ranging from lightweight symbolic execution to 
midweight model checking to full formal proofs of cor-
rectness, all require that a property or set of properties 
(or theorems in the case of correctness proofs) first be 
stated in the formal specification language of the tool.

Model checking has long been a part of the design 
verification stage for hardware designs. More recently, 
security assurance teams inside hardware companies 
have begun to incorporate formal methods into the 
security validation process as well. The state-of-the-art 
commercial tools use symbolic simulation, a variant 
of model checking, to verify properties related to how 
information can flow through the design. This type of 
verification is crucial to the effort to identify informa-
tion leakage and access control violation vulnerabilities 
early in the design stages, but the verification effort is 
only as strong as the properties verified.

This article presents our research into automating 
the generation of security properties capturing how 
information flows through a hardware design.1 These 
properties form an information-flow specification of 
the design as studied and capture high-level notions of 
best design practices or designed intent in formally fal-
sifiable register transfer level expressions. These expres-
sions, especially unexpected expressions, can then be 
further studied with formal verification tools, checked 
against Common Weakness Enumerations (CWEs), 
and compared to design intent. The methodology 
we developed joins together two disparate fields of 
research: information-flow tracking (IFT) and security 
specification mining, in a novel technique whereby IFT 
logic makes information-flow properties expressible 
as trace properties amenable to mining. The resulting 
tool, Isadora, creates an information-flow specification 
of a hardware design. The specification can be used as 
a set of security properties suitable for use with exist-
ing security validation tools, and it can also be studied 
directly by the designers to support their understand-
ing of how information flows through the design. Isadora 
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requires no input from the designer beyond the design 
and testbench.

Hardware Security Specification Mining 
Hardware security specification mining automates the devel-
opment of security properties for use with assertion-based 
verification techniques. Initial research in this area was 
limited to producing trace properties—properties that can 
be evaluated over individual traces of execution. Unfor-
tunately, information-flow properties are not express-
ible as trace properties. Analysis situated in the context 
of a single trace of execution cannot show whether or not 
information has flowed from a particular source to a par-
ticular sink. Information-flow properties fall into a more 
complex set of properties called hyperproperties, which 
express behaviors over sets of traces. However, combining 
security specification mining with hardware IFT can pro-
duce information-flow properties. We provide a brief back-
ground on both IFT and security specification mining.

IFT
A foundational theory within system security is the 
lattice model of secure information flow, which estab-
lishes a means of defining and restricting informa-
tion flow through a system to meet a set of security 

requirements.2 The first practical applications of the lat-
tice used a notion of labels to monitor how information 
flowed through a system. More recently, IFT was devel-
oped to analyze hardware designs.

Hardware IFT provides a powerful mechanism that 
can be used to precisely measure digital information 
flows3 and can validate security properties related to 
confidentiality, integrity, and availability. Hardware IFT 
techniques can be used within the context of formal ver-
ification, simulation-based validation, emulation-based 
validation, and runtime checking. Commercial hard-
ware IFT tools now exist from companies like Siemens 
EDA, Cadence, and Tortuga Logic.

The major challenge with using hardware IFT tools is 
that one must first develop the properties to be validated. 
Isadora addresses that problem.

IFT generally works as follows. For each signal s in the 
design, a new tracking signal sT  is added along with the 
logic needed to track how information propagates through 
a design. A set of tracking signals is initially marked at 
tainted by setting the signals’ sT  value as a nonzero value. 
This indicates that the signals contain important informa-
tion relative to the security of the design. All other variables 
are marked as nontainted; that is, their tracking signal is set 
to a value of zero. The IFT tools analyze how that informa-
tion moves throughout the system using some combination 
of formal methods, simulation, emulation, or at runtime 
checking. Security properties are required to indicate what 
signals to track and to specify allowable (and nonallowable) 
flows of information.

Figure 1 shows a simple example tracking information 
flow through an AND gate. This logic performs precise IFT, 
meaning that it considers the functional input values when 
determining the taint value of the output value. This mod-
els cases where certain input values stop the flow of infor-
mation. For example, consider a scenario where 0aT =  (a 
is not tainted) and 1bT =  (b is tainted); that is, we wish 
to understand how information flows from signal b. When 
the design state is a 0=  and b 1,=  the output will not 
be tainted o 0( T =  despite one of the inputs being tainted). 
This occurs because the functional value of a dominates the 
output, and thus, stops the flow of taint from b. Precision 
plays an important role in hardware IFT.4

The key challenge for hardware security validation is 
understanding which signals to track and where that infor-
mation should or should not flow during execution. This 
equates to writing IFT security properties. Currently, this 
is a challenging, mostly manual process. Automating prop-
erty generation is a fundamental challenge in hardware 
security validation.

Security Specification Mining
The formative work in specification mining comes from the 
software domain, in which execution traces are examined 
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Figure 1. IFT for a two-input AND gate. (a) A two-input AND 
gate with inputs a, b, and output o. (b) A tracking logic showing 
a logical model of information-flow propagation. Two additional 
variables aT and bT correspond to whether a and b carry 
tainted information. The tracking logic computes the taint of 
the output variable oT. (c) A partial truth table for the tracking 
logic highlighting that it is possible to have different tracking 
states for the same design state.
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to infer temporal specifications as regular expressions. 
Hardware miners soon followed suit with tools such as 
IODINE, which looks for possible instances of known 
design patterns, such as one-hot encoding or mutual 
exclusion between signals,5 and Goldmine, which com-
bines trace mining with static analysis.6 Sturton and her 
team7 developed specification mining for security-critical 
properties of a hardware design; their approach used 
machine learning and a starting set of known vulner-
abilities to find new properties capable of exposing pre-
viously unknown vulnerabilities. In subsequent work, 
Deutschbein and Sturton8 used known security proper-
ties to develop templates for further mining at scale. In 
Isadora, we move from generating security-critical trace 
properties to generating information-flow properties of 
a design.

Specification mining works by looking for patterns of 
behavior that can be defined over a single trace of execu-
tion, rather than across multiple traces of execution, and 
is therefore limited to finding only trace properties. To 
achieve our objective of capturing information flows, our 
approach is to first instrument a design with IFT logic 
and then apply security specification mining techniques 
to the instrumented design. The miner is still produc-
ing only trace properties, but now, the properties include 
information from the tracking signals.

Properties
Isadora generates two styles of information-flow properties: 
no-flow properties, in which there is no flow of informa-
tion between two design elements, and conditional-flow 
properties, in which there exists some flow of informa-
tion between two design elements but only when the 
design is in a certain state. Isadora can also generate 
unconditional-flow properties, but these tend to be less 
interesting for the purposes of security validation.

No-Flow Properties
Using IFT, we can express the property that information 
from register r1  should never flow to register r2  as a trace 
property; if r1  is the only signal whose tracking signal rT

1  is 
initialized to nonzero, then r2 ’s tracking signal rT

2  should 
remain at zero:

r r r ( , ) ( ) .i0 1 0Gi i
T T

2) "6 ! = =

The G  operator is borrowed from temporal logic and 
indicates that the consequent is globally true. In other 
words, rT

2  will remain equal to zero at all future time steps 
after the antecedent is satisfied. This style of no-flow prop-
erty can be useful for ensuring that unprivileged users can-
not influence sensitive states or for ensuring that sensitive 
information cannot leak through, for example, debug ports. 
However, it cannot capture conditional properties, such as 

a property that register updates are allowed only under cer-
tain power states.

Conditional-Flow Properties
Using IFT, we can express the property that information 
from a register r1  may flow to another register r2  under 
some condition ;P  if r1  is the only signal whose tracking 
signal rT

1  is initialized to nonzero, then r2 ’s tracking signal 
rT

2  may become nonzero only if some predicate P  holds:
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The X  operator is borrowed from temporal logic and 
indicates the next time-step. If rT

2  equals zero at some clock 
cycle, then in the next clock cycle, it will still be zero. This 
style of a conditional-flow property can be used to express, 
for example, that register updates are allowable only under 
certain power states or that memory accesses are allowable 
only when specific access control checks have succeeded.

No-Flow Operator
To express properties in a format that uses only the signals 
in the original design, without including the tracking signals, 
we need an operator that expresses some notion of informa-
tion flow. Both no-flow and conditional-flow properties can 
be expressed using a no-flow operator, for which we use the 
notation / .2= =  Using this operator, no-flow properties 
can be expressed as r r ,/1 22= =  where r1  and r2  are 
registers in the design.

Conditional-flow properties can be expressed as 
r r/ ,e1 2 "2= =  which states that information may 

flow from r1  to r2  but requires that a design not be some 
state ,e  where e  is a Boolean expression in the form of a 
conjunction of comparison relations between two registers 
or between a register and a constant.

Isadora
A naive application of trace-based mining to an IFT- 
instrumented design quickly runs into issues of complex-
ity; the instrumented designs are large and overwhelm 
the miner. Additionally, the miner will discover properties 
over tracking signals and original design signals that are 
meaningless and cannot be transformed back to the space 
of information-flow properties in the original design. To 
handle these issues, we separate the process of identifying 
source-sink flow pairs in the design from the process of min-
ing for the conditions that govern those flows. The key to 
making the approach work is to synchronize the two parts 
using clock-cycle time.

Isadora analyzes a design in four phases: generating 
traces, identifying flows, mining for flow conditions, and 
postprocessing. An overview of the workflow is presented 
in Figure 2.
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First, Isadora instruments the design with IFT logic 
and runs the instrumented design in simulation using the 
user-provided set of testbenches. The result is a trace set 
that specifies the value of every design signal and every 
tracking signal at each clock cycle during the simulation. 
Next, Isadora studies the trace set to find every flow that 
occurred during the simulation of the design. This set of 
flows is complete; if a flow occurred between any two sig-
nals, it will be included in this set. At the end of this phase, 
Isadora also produces the complete set of information-flow 
restrictions: pairs of signals between which no information 
flow occurs. Then, Isadora uses an inference engine (Dai-
kon9) to infer, for every flow that occurred, the predicates 
that specify the conditions under which the flow occurred. 
The final phase removes redundant and irrelevant predi-
cates from the set and logically combines the predicates 
with the information flows to produce the conditional-flow 
properties. These, along with the no-flow properties from 
the second phase, form the information-flow specification 
produced by Isadora.

Trace Generation
To generate traces, we first instrument our original design 
with logic to track information flows and then execute the 
testbench in simulation on this instrumented design. Each 
trace is a sequence of states that this design assumes. Let 

, , ,src n0 1 fG Hx v v v=  be the trace of our design, instru-
mented to track how information flows from one signal, 
src, during testbench execution. Each state iv  is a list of 
triples that store each design signal’s name, value, and cor-
responding tracking signal:

s s s[( , , ),( , , ), ( , , )] .v v v v v vi
t t

m m m
t

i1 1 1 2 2 2 fv =

To distinguish the source of a tainted sink signal, each 
input signal must have a separate taint label. However, 
tracking multiple labels is expensive. Therefore, Isadora 
takes a compositional approach. For each source signal, IFT 
instrumentation is configured to track the flow of informa-
tion from only a single input signal of the design, the src sig-
nal. This process is applied to each signal in a design, and 
these attached labels can be used within Isadora or for other 
design explorations, such as formal verification. The end 
result is a set of traces, each of which describes how infor-
mation can flow from a single input signal to the rest of 
the signals in the design. Taken together, this set of traces 
describes how information flows through the design during 
the execution of the provided testbench.

Finding All Flows
In the second phase, the set of traces is analyzed to iden-
tify, first, every pair of signals between which a flow occurs, 
and second, the times within the trace at which each flow 
occurs. Each trace srcx  is searched to find every clock cycle 
in which a taint’s tracking signal transitions from zero to 
one. In other words, every signal-values triple s( , , )v vt  
that is of the form s 0( , , )v  in state i 1v -  and s( , , )v 1  in 
state iv  is found, and the time i  is noted. Isadora stores 
this as the tuple src s( , ,{ , , }),i i0 1 f  which indicates that 
an information flow from src to s occurred at each time 

{ , , } .i i i0 1 f!  We call this the time-of-flow tuple. There 
can be multiple times of flow within a single trace because 
the tracking value of signals may be reset to zero by design 
events (for example, resets).

Once all traces have been analyzed, the collected 
time-of-flow tuples src s( , ,{ , , })i i0 1 f  are reorganized 
by time. It’s possible that, for a given set of times { , , }i i0 1 f ,  
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Figure 2. An overview of the Isadora workflow.
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there exist multiple discovered information flows. For each 
such set of times output by the previous step, Isadora cre-
ates a set src s src s, ,{( ),( ), }1 1 2 2 f  of all flows of infor-
mation that occurred at exactly those times. This mapping 
from sets of times to corresponding flows between registers 
is one of the tool’s two outputs from this stage.

The other output is a list of source-sink pairs 
src s src s, ,{( ),( ), }fl l  between which information 

never flows. The pairs in this set comprise the noninter-
ference properties of the design and can be specified using 
the no-flow operator. For example, src s. /  2= =

Mining for Flow Conditions
In the third phase, Isadora finds the conditions under which 
a particular flow will occur. For example, if every time src 
flows to s, the register r has the value x, Isadora infers the 
conditional information-flow property:

r src s( ) / .x "J 2= ==

Isadora uses the technique of dynamic invariant detection9 
on traces to infer design behavior using predefined patterns. 
To isolate the conditions for information flow between 
two registers, Isadora analyzes the flow pair output by the 
previous step to find all trace times i  at which information 
flows from src to s during the execution of the testbench. 
We then analyze the corresponding trace to produce a set 
of trace slices of the form , ,i i1G Hv - v  one for each time i  at 
which a flow occurred. These trace slices include only the 
signals of the original design; all tracking logic and shadow 
signals are pruned. Using these trace slices of length two 
allows dynamic invariant detection to generate predicates 
specifying the design state both immediately prior to and 
concurrent with the occurrence of some flow as either 
could potentially contain security-relevant information. 
These predicates are used as the Boolean expressions e  in 
the conditional no-flow operator as described previously.

Postprocessing
Finally, Isadora performs additional analysis to find invari-
ants that may hold over the entire trace set by running the 
miner on the unsliced trace. Isadora eliminates any predi-
cate that is also found to be a trace-set invariant. For exam-
ple, the trivial invariant clk { , }0 1!  always holds and 
would be removed.

The final output properties from postprocessing are the 
conditional-flow properties. For readability, Isadora can 
express the conditional-flow properties as multisource-to-
multisink flows, collapsing together all source-to-sink flows 
that occur under identical conditions. This produces com-
paratively few properties, which in practice were approxi-
mately as many as the number of unique source signals, 
and avoids redundant information. These conditional-flow 
properties as well as the no-flow properties discovered 

earlier are the final set of information-flow properties pro-
duced by Isadora.

Evaluating the Security Properties
We evaluated Isadora on two designs: the PicoRV32 CPU 
core, an open source, open-standards processor, and the 
access control wrapper (ACW) of AKER, a system-on-
chip (SoC) verification framework developed by three of 
the authors in separate research.10 The PicoRV32 CPU 
core is a 32-bit, single-core, unpipelined CPU implement-
ing the RISC-V RV32IMC instruction set, which is an open 
standard instruction-set architecture based on established 
reduced-instruction-set computer (RISC) principles.

The ACW wraps an AXI controller and enforces on 
it a local access control policy, which is set up and main-
tained by a trusted entity (for example, a hardware Root of 
Trust or a trusted processor). The ACW checks the valid-
ity of read and write requests issued by the wrapped AXI 
controller and rejects those that violate the configuration 
of the local access control policy. We studied the ACW in 
two configurations: first, implementing a single-controller 
AKER-based access control system, and second, imple-
menting a system with two traffic generators, each wrapped 
by an ACW, connected to three AXI peripherals though 
an AXI interconnect. This setup simulates the use of the 
ACWs in an SoC environment.

Table 1 provides details about the size of the designs, 
the number of properties generated for each design, and the 
time it took to generate the properties. This time was domi-
nated by the trace generation phase. For the multi-ACW, 
trace generation exceeded 24 h, so we consider a reduced 
trace, which tracks sources for one of the ACWs, though all 
signals are included as sinks or in conditions.

Assessing the Relevancy of the Properties
For the two designs with full trace sets, the single ACW and 
PicoRV32, Isadora generates a specification describing 
all information flows and their conditions with hun-
dreds of properties. To assess whether these properties 
are security properties, for each design, we randomly 
selected 10 of the 303 or 153 total properties (using 
Python random.randint) and assessed their relevance 
to security.

We used the CWE database11 as a metric to evaluate 
the security relevance of Isadora output properties. To 
do so, for each design, we first determined which CWEs 
apply to the design. For both the ACW and PicoRV32, we 
used the “Radix Coverage for Hardware Common Weak-
ness Enumeration (CWE) Guide”12 to provide a list of 
CWEs that specifically apply to hardware. We considered 
each documented CWE for both designs. CWEs, while 
design agnostic, may refer to design features not present in 
the single ACW or PicoRV32 or may not refer to informa-
tion flows. High-level descriptions in multiple CWEs may 
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correspond to the same low-level behavior for a design, 
and we consider these CWEs together.

ACW conditional information flow. Over the ACW, we 
assessed 14 CWEs, which we mapped to five plain-language 
descriptions of the design features, as shown in Table 2. For 
the ACW, all 10 sampled properties encode CWE-defined 
behavior to prevent common weaknesses, as shown in 
Table 3. In this table, the columns labeled by a CWE number 
and a + refer to all the CWEs given in a row of Table 2. Eight 
out of the 10 properties provide separation between read 
and write channels, which constitutes the main functionality 

of the ACW module. CWEs 1,267, 1,269, and 1,282 are not 
found within the conditional-flow properties produced by 
Isadora as these are no-flow properties, so they are not 
present within the samples drawn from the numbered, 
conditional-flow properties, but we were able to verify that 
they are included in Isadora’s set of no-flow properties.

PicoRV32. Over PicoRV32, we assessed 18 CWEs, which we 
mapped to seven plain-language descriptions of the design 
features, as shown in Table 4. For PicoRV32, we found 
that eight of 10 sampled properties encode CWE-defined 
behavior to prevent common weaknesses. These results are 

shown in Table 5. The columns labeled 
by a CWE number and a + refer to all 
the CWEs given in a row of Table 4. 
The remaining two Isadora properties 
were single-source or single-sink prop-
erties representing a logical combina-
tion inside the decoder and captured 
only functional correctness.

Visualizing Information Flows
The properties generated by Isadora 
can be visualized on a heatmap, which 
can help designers understand where 

Table 1. Various size measures of the studied designs.

Design
Unique 
signals

Unique 
sources LoC

Trace 
cycles

Trace 
GBs

Daikon 
traces

Isadora 
properties

Miner time 
(minutes)

Single ACW 229 229 1,940 598 .7 252 303 29:51

Multi-ACW 984 85 4,447 848 4.3 378 160 8:31

PicoRV32 181 181 3,140 1,099 .6 955 153 15:09

Table 2. The 14 CWEs considered for ACW.

CWE(s) Description 

1,220 Read/write channel separation 

1,221–1,259–1,271 Correct initialization, reset, and defaults

1,258–1,266–1,270–1,272 Access controls use operating modes

1,274–1,283 Anomaly registers log transactions 

1,280 Control checks precede access 

1,267–1,269–1,282 Configuration/user port separation 

Table 3. Sampled Isadora properties on the single ACW.

Number Description 1,220 1,221+ 1,258+ 1,274+ 1,280 

3 Control check for first read request after reset P P P

10 Secure power-on P

37 Anomalies and memory control set after reset P P P P

96 T via S PORT configures ACW P P P

106 Interrupts respect channel separation P

154 Base address not visible to P during reset P

163 Write transaction legality flows to P P

227 Write channel anomaly register updates P P

239 Write validity respects channel separation and reset P P

252 Read validity respects channel separation and reset P P
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information is flowing through the design. This visualiza-
tion can also provide useful feedback to Isadora.

The heatmap shown in Figure 3 groups signals in 
the single ACW design according to their function and 
shows how many conditional information flows are found 
between and within the groups. The seven groups are the 
global ports (GLOB), AXI secondary interface ports 
(S PORT), connections to non-AXI ports of the control-
ler (C PORT), AXI main interface ports of the ACW 
(M PORT), configuration signals (CNFG), AXI main 
interface ports of the controller (M INT), and control 
logic signals (CTRL).

GLOB signals are clock, reset, and interrupt lines. 
S PORT represents the signals that the trusted entity T 
uses to configure the ACW. C PORT represents the sig-
nals that are used to configure the controller C to gener-
ate traffic for testing. M PORT carries traffic between 
the peripheral P  and the ACW’s control mechanism. 
CNFG represents the design elements that manage and 
store the configuration of the ACW. M INT carries the 
traffic between the ACW’s control mechanism and the 
controller. If it is legal according to the ACW’s configura-
tion, the control mechanism will send 
M INT traffic to M PORT and vice 
versa. CTRL represents the design ele-
ments of the aforementioned control 
mechanism.

The heatmap shows the infrequent 
flows into S  PORT, which is used by 
the trusted entity to program the ACW. 
Most of the design features should not 
be able to reprogram the access control 
policy, so finding no flows along these 
cases provides a visual representation 
of secure design implementation with 
respect to these features.

In developing the ACW, the authors manually crafted 
80 information-flow properties critical to the security of the 
module. The three squares outlined in red on the heatmap 
are where the equivalent Isadora-generated properties fall. 
The visualization lets us see that handwritten properties 
may tend to cluster and fail to consider possible information 
flows outside that cluster.

For each handwritten property, Isadora either gen-
erated an equivalent property or found both a violation 
and the violating conditions for the property. In the cases 
where Isadora found a violation of a handwritten property, 
it was because the handwritten property was too conser-
vative, forbidding a flow that should have been condition-
ally allowed. Isadora also found the conditions for legality.

The heatmap of PicoRV32 is shown in Figure 4. The 
seven groups of signals are the output registers (OUT), the 
internal registers (INT), the memory interface (MEM), 
the instruction registers (INS), the decoder (DEC), 
the debug signals and state (DBG), and the main state 
machine (MSM).

The memory interface and the main state machine 
were indicated by comments in the code. The instruction 

Table 4. The 18 CWEs considered for PicoRV32.

CWE(s) Description 

276–1,221–1,271 Correct initialization, reset, and defaults 

440–1,234–1,280–1,299 Memory accesses pass validity checks

1,190 Memory isolated before reset 

1,191–1,243–1,244...–1,258–
1,295–1,313

Debug signals do not interfere with ... any 
other signals

1,245 Hardware state machine correctness

1,252–1,254–1,264 Data and control separation

Table 5. Sampled Isadora properties on PicoRV32. 

Number Description 276+ 440+ 1,190 1,191+ 1,245 1,252+ 

1 No decoder leakage via debug P

16 Instructions update state machine P P

30 Decoder updates state machine P

47 No state machine leakage via debug P

52 Machine state updates when setting registers P

66 Handling of jump and load P P P

79 Loads update state machine P

113 Decoder internal update 

130 Write validity respects reset P

144 Decoder internal update 
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registers, the decoder, and debug all appeared under 
one disproportionately large section described as the 
instruction decoder. Debug was grouped by name after 
manual analysis found registers in this region prefixed 
with “dbg_,” “q_,” or “cached_” to interact with and only 
with one another. Instruction registers prefixed “instr_” 
all operate similarly to each other and differently from 
the remaining decoder signals, which were placed in the 
main decoder group. Internal signals were the remaining 
unlabeled signals that appeared early within the design, 
such as program and cycle counters and interrupt sig-
nals, and the output registers were all signals declared as 
output registers.

An interesting result visible in this heatmap is the 
flow isolation from debug signals to the rest of the 

design. Many exploits, both known 
and anticipated, target debug informa-
tion leakage. The lack of flow from 
the debug signals is a promising 
indicator, but it might also signal to 
the designers that more trace data 
targeting the debug signals should 
be generated.

T he specification and control 
of information flow through 

a design is a foundational concept 
in system security. The automatic 
generation of information-flow 
specifications will enable the use of 
powerful formal verification tools 
to validate the security of our hard-
ware designs.

In our approach, we see that less 
formal techniques, like the testbench- 
and-simulation-based trace genera-
tion required for the miner, can be 
used to support the use of more for-
mal techniques, like model checking- 
based hardware verification tools. 
The miner can reliably find valuable 
security information-flow proper-
ties that can then be verified by for-
mal methods. Our experiments so 
far suggest that for designs of any 
reasonable complexity, specification 
mining will outperform humans, find-
ing security-critical properties that a 
human would not have. This also aligns 
with the findings of our prior work 
on security-critical trace properties. 

We believe that using formal 
methods at scale will require the devel-

opment of the appropriate properties at scale. This 
research is one step toward achieving that goal. 
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