Hardware Security Benchmarks for Open-Source
SystemVerilog Designs

Jayden Rogers*, Niyaz Shakeel’, Xiao Tan, Samantha Espinosa’,
Divya Mankanif, Cade Chabraf, Kaki Ryanf, Cynthia Sturton'
*North Carolina A&T jsrogers2@aggies.ncat.edu
TUniversity of North Carolina at Chapel Hill
{niyaz, kakiryan, csturton}@cs.unc.edu,

{tanxiao, sespi, divyakm, cade.chabra}@unc.edu

Abstract—The need to verify the security of hardware de-
signs has led to new property-based verification and property-
generation methods. Supporting this research are the open-source
designs and security-critical properties for development and
evaluation. While many open-source designs exist, there remains
a need for more properties.

This paper addresses that need. We develop 120 SystemVerilog
Assertions for four open-source designs. We validate the prop-
erties against the associated designs and develop metrics with
which to assess the benchmarks. The properties are open-source
and have been accepted for inclusion in the Trust-Hub database.

Index Terms—Properties, SystemVerilog Assertions, Register
Transfer Level, Verification, Formal Methods, Hardware Security

I. INTRODUCTION

“For better or worse, benchmarks shape a field” (David
Patterson, 2018 [50]). Formally verifying the security of
hardware designs is an active area of research producing new
tools [55], [42], [3], [46] and uncovering new security bugs
and vulnerabilities [69], [42], [3]. To support this research, the
hardware security community has developed and published a
large number of open-source hardware designs useful for tool
development (e.g., [48], [58], [68]), along with buggy designs
useful for tool evaluation (e.g., [27], [65]).

Unfortunately, sets of security properties are not similarly
available. Many verification methods are property-based: the
verification engine takes a (possibly buggy) hardware design
and a set of properties as input and outputs any found
counterexamples (CEX) to the properties. There is general
consensus that developing properties is a laborious task [66],
[39], with ongoing research into generating properties auto-
matically [70], [18], [71], most recently using large language
models [49], [21], [38], yet few resources provide publicly
available properties tied to a particular snapshot of a design.
This work is a step toward that goal.

Our contribution is pragmatic: we provide four sets of
security properties for widely studied buggy designs: the
OR1200 OpenRISC CPU core [48], the PULPissimo SoC
with RISC-V core [58], and two versions of the OpenPiton
SoC with the CVA6 RISC-V core [68], [5]. OR1200 is
snapshotted with inserted bugs from prior work [69], [33],
[55]; PULPissimo and OpenPiton use Hack@DAC versions

from 2018, 2019, and 2021 [28], [30], [29], [32]. All properties
are written as SystemVerilog Assertions (SVA), the industry
standard for trace property specification [1], and the security
bugs they cover are categorized according to the Common
Weakness Enumeration (CWE) taxonomy [45]. We provide
this categorization for OR1200 and supplement the existing
categorization for the Hack@DAC designs.

We developed 71 properties for the OR1200, detecting
all known bugs and offering additional security assurance
over prior work. For PULPissimo, we create 20 properties to
address 31 known bugs, an improvement over prior efforts that
reported (but did not publish) 15 properties. For the 2019 and
2021 OpenPiton SoCs, we created 11 and 20 properties for
66 and 99 bugs, respectively. Using Cadence JasperGold, the
industry-standard formal verification tool, we validated that the
properties catch the bugs. The properties and design snapshots
are released as benchmarks for future research.

The properties derive from three sources: prior security
analyses; Hack@DAC security bugs developed with industry,
and our own analyses of widely used open-source designs.
Together, they capture a snapshot of the state of the field
of hardware security verification. By assessing the coverage
of the set, we can gain insights into where the field has
focused its attention and where there is room for further
analysis. We assess their CWE coverage, with emphasis on
the Most Important Hardware Weaknesses identified by the
CWE website.

Finally, we present a case study illustrating how miss-
ing properties hinder reproducibility. Our hope is that our
properties will accelerate future security verification research
and provide a baseline for evaluating automated property
generation techniques.

This paper makes three contributions.

e A set of well-vetted SVA properties for four buggy
designs and their snapshotted designs: https://github.com/
HWSec-UNC/verification-benchmarks

o An evaluation of property coverage against CWEs, em-
phasizing Most Important Hardware Weaknesses.

o A case study demonstrating the reproducibility challenges
when properties are missing from the public record.

II. BACKGROUND

We provide context for our work and discuss related work.

A. Scope

We focus on property-based formal verification for hardware
security validation. Functional validation is out of scope,
though the boundary between security properties and func-
tional properties can be blurry, as security flaws often stem
from functional bugs. Our interest is in properties that identify
vulnerabilities exploitable by attackers. These resources may
or may not be appropriate for functional validation activities.

B. Threat Model

Our properties detect bugs in the RTL design that can lead
to security vulnerabilities. We consider an attacker with the
ability to execute code of their choosing on the hardware post-
deployment. This can be achieved, for example, by hosting
a malicious website containing Javascript that is downloaded
and run on the target machine when the victim visits the site.
The attacker’s code may or may not execute with elevated
privilege. These properties apply to design-time security verifi-
cation. Malicious modifications made post-verification, attacks
during fabrication or in the supply chain, and physical attacks
on the machine post-deployment will not be detected by these
properties.

C. Available Open-Source Resources

Trust-Hub. TrustHub is an NSF-funded website designed to
support research and education in hardware security [65]. The
website serves as a directory for various hardware security
resources and also offers resources directly, including Trojan-
infected design components, taxonomies, and datasets related
to physical hardware security. Two resources on the Trust-
Hub site are the Security Property/Rule Database and the SOC
Vulnerability Database.

The Security Property/Rule Database [24] provides RTL
and gate-level modules with accompanying SVA properties.
While useful, it is limited: only a handful of properties
exist for components of the CV32E40P RISC-V core, and
most entries are small components (e.g., write-once registers,
FIFOs, SPI, RSA, AES), each with one to five properties.
The SoC Vulnerability Database [59] lists six vulnerabilities
in the CVA6 RISC-V CPU with one to four SVA properties
each. However, the version of the CVA6 design for which the
properties were written is not mentioned, and the properties
may require significant changes to be applicable for the current
version of the design.

Our work expands on these two databases at a larger scale,
providing 71, 20, 11, and 20 properties, respectively, for
four buggy CPU and SoC designs, along with snapshotted
versions of the designs for which the properties were written.
Our repository has been accepted for inclusion in the Trust-
Hub directory, making it easy for the community to find the
resource.

Hack@DAC Competitions. The Hack@DAC competitions
[57], [27] have been a boon to the hardware security com-
munity. In the annual competition, competitors are given the
RTL of an SoC design and must find the inserted security
bugs. The organizers are a team of academic researchers and
industry practitioners, and the bugs inserted reflect real-world
vulnerabilities.

The design used in the 2018 instance of the competition is a
PULPissimo SoC [28] and has become a standard benchmark
for hardware security research (e.g., [55], [38], [46]), thanks in
part to the organizers providing natural-language descriptions
of the bugs inserted into the design [15].

Recently, the OpenPiton SoC designs used in the 2019 and
2021 competitions were made available as well [30], [32],
along with the bug descriptions for the 2019 version [29] and
an overview of the 2021 version [12].

However, the available resources stop short of pinpointing
the actual bugs in the RTL. Research teams using these designs
as a benchmark for the development or evaluation of their
tool must first establish ground truth by finding the bug in the
RTL through whatever means possible. The SVA properties we
provide will boost the usefulness of these benchmark designs
by pinpointing the bug in the design and acting as a baseline
set of assertions for use in future research.

CWE Database. The Common Weakness Enumeration
(CWE) database from MITRE is a community-maintained
resource that categorizes common flaws in software and hard-
ware that often lead to vulnerabilities [45]. Entries in the
database describe the flaw, provide information about how a
vulnerability may manifest, and may include example code
snippets. The database can be used as a guide when writing the
formally stated properties needed for security verification [25],
[54], [14]. We used CWEs as a guide when writing assertions
and link to the appropriate CWE for the inserted bugs when
they were missing.

D. Related Work

Property Generation. A variety of techniques have been
used to automatically generate security properties for hardware
designs. The most recent papers explore using large language
model (LLM) code generation to generate RTL properties [49],
[38], [43], [22], [74], [22]. Other techniques include cross-
design property translation, mining properties from design
behavior, and using CWE descriptions to generate proper-
ties [70], [71], [21], [17], [18], [20], [16], [51], [19].

While some papers provide a handful of the properties
generated [49], [17], [21], [18], [38], [20], [16], we found
only one paper that provides the complete set of generated
properties [71]. The automated approaches typically generate
thousands of properties; selecting the most relevant ones is
done either manually or through statistical analysis. Both
approaches benefit from having a set of known-good properties
as a starting point.

Property-Based Formal Verification. Many new analyses
and frameworks for formally verifying security properties of a
design have been developed [42], [69], [73], [72], [33], [62],

[55], [41], [23], [4], [40], [56]. However, many papers do not
report the properties used in the evaluation. A few do [33],
[60], [36], and a few more report one or two of the properties
used [3], [53], [52]. But if we consider only papers using
the industry-standard SVA for property specification, we are
left with few properties [53], [52], [60], making comparisons
between tools difficult. The properties we provide will make
it easier for new research in security verification techniques to
make comparisons with the existing state of the art.

Fuzzing. Many recent studies in hardware security develop
fuzzing tools [64], [8], [66], [11], [67], [10], [9], [26], [63],
[35], [34]. Fuzzing is a simulation-based method like testing,
but fuzzing benchmarks do not include expected outputs.
Instead, fuzzers detect bugs using a golden reference model,
security properties, or both. Our SVA properties may be
suitable for some fuzzers, though many modern fuzzers rely
on golden models. While this avoids the need for security
properties, it has its own limitations.

Taint Tracking. Taint tracking is a simulation-based method
that has seen academic [61], [44] and commercial [13] suc-
cess in the hardware security community [37]. These tools
instrument the design to trace information flow during simu-
lation and typically use their own specification languages for
properties. Our SVA properties are not directly compatible.
Although not a formal verification method, taint tracking also
requires well written properties, and there have been efforts
toward easing the property writing process [54], [17].

III. PROPERTY DEVELOPMENT

We develop SVA trace properties for four processor and
SoC designs. The properties are safety properties: proper-
ties are violated by reaching an undesirable state or finite
sequence of events. The full set of properties and design
snapshots are available at: https://github.com/HWSec-UNC/
verification-benchmarks, organized by the design with support
for community contribution.

A. Designs Studied

Properties are tightly coupled to a design and often need to
be rewritten when the design is updated due to changes in tim-
ing, signal names, or data flow between registers, even when
high-level behavior stays the same. To ensure reproducibility,
our benchmarks include the exact commit version and a static
snapshot for each design.

1) ORI200: The ORI1200 is a widely studied 5-stage
pipelined single-core processor [48], [33], [69], [55]. Security
and functional bugs found in the design over time have
been documented in the public OpenCores [47], Bugzilla [7]
and Mitre CWE databases [45]. In addition, bugs are doc-
umented as issues opened by developers on their GitHub
repository [48]. Of note, there are cases where security re-
searchers have identified native bugs in one generation of the
processor that a subsequent version or commit claims to have
resolved [70], but the bugs reappear or persist over time [69].

Our benchmark snapshots the OR1200 in a buggy state
containing 31 security bugs collected from prior work [33],

[70] along with a set of 71 security properties targeting desired
secure behavior and the inserted bugs. Fifteen of these SVA
properties are inspired by OVL properties provided in prior
work [33]; the remaining properties are based on properties
described (but not provided) in prior work [6], [70], [71].
Despite prior use of OR1200, the community still lacks an
available set of SVA properties written for the design and
a buggy benchmark that can serve as ground truth during
evaluation. This benchmark fills that gap.

2) Hack@DAC 2018: The PULPissimo SoC is a RISC-V-
based SoC with a 6-stage pipeline and security enhancements.
The version used in the Hack@DAC 2018 competition [28]
and studied in the HardFails paper [15] contains both native
and inserted bugs.

We developed a set of properties targeting the bugs known to
be present in the version used in the Hack@DAC competition.
In writing these properties, we used the bug descriptions
available in the literature [28], [15], [42], and map each bug
to a corresponding CWE. Our repository includes a snapshot
of the buggy design, the full set of SVA properties, and CWE
annotations to support reproducible evaluation.

3) Hack@DAC 2019 and 2021: The designs used for the
HACK@DAC 2019 [30] and 2021 [31] competitions were
based on the CVA6 SoC (formerly known as the Ariane SoC).
These two designs have 66 and 99 bugs inserted, respectively.
Some of these vulnerabilities were native to the design and
some, similar to HACK@DAC 2018, were inserted by the
competition organizers.

Using bug descriptions and case studies published in the
literature, we develop properties to find the bugs. To validate
the assertions in JasperGold, we had to resolve a series of
syntax errors and make small fixes to compile the entire SoC.
The repository provides these finalized versions with 11 and
20 properties for each design, respectively.

B. Property Development

Developing properties requires understanding the design
and its security-critical assets, studying known vulnerabilities,
and translating bug descriptions written in natural language
to formal assertions. The process is iterative; properties are
tested and refined through simulation and formal verification.
The amount of time required to write one property depends
on the writer’s level of expertise in SVA specifications and
knowledge of the design. In our experience, the time ranged
from a couple of hours to one week. Each property is one or
two lines of code and adds under 0.10 seconds to verification
time in Cadence JasperGold.

The properties are manually written with one of two goals:

1) Capture desired secure behavior of a design; or

2) Capture specific known buggy behavior of a design.

In the first case, the goal is to formally specify secure behavior.
Violations are not expected unless the design is flawed. These
properties are developed using the instruction set architecture
(ISA) specification and available design documentation. In the
second case, the goal is to expose known vulnerabilities; vio-
lations are expected. Ideally, a complete specification meeting

the first goal would be sufficient to capture all security flaws.
In practice, it is helpful to work toward both goals in tandem.

Table I summarizes the provenance of the security properties
evaluated across the four hardware designs. We categorized
each property based on its origin: derived from the ISA spec-
ification, written to target a known native bug in the design,
created to detect a manually inserted bug, or translated from a
property written for another design. The OR1200 properties
were primarily derived from the ISA (41) and augmented
with a smaller number of inserted bug checks (29) and one
translated property. In contrast, the Hack@DAC designs relied
more heavily on inserted bug properties, with 21, 11, and 13
properties for the 2018, 2019, and 2021 designs, respectively.
The 2018 and 2021 sets also include a handful of native
or translated properties, while the 2019 set was exclusively
constructed to target inserted bugs.

Design ISA Native Inserted Translated
Bug Bug Property
OR1200 41 0 29 1
Hack@DAC 2018 0 10 21 0
Hack@DAC 2019 0 0 11 0
Hack@DAC 2021 4 1 13 2

TABLE I: Property provenance for each design.

C. Property Examples and Challenges

Challenge: Bug descriptions provide limited informa-
tion. Writing assertions from bug descriptions requires expert-
level familiarity with the codebase. For example, Hack@DAC
2021 Bug 76 is described as “some of the register lock regis-
ters are not locked by register locks” [32]. Our investigation
led us to the code shown in Listing 1, with the apparent bug
on Line 5. When writing to register 2, if locked, it copies
reglk mem[3] instead of keeping reglk mem[2]. We found
confirmation of this bug from a description of a similar bug
by Ahmad et al. in their work on CWE Analysis [2].

Listing 1: The buggy line of code reglk wrapper module of
Hack@DAC 2021 OpenPiton SoC

1else if(en && we)

2 case(address[7:3])
3 0: reglk_mem[Q] <=
4 1: reglk_mem[1] <=
5 2: reglk_mem[2] <=
6 3: reglk_mem[3] <=
7 4
8

9

0

reglk_ctrl[3]
reglk_ctrl[1]
reglk_ctrl[1]
reglk_ctrl[1]
reglk_ctrl[1]
reglk_ctrl[1]

:wdata;
:wdata;
:wdata;
:wdata;
:wdata;
:wdata;

reglk_mem[0]
reglk_mem[1]
reglk_mem[3]
reglk_mem[3]
reglk_mem[4]

8 reglk:mem[4] SE
_ reglk_mem[5]

5: reglk_mem[5] <=
default: ;
endcase

Decoding arbitrarily complex FSM states and transitions
was often required. For example, one bug in the 2021 design
has the description: “Able to write using JTAG without pass-
word.” This suggests a vulnerability in the JTAG module, but
required reverse-engineering a complex FSM to understand.
As shown in Listing 3, the FSM can transition from IDLE to
WRITE without checking pass check == 1. This reverse-
engineering process can take many hours for a large design.

Similarly, many bugs require detailed knowledge of the
peripheral interactions with the SoC’s memory interface.
Peripherals may be mapped to fixed memory indices per
configuration. One Hack@DAC 2019 bug states: “Processor
access to CLINT (core level interrupt controller) grants it
access to PLIC (processor level interrupt controller) regardless
of PLIC configuration.” Resolving this required identifying the
hardcoded indices in the RTL in Listing 2, where PLIC maps
to 6 and CLINT to 7.

Listing 2: The buggy line of code axi node intf wrap
module of Hack@DAC 2019 OpenPiton SoC

| for (i=@; i<NB_SUBORDINATE; i++)

2 begin

3 for (j=0; j<NB_MANAGER; j++)

4 begin

5 assign connectivity_map_o[i][j] =

6 access_ctrl_i[il[jllpriv_1vl_il ||

7 ((j==6) 8&& access_ctrl_i[i][7][priv_1vl_il);
8 end

9 end

Challenge: Properties have limited reusability. The above
examples highlight how tightly coupled assertions are to the
designs they are written for. As a result, similar bug descrip-
tions across design generations rarely translated to reusable
properties, as signal names, modules, and RTL structure often
diverged significantly. For example, the same PLIC/CLINT
bug is present in the 2021 design, but writing a property for
it was challenging. The RTL was updated, and despite being
able to identify peripheral mappings, the relevant logic was
hard to locate.

Challenge: Bug descriptions can be misleading. Bug de-
scriptions may point to a module or area of the design, but not
to the specific logic, and simple keyword searches may point
to irrelevant modules or signals. Simulation environments with
waveform viewers and signal tracing ease the process, but
analysis remains complex, especially over multiple modules.

In addition, bug descriptions may not always provide clarity
about the level of abstraction where the vulnerability exists.
Some issues appear in low-level system/C code included in
SoC repositories and fall outside the scope of RTL analysis.
While prior work [2] flags some Hack@DAC 2019 and 2021
CWEs as out of scope, this isn’t always obvious from the
descriptions. For example, bug 4 (CWE 1191) and bug 25
(CWE 1268) both require functional simulation to reproduce.
In other words, the vulnerabilities are only realizable at
runtime, making property writing more challenging.

IV. CASE STUDY: EXAMINING THE ROLE PROPERTIES
PLAY IN REPRODUCIBILITY

The buggy PULPissimo SoC from the 2018 Hack@DAC
competition [28] has become a standard benchmark for hard-
ware security verification [42], [46], [55], [55], [60], [38].
This is largely due to the 2019 HardFails paper which docu-
ments its vulnerabilities and provides a public snapshot of the
design [15]. However, to our knowledge, there is no public
dataset of formal properties for this design despite widespread

Listing 3: Buggy FSM in JTAG module of 2021 OpenPiton
SoC

1 case (state_q)

2 Idle: begin

3

4 if(dmi_access && update_dr &&

5 (error_q == DMINoError)) begin

6

7 address_d = dmi.address;

8 data_d = dmi.data;

9 if ((dm::dtm_op_e’(dmi.op) == dm::DTM_READ) &&
10 (pass_check | “we_flag == 1))

11 begin

12 state_d = Read;

13 end

14 else if ((dm::dtm_op_e’(dmi.op) == dm::DTM_WRITE) &&
15 (pass_check == 1))

16 begin

17 state_d = Write;

18 end

19 else if(dm::dtm_op_e’ (dmi.op) == dm::DTM_PASS)
20 begin

21 state_d = Write;

22 pass_mode = 1’b1;

23 end

24

25 end

26 end

use. Some works include one or two properties [46], [49], or
natural-language description [42].

The issue is that there is no community expectation to
provide SystemVerilog Assertions or equivalent RTL-level
properties for identifying security flaws. As a result, every
research group must independently write their own properties
to use the benchmark. Not only is this time-consuming, but
two groups independently writing properties to capture a bug
are unlikely to write the same property, making it difficult to
compare tool results.

To demonstrate this reproducibility challenge, we wrote
SVA properties for each bug described in HardFails [15] and
evaluated them using Cadence JasperGold’s Formal Property
Verification or FPV. Our evaluation uses the same PULPissimo
SoC snapshot as HardFails. Two examples of assertions are
shown in Listings 4 and 5.

Listing 4: Assertion for Bug 3 (Processor assigns privilege
level of execution incorrectly from CSR.) in Hack@DAC 2018

assert(“((riscv_core.cs_registers_i.priv_lvl_n ==
riscv_core.cs_registers_i.PRIV_LVL_M) && riscv_core.
cs_registers_i.mstatus_n.mpp == riscv_core.
cs_registers_i.PRIV_LVL_U)))

Listing 5: Assertion for Bug 13 (Faulty decoder state machine
logic in RISC-V core results in a hang.) in Hack@DAC 2018

assert(riscv_controller.id_stage_i.controller_i.ctrl_fsm_ns
== riscv_controller.id_stage_i.controller_i.DECODE)
|=> (riscv_controller.id_stage_i.controller_i.
ctrl_fsm_ns != riscv_controller.id_stage_i.controller_i
.DECODE))

Table II shows the results of our reproducibility study.
We group each bug by the CWE and evaluated whether our
hand-written SVA properties could detect the flaws using
JasperGold FPV. We compare our success in finding bugs to

the corresponding JasperGold FPV results in the HardFails
paper.

Despite using the same design and verification engine,
we find bugs that HardFails only identified through manual
inspection or didn’t find at all. Conversely, they reported
finding some bugs with JasperGold that we failed to write a
property for. These discrepancies likely stem from differences
in the properties used, underscoring the importance of open-
sourcing formally stated assertions to support reproducibility.

CWE ID No. of Bugs Found

HardFails Results

Total Bugs Present

Our Results

1203
1207
1206
1257
20

1221
1298
1329
1245
1247
1419
1271
1240
1220
325

1262

O O W —mm—m O = N W
L) = LD e)) e e R W

CoC oo~ WR W

TABLE II: Comparing our success in writing assertions to find
known bugs in the Hack@DAC?2018 design to HardFails [15].

V. ANALYSIS OF COVERED CWES

The Common Weakness Enumeration (CWE), maintained
by MITRE, standardizes descriptions of common security
flaws in hardware and software. Each CWE captures a specific
weakness, such as a bug that allows attackers to access
protected memory or change important values in a device.

CWEs are hierarchical, with broad parents, and more spe-
cific members or children groupings. CWEs that share the
same parent are called siblings. Abstract categories (e.g.,
CWE-1198) are discouraged in favor of specific children.

To help hardware designers focus on the most important
issues, MITRE also released a list of the The 2021 CWE Most
Important Hardware Weaknesses along with five additional
CWEs that are Weaknesses on the Cusp that may become
more common or serious. This list is curated with help from
industry experts and researchers and is updated over time.
It is unranked, meaning the CWEs are not ordered by how
dangerous or common they are.

Table III provides an overview of how these CWEs relate
to our dataset, listed in numerical order. We check whether a
CWE is:

« Directly represented (i.e., appears in our dataset);

« Has a member that appears in our dataset;

« Has a parent that appears in our dataset; or

« Has a sibling represented.

This helps assess how well our findings align with known
critical hardware issues. All of the Most Important Hardware

CWE Brief Description

Appears in Dataset

This Member Parent Sibling

CWE-1189 Improper Isolation of Shared Resources on SoC v

CWE-1191 Improper Debug/Test Access Control v v v
CWE-1231 Improper Prevention of Lock Bit Modification v v v
CWE-1233 Missing Lock Bit Protection v v v
CWE-1240 Insecure Cryptographic Implementation v

CWE-1244 Internal Asset Exposed to Debug Level v

CWE-1256 Improper Restriction of Software Interfaces v

CWE-1260 Overlapping Protected Memory Ranges v

CWE-1272 Info Uncleared Before Debug/Power v v v
CWE-1274 Access Control for Volatile Memory v v v
CWE-1277 Firmware Not Updateable v v
CWE-1300 Protection of Physical Side Channels v

CWE-226 Info Not Removed Before Reuse v

CWE-1247 Protection Against Glitches v

CWE-1262 Access Control for Register Interface v

CWE-1331 Improper Isolation of Resources v
CWE-1332 Improper Handling of Faults v v

TABLE III: 2021 CWE Most Important Hardware Weaknesses and Related CWEs in Our Dataset

Weaknesses and the five Cusp entries are represented in our
dataset in some form. For example, CWEs such as CWE-
1240, CWE-1244, and CWE-1260, examples of the Most
Important CWEs, are directly observed in our data. Others like
CWE-1191 and CWE-1274 are indirectly represented through
hierarchical relationships.

Our repository includes charts that provide a hierarchical,
visual representation of the CWEs covered and how properties
for each design relate to each other. Figure 1 shows a snippet
of the chart for the Hack@DAC’21 SoC. The root node
represents the full SoC design, with immediate children cor-
responding to the hardware modules of interest. There are six
modules represented in this figure. Each module connects to
properties associated with observed bugs, and these properties
are linked via dotted arrows to CWESs describing the nature of
the underlying vulnerabilities.

This visualization is helpful for teasing out observations
and relationships present in our dataset. For example, we see
some CWE reuse across modules. CWE-226 appears both
in aes@ wrapper and rsa_wrapper. CWE-226 is related
to secret data, so its recurrence in cryptographic modules is
unsurprising and suggests opportunities for similar property
development in other cryptographic blocks, both in this SoC
design and across other designs.

CWE-1245 is represented in both dmi_jtag and dma. The
CWE is related to improper finite state machine logic. While
functionally distinct, both DMA and JTAG modules often rely
on FSMs, hinting that this CWE could plausibly affect other
control-heavy modules like UARTsS, for example.

The dmi_jtag module stands out with multiple properties
and two associated CWEs, flagging it as a potential security
hotspot or a logically complex module. In contrast, there are
modules (aes 192, dma, sha256 wrapper) that are each only
associated with one property and one CWE. This may indicate
more narrowly scoped issues, or a need for further analysis.

pro— ez am g Jr—

v @ e v v v g LI .) &
J— owezzn [omeis | [omenn] [oveims | [[onesass | owe12

Fig. 1: Visualizing relationships between modules, properties,
and CWE:s.

VI. DISCUSSION & CONCLUSION

In this paper, we address a critical gap in the hardware
security community: the lack of open-source properties for
verification. We find that natural language descriptions are
insufficient records for both bugs and properties, and call
for stronger community expectations that researchers publish
the SVA or equivalent RT-level properties used in their work.
We further stress the importance of bug reporting to include
the buggy lines of code along with comments describing the
context and behavior of the bug.

Through a case study of the Hack@DAC 2018 design, we
demonstrate the importance of properties for the reproducibil-
ity of evaluation results. To help close this gap, we provide
a set of SVA properties for four commonly used CPU and
SoC designs as part of an open-source hardware verification
benchmarks repository. Each benchmark includes properties
mapped to known or inserted security flaws when applicable,
along with documentation of the corresponding CWEs. By
making these properties available, we aim to accelerate tool
development, enable fair evaluation comparisons, and promote
reproducible hardware security research.

VII. ACKNOWLEDGMENTS

Thank you to the anonymous reviewers for their suggestions
for improving the paper. This paper reports on work supported
by the National Science Foundation under Grant No. CNS-
2247754 and by Intel under the Scalable Assurance program.

[1

—

[2]

[5

=

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

“IEEE standard for SystemVerilog—unified hardware design, specifica-
tion, and verification language,” IEEE Std 1800-2017 (Revision of IEEE
Std 1800-2012), pp. 1-1315, 2018.

B. Ahmad, W. Liu, L. Collini, H. Pearce, J. M. Fung, J. Valamehr,
M. Bidmeshki, P. Sapiecha, S. Brown, K. Chakrabarty, R. Karri, and
B. Tan, “Don’t CWEAT it: Toward CWE analysis techniques in early
stages of hardware design,” in ICCAD, ser. ICCAD ’22. ACM, Oct.
2022.

A. L. D. Anton, J. Miiller, M. R. Fadiheh, D. Stoffel, and W. Kunz,
“Fault attacks on access control in processors: Threat, formal analysis
and microarchitectural mitigation,” IEEE Access, 2023.

A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017, 2017, pp. 1691-1696.

J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, A. Fuchs, S. Payne, X. Liang, M. Matl, and D. Went-
zlaff, “OpenPiton: An open source manycore research framework,” in
Proceedings of the Twenty-First International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ser.
ASPLOS ’16. New York, NY, USA: ACM, 2016, pp. 217-232.

M. Bilzor, T. Huffmire, C. Irvine, and T. Levin, “Security Checkers:
Detecting processor malicious inclusions at runtime,” in HOST, 2011.
Bugzilla, “Bugzilla.” [Online]. Available: https://www.bugzilla.org/

S. Canakci, L. Delshadtehrani, F. Eris, M. B. Taylor, M. Egele, and
A. Joshi, “Directfuzz: Automated test generation for rtl designs using
directed graybox fuzzing,” in DAC. IEEE, 2021, pp. 529-534.

S. Canakci, C. Rajapaksha, L. Delshadtehrani, A. Nataraja, M. B. Taylor,
M. Egele, and A. Joshi, “Processorfuzz: Processor fuzzing with control
and status registers guidance,” in HOST. IEEE, 2023, pp. 1-12.

C. Chen, V. Gohil, R. Kande, A.-R. Sadeghi, and J. Rajendran, “Pso-
fuzz: Fuzzing processors with particle swarm optimization,” in /JCCAD.
IEEE, 2023, pp. 1-9.

C. Chen, R. Kande, N. Nyugen, F. Andersen, A. Tyagi, A.-R. Sadeghi,
and J. Rajendran, “Hypfuzz: Formal-assisted processor fuzzing,” arXiv
preprint arXiv:2304.02485, 2023.

C. Chen, R. Kande, P. Mahmoody, A.-R. Sadeghi, and J. Rajendran,
“Trusting the trust anchor: towards detecting cross-layer vulnerabilities
with hardware fuzzing,” in DAC, 2022, pp. 1379-1383.

Cycuity. [Online]. Available: https://cycuity.com/

Cycuity, “Radix coverage for hardware common
weakness enumeration (CWE) guide.” [On-
line]. Available: https://cycuity.com/type/white_paper/

radix-coverage-for-hardware-common-weakness-enumeration-cwe- guide/

G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi, H. Khattri,
J. M. Fung, A.-R. Sadeghi, and J. Rajendran, “HardFails: Insights into
Software-Exploitable Hardware Bugs,” in USENIX Security. Santa
Clara, CA: USENIX Association, Aug. 2019, pp. 213-230.

C. Deutschbein, “Mining secure behavior of hardware designs,” Ph.D.
dissertation, The University of North Carolina at Chapel Hill, 2021.

C. Deutschbein, A. Meza, F. Restuccia, R. Kastner, and C. Sturton,
“Isadora: Automated information flow property generation for hardware
designs,” in ASHES. ACM, 2021.

C. Deutschbein and C. Sturton, “Evaluating security specification mining
for a CISC architecture,” in HOST. 1EEE, 2020.

C. Deutschbein, A. Meza, F. Restuccia, M. Gregoire, R. Kastner, and
C. Sturton, “Toward hardware security property generation at scale,”
IEEE Security & Privacy, vol. 20, no. 3, pp. 43-51, 2022.

C. Deutschbein and C. Sturton, “Mining security critical linear temporal
logic specifications for processors,” in 2018 19th International Workshop
on Microprocessor and SOC Test and Verification (MTV). 1EEE, 2018,
pp. 18-23.

N. F. Dipu, A. Ayalasomayajula, M. Tehranipoor, and F. Farahmandi,
“Agile: Automated assertion generation to detect information leakage
vulnerabilities,” IEEE Transactions on Information Forensics and Secu-
rity, 2023.

W. Fang, M. Li, M. Li, Z. Yan, S. Liu, Z. Xie, and H. Zhang, “Assertllm:
Generating and evaluating hardware verification assertions from design
specifications via multi-llms,” 2024.

W. Fang and H. Zhang, “Wasim: A word-level abstract symbolic
simulation framework for hardware formal verification,” in International

[24]
[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(371

(38]

(39]

[40]
[41]

[42]

[43]

[44]

[45]
[46]
[47]
(48]

[49]

[50]

[51]

Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2023, pp. 11-18.

N. Farzana, F. Rahman, M. Tehranipoor, and F. Farahmandi, “Soc
security verification using property checking,” in ITC, 2019, pp. 1-10.
S. Gogri, P. Joshi, P. Vurikiti, N. Fern, M. Quinn, and J. Valamehr,
“Texas A&M Hackin’ Aggies’ security verification strategies for the
2019 hack@dac competition,” IEEE Design & Test, vol. 38, no. 1, pp.
30-38, 2021.

V. Gohil, R. Kande, C. Chen, A.-R. Sadeghi, and J. Rajendran, “Mab-
fuzz: Multi-armed bandit algorithms for fuzzing processors,” arXiv
preprint arXiv:2311.14594, 2023.

Hack@DAC, https://www.dac.com/Conference/HackDAC.

Hack@DAC 2018 Phase 2 Buggy SoC. [Online]. Available: https:
//github.com/hackdac/hackdac_2018_beta
Hack@DAC 2019. [Online]. Available:
dac19-setup/

Hack@DAC 2019 Alpha Stage SoC.
//github.com/HACK-EVENT/hackatdac19
Hack@DAC 2021 Alpha Stage SoC.
//github.com/HACK-EVENT/hackatdac21
Hack@DAC 2021 SoC. [Online]. Available:
HACK-EVENT/hackatdac21

M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “Specs: A lightweight
runtime mechanism for protecting software from security-critical proces-
sor bugs,” in ASPLOS, 2015, pp. 517-529.

M. M. Hossain, N. F. Dipu, K. Z. Azar, F. Rahman, F. Farahmandi,
and M. Tehranipoor, “Taintfuzzer: Soc security verification using taint
inference-enabled fuzzing,” in ICCAD. IEEE, 2023, pp. 1-9.

M. M. Hossain, A. Vafaei, K. Z. Azar, F. Rahman, F. Farahmandi,
and M. Tehranipoor, “Socfuzzer: Soc vulnerability detection using cost
function enabled fuzz testing,” in DATE. 1EEE, 2023, pp. 1-6.

W. Hu, A. Ardeshiricham, M. S. Gobulukoglu, X. Wang, and R. Kast-
ner, “Property specific information flow analysis for hardware security
verification,” in ICCAD, 2018, pp. 1-8.

W. Hu, A. Ardeshiricham, and R. Kastner, “Hardware information flow
tracking,” CSUR, vol. 54, no. 4, pp. 1-39, 2021.

R. Kande, H. Pearce, B. Tan, B. Dolan-Gavitt, S. Thakur, R. Karri, and
J. Rajendran, “Llm-assisted generation of hardware assertions,” arXiv
preprint arXiv:2306.14027, 2023.

R. Kastner, F. Restuccia, A. Meza, S. Ray, J. Fung, and C. Sturton,
“Automating hardware security property generation,” in DAC, 2022, pp.
1384-1387.

Y. Lyu and P. Mishra, “Automated test generation for activation of
assertions in RTL models,” in ASP-DAC. 1EEE, 2020, pp. 223-228.
X. Meng, “Ensuring hardware robustness via security verification,” Ph.D.
dissertation, 2023.

X. Meng, S. Kundu, A. K. Kanuparthi, and K. Basu, “Rtl-contest:
Concolic testing on rtl for detecting security vulnerabilities,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 3, pp. 466477, 2021.

X. Meng, A. Srivastava, A. Arunachalam, A. Ray, P. H. Silva, R. Psiakis,
Y. Makris, and K. Basu, “Unlocking hardware security assurance: The
potential of llms,” arXiv preprint arXiv:2308.11042, 2023.

A. Meza, F. Restuccia, J. Oberg, D. Rizzo, and R. Kastner, “Security
verification of the opentitan hardware root of trust,” IEEE S&P, vol. 21,
no. 3, pp. 27-36, 2023.

MITRE, “Common Weakness Enumeration.”
https://cwe.mitre.org/

J. Miiller, M. R. Fadiheh, A. L. D. Antén, T. Eisenbarth, D. Stoffel, and
W. Kunz, “A formal approach to confidentiality verification in socs at
the register transfer level,” in DAC. IEEE, 2021, pp. 991-996.
OpenCores, “OpenCores.” [Online]. Available: https://opencores.org/
OR1200: OpenRISC 1200 Implementation. [Online]. Available: https:
//github.com/openrisc/or1200

S. Paria, A. Dasgupta, and S. Bhunia, “Divas: An llm-based end-to-end
framework for soc security analysis and policy-based protection,” arXiv
preprint arXiv:2308.06932, 2023.

D. Patterson, “For better or worse, benchmarks shape a field: technical
perspective,” Commun. ACM, vol. 55, no. 7, p. 104, Jul. 2012.

M. Qin, J. Li, J. Yan, Z. Hao, W. Hu, and B. Liu, “Ht-pgfv: Security-
aware hardware trojan security property generation and formal security
verification scheme,” Electronics, vol. 13, no. 21, 2024.

https://hackthesilicon.com/

[Online]. Available: https:
[Online]. Available: https:

https://github.com/

[Online]. Available:

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62

[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

S. R. Rajendran, N. F. Dipu, S. Tarek, H. M. Kamali, F. Farahmandi,
and M. Tehranipoor, “Exploring the abyss? unveiling systems-on-chip
hardware vulnerabilities beneath software,” IEEE Transactions on Infor-
mation Forensics and Security, 2024.

S. R. Rajendran, S. Tarek, B. M. Hicks, H. M. Kamali, F. Farahmandi,
and M. Tehranipoor, “Hunter: Hardware underneath trigger for exploit-
ing soc-level vulnerabilities,” in DATE. 1EEE, 2023, pp. 1-6.

F. Restuccia, A. Meza, and R. Kastner, “AKER: A design and verifica-
tion framework for safe andsecure SoC access control,” 2021.

K. Ryan and C. Sturton, “Sylvia: Countering the path explosion problem
in the symbolic execution of hardware designs,” in FMCAD. IEEE,
2023, pp. 110-121.

——, “Sylg-sv: Scaling symbolic execution of hardware designs
with query caching,” in Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, ser. ASPLOS °25. New York, NY, USA:
Association for Computing Machinery, 2025, p. 195-211. [Online].
Available: https://doi.org/10.1145/3676642.3736123

A.-R. Sadeghi, J. Rajendran, and R. Kande, “Organizing the world’s
largest hardware security competition: Challenges, opportunities, and
lessons learned,” ser. GLSVLSI *21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 95-100.

P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti, and
L. Benini, “Quentin: an ultra-low-power pulpissimo soc in 22nm fdx,”
in §38, 2018, pp. 1-3.

SoC Vulnerability Database. [Online]. Available: http://cad4security.
org/index.php/riscv-vulnerability-details/

B. Solem, “Applying unique program execution checking in the de-
velopment flow of industrial iot devices to prevent vulnerabilities for
side-channel attacks,” Master’s thesis, NTNU, 2023.

F. Solt, B. Gras, and K. Razavi, “{CellIFT}: Leveraging cells for
scalable and precise dynamic information flow tracking in {RTL},” in
USENIX Security 22, 2022, pp. 2549-2566.

C. Sturton, M. Hicks, S. T. King, and J. M. Smith, “Finalfilter: Asserting
security properties of a processor at runtime,” IEEE Micro, vol. 39, no. 4,
pp. 35-42, 2019.

Y. Sugiyama, R. Matsuo, and R. Shioya, “Surgefuzz: Surge-aware
directed fuzzing for cpu designs,” in ICCAD. 1EEE, 2023, pp. 1-9.
T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo, and
M. Hicks, “Fuzzing hardware like software,” in USENIX Security 22,
2022, pp. 3237-3254.

Trust-Hub. [Online]. Available: https://www.trust-hub.org

A. Tyagi, A. Crump, A.-R. Sadeghi, G. Persyn, J. Rajendran, P. Jauernig,
and R. Kande, “Thehuzz: Instruction fuzzing of processors using golden-
reference models for finding software-exploitable vulnerabilities,” arXiv
preprint arXiv:2201.09941, 2022.

J. Xu, Y. Liu, S. He, H. Lin, Y. Zhou, and C. Wang, “{MorFuzz}:
Fuzzing processor via runtime instruction morphing enhanced synchro-
nizable co-simulation,” in USENIX Security 23, 2023, pp. 1307-1324.
F. Zaruba and L. Benini, “The cost of application-class processing:
Energy and performance analysis of a linux-ready 1.7-ghz 64-bit risc-v
core in 22-nm fdsoi technology,” VLSI, vol. 27, no. 11, pp. 2629-2640,
Nov 2019.

R. Zhang, C. Deutschbein, P. Huang, and C. Sturton, “End-to-end
automated exploit generation for validating the security of processor
designs,” in MICRO. IEEE, 2018, pp. 815-827.

R. Zhang, N. Stanley, C. Griggs, A. Chi, and C. Sturton, “Identifying
Security Critical Properties for the Dynamic Verification of a Processor,”
in ASPLOS, ser. ASPLOS ’17. New York, NY, USA: ACM, 2017, p.
541-554.

R. Zhang and C. Sturton, “Transys: Leveraging common security prop-
erties across hardware designs,” in /EEE S&P. IEEE, 2020.

R. Zhang, C. Deutschbein, P. Huang, and C. Sturton, “End-to-end
automated exploit generation for processor security validation,” /IEEE
Design & Test, vol. 38, no. 3, pp. 22-30, 2021.

R. Zhang and C. Sturton, “A recursive strategy for symbolic
execution to find exploits in hardware designs,” in Proceedings
of the 2018 ACM SIGPLAN International Workshop on Formal
Methods and Security, ser. FMS 2018. New York, NY, USA:
Association for Computing Machinery, 2018, p. 1-9. [Online].
Available: https://doi.org/10.1145/3219763.3219764

Z. Zhang, G. Chadwick, H. McNally, Y. Zhao, and R. Mullins, “LIm4dv:
Using large language models for hardware test stimuli generation,” 2023.

	Introduction
	Background
	Scope
	Threat Model
	Available Open-Source Resources
	Related Work

	Property Development
	Designs Studied
	OR1200
	Hack@DAC 2018
	Hack@DAC 2019 and 2021

	Property Development
	Property Examples and Challenges

	Case Study: Examining the role properties play in reproducibility
	Analysis of Covered CWEs
	Discussion & Conclusion
	Acknowledgments
	References

