
1540-7993/22©2022IEEE Copublished by the IEEE Computer and Reliability Societies May/June 2022 43

FORMAL METHODS AT SCALE

Calvin Deutschbein | Willamette University
Andres Meza and Francesco Restuccia | University of California San Diego
Matthew Gregoire | University of North Carolina at Chapel Hill
Ryan Kastner | University of California San Diego
Cynthia Sturton | University of North Carolina at Chapel Hill

Using formal methods requires first developing the properties to be verified, which is a difficult and
time-consuming task. This article describes our research on automating the property generation process
for information-flow properties that are critical to the security of hardware designs.

O ne barrier to using formal methods is not hav-
ing the right properties to prove. Formal meth-

ods, ranging from lightweight symbolic execution to
midweight model checking to full formal proofs of cor-
rectness, all require that a property or set of properties
(or theorems in the case of correctness proofs) first be
stated in the formal specification language of the tool.

Model checking has long been a part of the design
verification stage for hardware designs. More recently,
security assurance teams inside hardware companies
have begun to incorporate formal methods into the
security validation process as well. The state-of-the-art
commercial tools use symbolic simulation, a variant
of model checking, to verify properties related to how
information can flow through the design. This type of
verification is crucial to the effort to identify informa-
tion leakage and access control violation vulnerabilities
early in the design stages, but the verification effort is
only as strong as the properties verified.

This article presents our research into automating
the generation of security properties capturing how
information flows through a hardware design.1 These
properties form an information-flow specification of
the design as studied and capture high-level notions of
best design practices or designed intent in formally fal-
sifiable register transfer level expressions. These expres-
sions, especially unexpected expressions, can then be
further studied with formal verification tools, checked
against Common Weakness Enumerations (CWEs),
and compared to design intent. The methodology
we developed joins together two disparate fields of
research: information-flow tracking (IFT) and security
specification mining, in a novel technique whereby IFT
logic makes information-flow properties expressible
as trace properties amenable to mining. The resulting
tool, Isadora, creates an information-flow specification
of a hardware design. The specification can be used as
a set of security properties suitable for use with exist-
ing security validation tools, and it can also be studied
directly by the designers to support their understand-
ing of how information flows through the design. Isadora

Toward Hardware Security
Property Generation at Scale

Digital Object Identifier 10.1109/MSEC.2022.3155376
Date of current version: 29 April 2022

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 17,2022 at 15:08:24 UTC from IEEE Xplore. Restrictions apply.

44	 IEEE Security & Privacy� May/June 2022

FORMAL METHODS AT SCALE

requires no input from the designer beyond the design
and testbench.

Hardware Security Specification Mining
Hardware security specification mining automates the devel-
opment of security properties for use with assertion-based
verification techniques. Initial research in this area was
limited to producing trace properties—properties that can
be evaluated over individual traces of execution. Unfor-
tunately, information-flow properties are not express-
ible as trace properties. Analysis situated in the context
of a single trace of execution cannot show whether or not
information has flowed from a particular source to a par-
ticular sink. Information-flow properties fall into a more
complex set of properties called hyperproperties, which
express behaviors over sets of traces. However, combining
security specification mining with hardware IFT can pro-
duce information-flow properties. We provide a brief back-
ground on both IFT and security specification mining.

IFT
A foundational theory within system security is the
lattice model of secure information flow, which estab-
lishes a means of defining and restricting informa-
tion flow through a system to meet a set of security

requirements.2 The first practical applications of the lat-
tice used a notion of labels to monitor how information
flowed through a system. More recently, IFT was devel-
oped to analyze hardware designs.

Hardware IFT provides a powerful mechanism that
can be used to precisely measure digital information
flows3 and can validate security properties related to
confidentiality, integrity, and availability. Hardware IFT
techniques can be used within the context of formal ver-
ification, simulation-based validation, emulation-based
validation, and runtime checking. Commercial hard-
ware IFT tools now exist from companies like Siemens
EDA, Cadence, and Tortuga Logic.

The major challenge with using hardware IFT tools is
that one must first develop the properties to be validated.
Isadora addresses that problem.

IFT generally works as follows. For each signal s in the
design, a new tracking signal sT is added along with the
logic needed to track how information propagates through
a design. A set of tracking signals is initially marked at
tainted by setting the signals’ sT value as a nonzero value.
This indicates that the signals contain important informa-
tion relative to the security of the design. All other variables
are marked as nontainted; that is, their tracking signal is set
to a value of zero. The IFT tools analyze how that informa-
tion moves throughout the system using some combination
of formal methods, simulation, emulation, or at runtime
checking. Security properties are required to indicate what
signals to track and to specify allowable (and nonallowable)
flows of information.

Figure 1 shows a simple example tracking information
flow through an AND gate. This logic performs precise IFT,
meaning that it considers the functional input values when
determining the taint value of the output value. This mod-
els cases where certain input values stop the flow of infor-
mation. For example, consider a scenario where 0aT = (a
is not tainted) and 1bT = (b is tainted); that is, we wish
to understand how information flows from signal b. When
the design state is a 0= and b 1,= the output will not
be tainted o 0(T = despite one of the inputs being tainted).
This occurs because the functional value of a dominates the
output, and thus, stops the flow of taint from b. Precision
plays an important role in hardware IFT.4

The key challenge for hardware security validation is
understanding which signals to track and where that infor-
mation should or should not flow during execution. This
equates to writing IFT security properties. Currently, this
is a challenging, mostly manual process. Automating prop-
erty generation is a fundamental challenge in hardware
security validation.

Security Specification Mining
The formative work in specification mining comes from the
software domain, in which execution traces are examined

a ab b bT aT

OT

(c)

Design
State

Tracking
State

a b o aT bT oT

0 1 0 0 0 0

0 1 0 1 0 1

0 1 0 0 1 0

(a) (b)
O

Figure 1. IFT for a two-input AND gate. (a) A two-input AND
gate with inputs a, b, and output o. (b) A tracking logic showing
a logical model of information-flow propagation. Two additional
variables aT and bT correspond to whether a and b carry
tainted information. The tracking logic computes the taint of
the output variable oT. (c) A partial truth table for the tracking
logic highlighting that it is possible to have different tracking
states for the same design state.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 17,2022 at 15:08:24 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 45

to infer temporal specifications as regular expressions.
Hardware miners soon followed suit with tools such as
IODINE, which looks for possible instances of known
design patterns, such as one-hot encoding or mutual
exclusion between signals,5 and Goldmine, which com-
bines trace mining with static analysis.6 Sturton and her
team7 developed specification mining for security-critical
properties of a hardware design; their approach used
machine learning and a starting set of known vulner-
abilities to find new properties capable of exposing pre-
viously unknown vulnerabilities. In subsequent work,
Deutschbein and Sturton8 used known security proper-
ties to develop templates for further mining at scale. In
Isadora, we move from generating security-critical trace
properties to generating information-flow properties of
a design.

Specification mining works by looking for patterns of
behavior that can be defined over a single trace of execu-
tion, rather than across multiple traces of execution, and
is therefore limited to finding only trace properties. To
achieve our objective of capturing information flows, our
approach is to first instrument a design with IFT logic
and then apply security specification mining techniques
to the instrumented design. The miner is still produc-
ing only trace properties, but now, the properties include
information from the tracking signals.

Properties
Isadora generates two styles of information-flow properties:
no-flow properties, in which there is no flow of informa-
tion between two design elements, and conditional-flow
properties, in which there exists some flow of informa-
tion between two design elements but only when the
design is in a certain state. Isadora can also generate
unconditional-flow properties, but these tend to be less
interesting for the purposes of security validation.

No-Flow Properties
Using IFT, we can express the property that information
from register r1 should never flow to register r2 as a trace
property; if r1 is the only signal whose tracking signal rT

1 is
initialized to nonzero, then r2 ’s tracking signal rT

2 should
remain at zero:

r r r (,) () .i0 1 0Gi i
T T

2) "6 ! = =

The G operator is borrowed from temporal logic and
indicates that the consequent is globally true. In other
words, rT

2 will remain equal to zero at all future time steps
after the antecedent is satisfied. This style of no-flow prop-
erty can be useful for ensuring that unprivileged users can-
not influence sensitive states or for ensuring that sensitive
information cannot leak through, for example, debug ports.
However, it cannot capture conditional properties, such as

a property that register updates are allowed only under cer-
tain power states.

Conditional-Flow Properties
Using IFT, we can express the property that information
from a register r1 may flow to another register r2 under
some condition ;P if r1 is the only signal whose tracking
signal rT

1 is initialized to nonzero, then r2 ’s tracking signal
rT

2 may become nonzero only if some predicate P holds:

r r

r r

 (,)

((())) .

i
P

0 1
0 0G X

i i
T

T T
2 2

) "

" "

6

J

! =

= =

The X operator is borrowed from temporal logic and
indicates the next time-step. If rT

2 equals zero at some clock
cycle, then in the next clock cycle, it will still be zero. This
style of a conditional-flow property can be used to express,
for example, that register updates are allowable only under
certain power states or that memory accesses are allowable
only when specific access control checks have succeeded.

No-Flow Operator
To express properties in a format that uses only the signals
in the original design, without including the tracking signals,
we need an operator that expresses some notion of informa-
tion flow. Both no-flow and conditional-flow properties can
be expressed using a no-flow operator, for which we use the
notation / .2= = Using this operator, no-flow properties
can be expressed as r r ,/1 22= = where r1 and r2 are
registers in the design.

Conditional-flow properties can be expressed as
r r/ ,e1 2 "2= = which states that information may

flow from r1 to r2 but requires that a design not be some
state ,e where e is a Boolean expression in the form of a
conjunction of comparison relations between two registers
or between a register and a constant.

Isadora
A naive application of trace-based mining to an IFT-
instrumented design quickly runs into issues of complex-
ity; the instrumented designs are large and overwhelm
the miner. Additionally, the miner will discover properties
over tracking signals and original design signals that are
meaningless and cannot be transformed back to the space
of information-flow properties in the original design. To
handle these issues, we separate the process of identifying
source-sink flow pairs in the design from the process of min-
ing for the conditions that govern those flows. The key to
making the approach work is to synchronize the two parts
using clock-cycle time.

Isadora analyzes a design in four phases: generating
traces, identifying flows, mining for flow conditions, and
postprocessing. An overview of the workflow is presented
in Figure 2.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 17,2022 at 15:08:24 UTC from IEEE Xplore. Restrictions apply.

46	 IEEE Security & Privacy� May/June 2022

FORMAL METHODS AT SCALE

First, Isadora instruments the design with IFT logic
and runs the instrumented design in simulation using the
user-provided set of testbenches. The result is a trace set
that specifies the value of every design signal and every
tracking signal at each clock cycle during the simulation.
Next, Isadora studies the trace set to find every flow that
occurred during the simulation of the design. This set of
flows is complete; if a flow occurred between any two sig-
nals, it will be included in this set. At the end of this phase,
Isadora also produces the complete set of information-flow
restrictions: pairs of signals between which no information
flow occurs. Then, Isadora uses an inference engine (Dai-
kon9) to infer, for every flow that occurred, the predicates
that specify the conditions under which the flow occurred.
The final phase removes redundant and irrelevant predi-
cates from the set and logically combines the predicates
with the information flows to produce the conditional-flow
properties. These, along with the no-flow properties from
the second phase, form the information-flow specification
produced by Isadora.

Trace Generation
To generate traces, we first instrument our original design
with logic to track information flows and then execute the
testbench in simulation on this instrumented design. Each
trace is a sequence of states that this design assumes. Let

, , ,src n0 1 fG Hx v v v= be the trace of our design, instru-
mented to track how information flows from one signal,
src, during testbench execution. Each state iv is a list of
triples that store each design signal’s name, value, and cor-
responding tracking signal:

s s s[(, ,),(, ,), (, ,)] .v v v v v vi
t t

m m m
t

i1 1 1 2 2 2 fv =

To distinguish the source of a tainted sink signal, each
input signal must have a separate taint label. However,
tracking multiple labels is expensive. Therefore, Isadora
takes a compositional approach. For each source signal, IFT
instrumentation is configured to track the flow of informa-
tion from only a single input signal of the design, the src sig-
nal. This process is applied to each signal in a design, and
these attached labels can be used within Isadora or for other
design explorations, such as formal verification. The end
result is a set of traces, each of which describes how infor-
mation can flow from a single input signal to the rest of
the signals in the design. Taken together, this set of traces
describes how information flows through the design during
the execution of the provided testbench.

Finding All Flows
In the second phase, the set of traces is analyzed to iden-
tify, first, every pair of signals between which a flow occurs,
and second, the times within the trace at which each flow
occurs. Each trace srcx is searched to find every clock cycle
in which a taint’s tracking signal transitions from zero to
one. In other words, every signal-values triple s(, ,)v vt
that is of the form s 0(, ,)v in state i 1v - and s(, ,)v 1 in
state iv is found, and the time i is noted. Isadora stores
this as the tuple src s(, ,{ , , }),i i0 1 f which indicates that
an information flow from src to s occurred at each time

{ , , } .i i i0 1 f! We call this the time-of-flow tuple. There
can be multiple times of flow within a single trace because
the tracking value of signals may be reset to zero by design
events (for example, resets).

Once all traces have been analyzed, the collected
time-of-flow tuples src s(, ,{ , , })i i0 1 f are reorganized
by time. It’s possible that, for a given set of times { , , }i i0 1 f ,

Design

Add IFT
and

Simulate

IFT
Instrumented

Traces

Identify
All Flows

Flows

No
Flows

Mine Flow
Conditions

Flow
Conditions

Postprocessor

Information
Flow

Properties

Figure 2. An overview of the Isadora workflow.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 17,2022 at 15:08:24 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 47

there exist multiple discovered information flows. For each
such set of times output by the previous step, Isadora cre-
ates a set src s src s, ,{(),(), }1 1 2 2 f of all flows of infor-
mation that occurred at exactly those times. This mapping
from sets of times to corresponding flows between registers
is one of the tool’s two outputs from this stage.

The other output is a list of source-sink pairs
src s src s, ,{(),(), }fl l between which information

never flows. The pairs in this set comprise the noninter-
ference properties of the design and can be specified using
the no-flow operator. For example, src s. / 2= =

Mining for Flow Conditions
In the third phase, Isadora finds the conditions under which
a particular flow will occur. For example, if every time src
flows to s, the register r has the value x, Isadora infers the
conditional information-flow property:

r src s() / .x "J 2= ==

Isadora uses the technique of dynamic invariant detection9
on traces to infer design behavior using predefined patterns.
To isolate the conditions for information flow between
two registers, Isadora analyzes the flow pair output by the
previous step to find all trace times i at which information
flows from src to s during the execution of the testbench.
We then analyze the corresponding trace to produce a set
of trace slices of the form , ,i i1G Hv - v one for each time i at
which a flow occurred. These trace slices include only the
signals of the original design; all tracking logic and shadow
signals are pruned. Using these trace slices of length two
allows dynamic invariant detection to generate predicates
specifying the design state both immediately prior to and
concurrent with the occurrence of some flow as either
could potentially contain security-relevant information.
These predicates are used as the Boolean expressions e in
the conditional no-flow operator as described previously.

Postprocessing
Finally, Isadora performs additional analysis to find invari-
ants that may hold over the entire trace set by running the
miner on the unsliced trace. Isadora eliminates any predi-
cate that is also found to be a trace-set invariant. For exam-
ple, the trivial invariant clk { , }0 1! always holds and
would be removed.

The final output properties from postprocessing are the
conditional-flow properties. For readability, Isadora can
express the conditional-flow properties as multisource-to-
multisink flows, collapsing together all source-to-sink flows
that occur under identical conditions. This produces com-
paratively few properties, which in practice were approxi-
mately as many as the number of unique source signals,
and avoids redundant information. These conditional-flow
properties as well as the no-flow properties discovered

earlier are the final set of information-flow properties pro-
duced by Isadora.

Evaluating the Security Properties
We evaluated Isadora on two designs: the PicoRV32 CPU
core, an open source, open-standards processor, and the
access control wrapper (ACW) of AKER, a system-on-
chip (SoC) verification framework developed by three of
the authors in separate research.10 The PicoRV32 CPU
core is a 32-bit, single-core, unpipelined CPU implement-
ing the RISC-V RV32IMC instruction set, which is an open
standard instruction-set architecture based on established
reduced-instruction-set computer (RISC) principles.

The ACW wraps an AXI controller and enforces on
it a local access control policy, which is set up and main-
tained by a trusted entity (for example, a hardware Root of
Trust or a trusted processor). The ACW checks the valid-
ity of read and write requests issued by the wrapped AXI
controller and rejects those that violate the configuration
of the local access control policy. We studied the ACW in
two configurations: first, implementing a single-controller
AKER-based access control system, and second, imple-
menting a system with two traffic generators, each wrapped
by an ACW, connected to three AXI peripherals though
an AXI interconnect. This setup simulates the use of the
ACWs in an SoC environment.

Table 1 provides details about the size of the designs,
the number of properties generated for each design, and the
time it took to generate the properties. This time was domi-
nated by the trace generation phase. For the multi-ACW,
trace generation exceeded 24 h, so we consider a reduced
trace, which tracks sources for one of the ACWs, though all
signals are included as sinks or in conditions.

Assessing the Relevancy of the Properties
For the two designs with full trace sets, the single ACW and
PicoRV32, Isadora generates a specification describing
all information flows and their conditions with hun-
dreds of properties. To assess whether these properties
are security properties, for each design, we randomly
selected 10 of the 303 or 153 total properties (using
Python random.randint) and assessed their relevance
to security.

We used the CWE database11 as a metric to evaluate
the security relevance of Isadora output properties. To
do so, for each design, we first determined which CWEs
apply to the design. For both the ACW and PicoRV32, we
used the “Radix Coverage for Hardware Common Weak-
ness Enumeration (CWE) Guide”12 to provide a list of
CWEs that specifically apply to hardware. We considered
each documented CWE for both designs. CWEs, while
design agnostic, may refer to design features not present in
the single ACW or PicoRV32 or may not refer to informa-
tion flows. High-level descriptions in multiple CWEs may

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 17,2022 at 15:08:24 UTC from IEEE Xplore. Restrictions apply.

48	 IEEE Security & Privacy� May/June 2022

FORMAL METHODS AT SCALE

correspond to the same low-level behavior for a design,
and we consider these CWEs together.

ACW conditional information flow. Over the ACW, we
assessed 14 CWEs, which we mapped to five plain-language
descriptions of the design features, as shown in Table 2. For
the ACW, all 10 sampled properties encode CWE-defined
behavior to prevent common weaknesses, as shown in
Table 3. In this table, the columns labeled by a CWE number
and a + refer to all the CWEs given in a row of Table 2. Eight
out of the 10 properties provide separation between read
and write channels, which constitutes the main functionality

of the ACW module. CWEs 1,267, 1,269, and 1,282 are not
found within the conditional-flow properties produced by
Isadora as these are no-flow properties, so they are not
present within the samples drawn from the numbered,
conditional-flow properties, but we were able to verify that
they are included in Isadora’s set of no-flow properties.

PicoRV32. Over PicoRV32, we assessed 18 CWEs, which we
mapped to seven plain-language descriptions of the design
features, as shown in Table 4. For PicoRV32, we found
that eight of 10 sampled properties encode CWE-defined
behavior to prevent common weaknesses. These results are

shown in Table 5. The columns labeled
by a CWE number and a + refer to all
the CWEs given in a row of Table 4.
The remaining two Isadora properties
were single-source or single-sink prop-
erties representing a logical combina-
tion inside the decoder and captured
only functional correctness.

Visualizing Information Flows
The properties generated by Isadora
can be visualized on a heatmap, which
can help designers understand where

Table 1. Various size measures of the studied designs.

Design
Unique
signals

Unique
sources LoC

Trace
cycles

Trace
GBs

Daikon
traces

Isadora
properties

Miner time
(minutes)

Single ACW 229 229 1,940 598 .7 252 303 29:51

Multi-ACW 984 85 4,447 848 4.3 378 160 8:31

PicoRV32 181 181 3,140 1,099 .6 955 153 15:09

Table 2. The 14 CWEs considered for ACW.

CWE(s) Description

1,220 Read/write channel separation

1,221–1,259–1,271 Correct initialization, reset, and defaults

1,258–1,266–1,270–1,272 Access controls use operating modes

1,274–1,283 Anomaly registers log transactions

1,280 Control checks precede access

1,267–1,269–1,282 Configuration/user port separation

Table 3. Sampled Isadora properties on the single ACW.

Number Description 1,220 1,221+ 1,258+ 1,274+ 1,280

3 Control check for first read request after reset P P P

10 Secure power-on P

37 Anomalies and memory control set after reset P P P P

96 T via S PORT configures ACW P P P

106 Interrupts respect channel separation P

154 Base address not visible to P during reset P

163 Write transaction legality flows to P P

227 Write channel anomaly register updates P P

239 Write validity respects channel separation and reset P P

252 Read validity respects channel separation and reset P P

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 17,2022 at 15:08:24 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 49

information is flowing through the design. This visualiza-
tion can also provide useful feedback to Isadora.

The heatmap shown in Figure 3 groups signals in
the single ACW design according to their function and
shows how many conditional information flows are found
between and within the groups. The seven groups are the
global ports (GLOB), AXI secondary interface ports
(S PORT), connections to non-AXI ports of the control-
ler (C PORT), AXI main interface ports of the ACW
(M PORT), configuration signals (CNFG), AXI main
interface ports of the controller (M INT), and control
logic signals (CTRL).

GLOB signals are clock, reset, and interrupt lines.
S PORT represents the signals that the trusted entity T
uses to configure the ACW. C PORT represents the sig-
nals that are used to configure the controller C to gener-
ate traffic for testing. M PORT carries traffic between
the peripheral P and the ACW’s control mechanism.
CNFG represents the design elements that manage and
store the configuration of the ACW. M INT carries the
traffic between the ACW’s control mechanism and the
controller. If it is legal according to the ACW’s configura-
tion, the control mechanism will send
M INT traffic to M PORT and vice
versa. CTRL represents the design ele-
ments of the aforementioned control
mechanism.

The heatmap shows the infrequent
flows into S PORT, which is used by
the trusted entity to program the ACW.
Most of the design features should not
be able to reprogram the access control
policy, so finding no flows along these
cases provides a visual representation
of secure design implementation with
respect to these features.

In developing the ACW, the authors manually crafted
80 information-flow properties critical to the security of the
module. The three squares outlined in red on the heatmap
are where the equivalent Isadora-generated properties fall.
The visualization lets us see that handwritten properties
may tend to cluster and fail to consider possible information
flows outside that cluster.

For each handwritten property, Isadora either gen-
erated an equivalent property or found both a violation
and the violating conditions for the property. In the cases
where Isadora found a violation of a handwritten property,
it was because the handwritten property was too conser-
vative, forbidding a flow that should have been condition-
ally allowed. Isadora also found the conditions for legality.

The heatmap of PicoRV32 is shown in Figure 4. The
seven groups of signals are the output registers (OUT), the
internal registers (INT), the memory interface (MEM),
the instruction registers (INS), the decoder (DEC),
the debug signals and state (DBG), and the main state
machine (MSM).

The memory interface and the main state machine
were indicated by comments in the code. The instruction

Table 4. The 18 CWEs considered for PicoRV32.

CWE(s) Description

276–1,221–1,271 Correct initialization, reset, and defaults

440–1,234–1,280–1,299 Memory accesses pass validity checks

1,190 Memory isolated before reset

1,191–1,243–1,244...–1,258–
1,295–1,313

Debug signals do not interfere with ... any
other signals

1,245 Hardware state machine correctness

1,252–1,254–1,264 Data and control separation

Table 5. Sampled Isadora properties on PicoRV32.

Number Description 276+ 440+ 1,190 1,191+ 1,245 1,252+

1 No decoder leakage via debug P

16 Instructions update state machine P P

30 Decoder updates state machine P

47 No state machine leakage via debug P

52 Machine state updates when setting registers P

66 Handling of jump and load P P P

79 Loads update state machine P

113 Decoder internal update

130 Write validity respects reset P

144 Decoder internal update

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 17,2022 at 15:08:24 UTC from IEEE Xplore. Restrictions apply.

50	 IEEE Security & Privacy� May/June 2022

FORMAL METHODS AT SCALE

registers, the decoder, and debug all appeared under
one disproportionately large section described as the
instruction decoder. Debug was grouped by name after
manual analysis found registers in this region prefixed
with “dbg_,” “q_,” or “cached_” to interact with and only
with one another. Instruction registers prefixed “instr_”
all operate similarly to each other and differently from
the remaining decoder signals, which were placed in the
main decoder group. Internal signals were the remaining
unlabeled signals that appeared early within the design,
such as program and cycle counters and interrupt sig-
nals, and the output registers were all signals declared as
output registers.

An interesting result visible in this heatmap is the
flow isolation from debug signals to the rest of the

design. Many exploits, both known
and anticipated, target debug informa-
tion leakage. The lack of flow from
the debug signals is a promising
indicator, but it might also signal to
the designers that more trace data
targeting the debug signals should
be generated.

T he specification and control
of information flow through

a design is a foundational concept
in system security. The automatic
generation of information-flow
specifications will enable the use of
powerful formal verification tools
to validate the security of our hard-
ware designs.

In our approach, we see that less
formal techniques, like the testbench-
and-simulation-based trace genera-
tion required for the miner, can be
used to support the use of more for-
mal techniques, like model checking-
based hardware verification tools.
The miner can reliably find valuable
security information-flow proper-
ties that can then be verified by for-
mal methods. Our experiments so
far suggest that for designs of any
reasonable complexity, specification
mining will outperform humans, find-
ing security-critical properties that a
human would not have. This also aligns
with the findings of our prior work
on security-critical trace properties.

We believe that using formal
methods at scale will require the devel-

opment of the appropriate properties at scale. This
research is one step toward achieving that goal.

References
	 1.	 C. Deutschbein, A. Meza, F. Restuccia, R. Kastner, and

C. Sturton, “Isadora: Automated information flow prop-
erty generation for hardware designs,” in Proc. Workshop
Attacks Solutions Hardware Security (ASHES), ACM,
2021, pp. 5–15, doi: 10.1145/3474376.3487286.

	 2.	 D. E. Denning, “A lattice model of secure information
flow,” Commun. ACM, vol. 19, no. 5, pp. 236–243, 1976,
doi: 10.1145/360051.360056.

	 3.	 W. Hu, A. Ardeshiricham, and R. Kastner, “Hardware
information flow tracking,” ACM Comput. Surv. (CSUR),
vol. 54, no. 4, pp. 1–39, 2021, doi: 10.1145/3447867.

m
sm

m
sm

db
g

db
g

de
c

de
c

ins

ins

m
em

m
em

int

int
ou

t

ou
t

3 25 16 46 50 0 34

5 13 12 36 40 5 17

6 8 10 31 35 0 12

2 4 7 13 18 0 7

8 12 12 25 26 0 15

4 12 11 18 27 0 16

8 13 14 22 21 0 15

50

30

40

10

20

0

Source Group

S
in

k
G

ro
up

Figure 4. A group-to-group conditional-flow heatmap for the PicoRV32.

CNTRL

CNTRL

M
 IN

T

M
 IN

T

CNFG

CNFG

M
 P

ORT

M
 P

ORT

C P
ORT

C P
ORT

S P
ORT

S P
ORT

GLO
B

GLO
B

14 25 68 31 69 53 64

18 16 96 40 55 65 78

6 23 20 10 27 15 17

9 9 51 27 36 35 48

2 2 12 5 4 11 10

2 10 0 0 6 0 0

3 2 12 4 7 5 10

80

60

40

20

0

Source Group

S
in

k
G

ro
up

Figure 3. A group-to-group conditional-flow heatmap for the single ACW.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 17,2022 at 15:08:24 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 51

	 4.	 W. Hu et al., “Theoretical fundamentals of gate level infor-
mation flow tracking,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 30, no. 8, pp. 1128–1140, 2011,
doi: 10.1109/TCAD.2011.2120970.

	 5.	 S. Hangal, S. Narayanan, N. Chandra, and S. Chakra-
vorty, “IODINE: A tool to automatically infer dynamic
invariants for hardware designs,” in Proc. 42nd Design
Autom. Conf. (DAC), 2005, pp. 775–778, doi: 10.1109/
DAC.2005.193920.

	 6.	 S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy,
and D. Johnson, “GoldMine: Automatic assertion genera-
tion using data mining and static analysis,” in Proc. Conf.
Exhib. Design, Autom. Test Europe (DATE), 2010, pp. 626–
629, doi: 10.1109/DATE.2010.5457129.

	 7.	 R. Zhang, N. Stanley, C. Griggs, A. Chi, and C. Sturton,
“Identifying security critical properties for the dynamic
verification of a processor,” in Proc. Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS), ACM, 2017, pp. 541–554, doi: 10.1145/
3037697.3037734.

	 8.	 C. Deutschbein and C. Sturton, “Evaluating security
specification mining for a CISC architecture,” in Proc.
2020 IEEE Int. Symp. Hardware Oriented Security Trust
(HOST), pp. 164–175, doi: 10.1109/HOST45689.
2020.9300291.

	 9.	 M. D. Ernst et al., “The Daikon system for dynamic
detection of likely invariants,” Sci. Comput. Program.,
vol. 69, nos. 1–3, pp. 35–45, Dec. 2007, doi: 10.1016/j.
scico.2007.01.015.

	10.	 F. Restuccia, A. Meza, and R. Kastner, “AKER: A design
and verification framework for safe and secure soc
access control,” in Proc. IEEE/ACM Int. Conf. Comput.
Aided Design (ICCAD), 2021, pp. 1–9, doi: 10.1109/
ICCAD51958.2021.9643538.

	11.	 “2021 CWE most important hardware weaknesses,” MITRE,
McLean, VA, USA, 2021. https://cwe.mitre.org/

	12.	 “Radix coverage for hardware common weakness enu-
meration (CWE) guide.” Tortuga Logic.com. https://
tortugalogic.com/wp-content/uploads/2020/03/Radix
CWEGuide_20210126.pdf (Accessed: Dec. 11, 2020).

Calvin Deutschbein is an assistant professor of computer
science at Willamette University, Salem, Oregon, 97301,
USA, where they study techniques to mine the secure
behavior of hardware designs. Their research inter-
ests focus on specification mining of hardware for
security. Deutschbein received a Ph.D. in computer
science from the University of North Carolina at Cha-
pel Hill in 2021 under the advising of Prof. Cynthia
Sturton. They are a Member of IEEE. Contact them at
ckdeutschbein@willamette.edu.

Andres Meza is a researcher in the Kastner Research
Group, University of California San Diego (UCSD),

La Jolla, California, 92039, USA. His research interests
include hardware security, optimization of machine
learning models for hardware deployment, and com-
puter vision. Meza received a B.S. in both computer
science and cognitive science with a machine learning
and neural computation specialization from UCSD.
Contact him at anmeza@ucsd.edu.

Francesco Restuccia is a postdoctoral researcher in the Kast-
ner Research Group, University of California San Diego,
La Jolla, California, 92039, USA. Their research inter-
ests include predictability, safety, security for hardware
acceleration on heterogeneous platforms, cyberphysi-
cal systems, and time predictable hardware acceleration
of deep neural network models on field-programmable
gate array system-on-chip platforms. Restuccia received
a Ph.D. in computer engineering (cum laude) from the
Scuola Superiore Sant’Anna Pisa, Italy, in 2021. Contact
them at frestuccia@ucsd.edu.

Matthew Gregoire is a graduate researcher in the Hard-
ware Security University of North Carolina (UNC)
Lab, University of North Carolina at Chapel Hill, Cha-
pel Hill, North Carolina, 27599, USA. His research
interests include symbolic execution of hardware for
security. Gregoire received a B.S. in both computer
science and mathematics from UNC. Contact him at
mattyg@cs.unc.edu.

Ryan Kastner is a professor of computer science and
engineering at the University of California San Diego,
La Jolla, California, 92039, USA, the principal
investigator of the Kastner Research Group, and
the codirector of both Engineers for Exploration
and the Wireless Embedded Systems Master of
Advanced Study. His research interests include hard-
ware acceleration, hardware security, and remote
sensing. Kastner received a Ph.D. in computer sci-
ence from the University of California, Los Angeles.
He is a Member of IEEE. Contact him at kastner@
ucsd.edu.

Cynthia Sturton is an associate professor of computer
science and Peter Thacher Grauer Scholar at the
University of North Carolina at Chapel Hill, and
the principal investigator of the Hardware Security
@ UNC lab, University of North Carolina at Cha-
pel Hill, Chapel Hill, North Carolina, 27599, USA.
Her research interests include formal methods for
hardware security, symbolic execution, and specifi-
cation mining. Sturton received a Ph.D. in computer
science from the University of California, Berkeley.
She is a Member of IEEE. Contact her at csturton@
cs.unc.edu.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 17,2022 at 15:08:24 UTC from IEEE Xplore. Restrictions apply.

