
Verification with Small and Short Worlds
Rohit Sinha

UC Berkeley
Cynthia Sturton
UC Berkeley

Petros Maniatis
Intel Labs

Sanjit A. Seshia
UC Berkeley

David Wagner
UC Berkeley

Abstract—We consider the verification of safety properties in
systems with large arrays and data structures. Such systems
are common at the low levels of software stacks; examples are
hypervisors and CPU emulators. The very large data structures
in such systems (e.g., address-translation tables and other caches)
make automated verification based on straightforward state-
space exploration infeasible. We present S2W, a new abstraction-
based model-checking methodology to facilitate automated ver-
ification of such systems. As a first step, inductive invariant
checking is performed. If that fails, we compute an abstraction
of the original system by precisely modeling only a subset of state
variables while allowing the rest of the state to evolve arbitrarily
at each step. This subset of the state constitutes a “small world”
hypothesis, and is extracted from the property. Finally, we verify
the safety property on the abstract model using bounded model
checking. We ensure the verification is sound by first computing
a bound on the reachability diameter of the abstract model. For
this computation, we developed a set of heuristics that we term
the “short world” approach. We present several case studies,
including verification of the address translation logic in the Bochs
x86 emulator, and verification of security properties of several
hypervisor models.

I. INTRODUCTION

CPU emulators lie in the foundational layer of much of
today’s computing infrastructure: CPU emulation is used
by virtualization software (hypervisors and virtual machine
monitors) in both testing and production to secure, analyze,
and multiplex critical systems [7], [15], [28]. Unfortunately,
although critical, CPU emulators are not often verified, and are
frequently found incorrect [19], [20] or – worse – vulnerable
to attacks [4].

A particular challenge for the verification of CPU emulators
and hypervisors is their use of large data structures. For
example, logical-to-physical address translation requires data
structures to store the CPU’s Translation Look-aside Buffer
(TLB) and page tables. While these structures are finite-length
for any given processor, they are usually too large to represent
precisely for verification; often, they are abstracted to be of
unbounded length. The data structures in the resulting model
of the system are thus parametrized: the indices into those
structures are parameters, taking values in a very large or
even infinite domain (typically finite-precision bit-vectors or
the integers). The techniques proposed for verifying such
parametrized systems fall into two classes: those based on
a small-model or cut-off theorem (e.g., [11], [12], [24]), or
those based on abstraction (e.g., [8], [14], [18]). While exist-
ing approaches are elegant and effective for their respective
problem domains, they fall short for the problems we consider:
the small-model approaches usually restrict expressiveness,
while abstraction-based approaches either focus on control
properties (as opposed to equivalence/refinement) or handle
only certain kinds of data structures. In both cases, some of
the realistic case studies we consider cannot be handled. (We
make a fuller comparison in Sec. VI.)

In this paper, we present a new semi-automatic methodology
for verifying safety properties in systems with large data
structures. Our approach comprises three steps. First, we
employ standard (mathematical) induction to verify the safety
property, and if that succeeds, the process is complete. Second,
if induction fails, we create an over-approximate abstraction
of the system, the “small world,” in which unbounded data
structures are parametrized and, in general, only a subset
of the state is updated as per the original transition relation
(e.g., only a few entries of the unbounded data structures);
the rest of the state is updated with arbitrary values at each
step. With this abstraction, the model is more amenable to
state-space exploration. Third, we attempt to find a bound k
on the reachability diameter of the small world so that, if
bounded model checking for k steps succeeds in the small
world, then the safety property must hold in the small world,
and since that is an over-approximation of the original system
model, then the safety property holds there as well. Heuristics
are presented for finding k that are effective for the class of
systems we consider. We term this BMC-based approach the
“short world” method, since it relies on computing a “short”
bound for BMC. Our overall approach, termed Small-Short-
World (S2W), is implemented on top of the UCLID system [9],
which verifies abstract term-level models using satisfiability
modulo theories (SMT) solving. Note that the temporal safety
verification problem for our class of systems is undecidable.
As a result, S2W is a semi-decision procedure.

In summary, the novel contributions of this paper include:

• A semi-automatic procedure, S2W, for verifying systems
with large or unbounded data structures, using a combi-
nation of induction and abstraction-based model checking.
The key new ideas are a set of heuristics for creating an
abstract model and computing a bound on the reachability
diameter of its state space.

• An extensive evaluation of S2W on a wide range of CPU
emulator and hypervisor models, proving safety properties
critical to the security and correctness of those systems. Our
examples include the TLB implementation in the Bochs
x86 emulator [23] and a shadow page table system.

II. RUNNING EXAMPLE

We introduce here a running example: a simple read-only
memory system with a single-entry cache. We prove an
invariant about the value returned by a read command. We
build a model in our modeling language and demonstrate the
verification of the safety property using S2W. Our example
is meant to be small, understandable, and illustrative, rather
than “real-world.”

Our example system (Fig. 1) takes only one command, read,
with a single parameter, the 32-bit address to be read; it returns
a single-bit data value. At each read command, the cache is

Fig. 1: An illustration of our running example: A read-only memory and a
single-entry cache. The cache is updated on each read command.

first checked. If the cache contains the data for the address
requested, that value is returned. Otherwise, the value is read
from memory. In either case, the cache is updated with the
requested address and the returned data value. The update
to cache is shown in the above figure (we use “◦” to mean
concatenation). We prove an invariant about the cache: if the
cache holds a valid address, then the cached data value is
equal to the value stored in memory at that address. In other
words, we show that the cache is correct.

III. FORMAL DESCRIPTION OF PROBLEM

A. Notation and Terminology

A system is modeled as a tuple S = (I, O, V , Init , A) where

• I is a finite set of input variables;
• O is a finite set of output variables;
• V is a finite set of state variables;
• Init is a set of initial states, and
• A is a finite set of assignments to variables in V . As-

signments define how state variables are updated, and thus
define the transition relation of the system.

Input and output variables are assumed combinational (state-
less), without loss of generality. V is the only set of state-
holding variables. Variables can be of two types: primitives,
such as Boolean or bit-vector; and memories, which includes
arrays, content-addressable memories (CAMs), and tables. An
output variable is a function of V] I. When representing a
system without outputs, we will omit O from the representa-
tion. The set of initial states, Init , can either be viewed as a
symbolic vector of terms representing any initial state, or as
a Boolean-valued function of V , written Init(V).

Fig. 2 denotes the grammar for expressions in our modeling
language. The language has three expression types: Boolean,
bit-vector, and memory.

bE ::= true | false | b | ¬bE | bE1 ∨ bE2

| bE1 ∧ bE2 | bvE1 = bvE2 | bvrel(bvE1, . . . , bvEk) (k ≥ 1)
| UP (bvE1, . . . , bvEk) (k ≥ 0)

bvE ::= c | v | ITE(bE, bvE1, bvE2)
| bvop(bvE1, . . . , bvEk) (k ≥ 1)
| mE(bvE1, . . . , bvEl) | UF (bvE1, . . . , bvEk) (l ≥ 1, k ≥ 0)

mE ::= A |M | λ(x1, . . . , xk).bvE (k ≥ 0)

Fig. 2: Expression Syntax. c and v denote a bit-vector constant and
variable, respectively, and b is a Boolean variable. bvop denotes
any arithmetic/bitwise operator mapping bit vectors to bit vectors,
while bvrel is a relational operator other than equality mapping bit
vectors to a Boolean value. UF and UP denote an uninterpreted
function and predicate symbol respectively. A and M denote constant
and variable memories. x1, . . . , xk denote parameters (typically
indices into memories) that appear in bvE.

The simplest Boolean expressions (bE) are the constants true
and false or Boolean variables; more complicated expressions
can be constructed using standard Boolean operators or using
relational operators amongst bit-vector expressions. We also
allow a Boolean expression to be an application of an unin-
terpreted predicate to bit-vector expressions.

Bit-vector expressions (bvE) include bit-vector constants, vari-
ables, if-then-else expressions (ITE), and expressions con-
structed using standard bit-vector arithmetic and bitwise oper-
ations. Additionally, bit-vector expressions can be constructed
as applications of uninterpreted functions returning bit-vector
values and applications of memories to bit-vector arguments.
Each bit-vector expression has an associated bitwidth.

Finally, the primitive memory expressions (mE) can be (sym-
bolic) constants or variables. More complex memory expres-
sions can be modeled using the Lambda notation introduced
by Bryant et al. [9] for term-level modeling; this includes the
standard write (store) primitive for modeling arrays, as well
as more general operations such as parallel updates to arrays,
operations on CAMs, queues, and other data structures.

In addition to the above expressions, we will use the wildcard
“∗” to denote an arbitrary value of the appropriate type; it is
used primarily to express non-determinism in the state update.

A next-state assignment α denotes assignment to a state
variable and is a rule of the form next(x) := e or next(x) :=
{e1, e2, . . . , en}, where x is a signal in V , and e, e1, e2, . . . , en
are expressions that are a function of V]I. The curly braces
and “∗” express non-deterministic choice. The set of all next-
state assignments defines the transition relation R of the
system. Formally, R =

∧
α∈A r(α), where r(next(x) :=

e)
.
= (x′ = e) and r(next(x) := {e1, e2, . . . , en})

.
=∨n

i=1(x′ = ei), where x′ denotes the next-state version of
variable x. The wildcard “∗” is translated at each transition
into a fresh symbolic constant of the appropriate type. We
will sometimes write the transition relation as R(V, I,V ′) to
emphasize that it relates current-state variables V and next-
state variables V ′ based on the inputs I received.

Example 1: We formally describe our model from Sec. II. Let
ST = (I, O,V , Init , A) be the system, with

• I = {addr}. addr is the 32-bit address to read from
memory.

• O = {out}. out is the value read from either memory or
the cache.

• V = {mem, cache}. mem is constant and is modeled as
an array of (one-bit) bit-vectors. It is represented by an
uninterpreted function that maps a 32-bit address to a single
bit. cache is a 33-bit vector; it holds the one-bit data value
and 32-bit address of that value.

• Init = (mem0, cache0). mem is initialized to hold arbitrary
data values at each address. cache is initialized to hold
an invalid address, 0x00000000, with an arbitrary data
value.

• A. On each read command cache is updated with the
address read and the value returned by the read; mem
remains constant.

B. Problem Definition

Consider a system S modeled as described in the preceding
section. We similarly model the environment E that provides
the inputs for S and consumes its outputs. The composition
of S and E , written S‖E , is the model under verification,
M. The form of the composition depends on the context; we
use both synchronous and asynchronous compositions. We
will represent the closed system M as a transition system
(VM, InitM,RM), where the elements respectively denote
state variables, initial states, and transition relation. In all
of our examples, the environment E is stateless, generating
completely arbitrary inputs to S at each step; thus VM = V ,
InitM = Init and RM = R.

This paper is concerned with verification of temporal safety
properties of the form GΦ, where G is the temporal operator
“always” and Φ is a state invariant of the form

∀x1, . . . , xk. φ(x1, . . . , xk) (1)

where φ is a Boolean expression following the syntax of bE.
The parameters x1, . . . , xk are bit-vector valued, but usually
too large to exhaustively case split on.

Example 2: In our running example, we verify GΦ2, where

Φ2
.
= ∀x. (addr = x)→

((cache.addr = addr ∧ cache.addr 6= 0)→
cache.data = mem[addr]) (2)

The problem tackled by this paper, temporal safety verification
for systems with large data structures, is formally defined as
follows.

Definition 1 (Large Data Safety Verification): Given a model
M formed as a composition of system S and its environment
E , and a temporal safety property GΦ, determine whether or
not M satisfies GΦ. �

This problem is known to be undecidable in general since a
two-counter machine can be encoded in our formalism using
applications of uninterpreted functions [16]. Hence, we can
only devise a semi-decision procedure for the problem. In the
next section, we describe such a procedure that is based on
abstraction.

IV. METHODOLOGY

S2W is based on a combination of abstraction and Bounded
Model-Checking (BMC). We tackle state-space explosion by
abstracting away all but a small subset of the space of the
system. We call this mostly-abstracted system our “small
world.” The abstracted portion of the system can be considered
as being updated with an arbitrary value (“∗”) at each step of
execution. All other parts of the system are modeled precisely.
Thus, this abstraction is a form of localization abstraction [17],
where the localization is to small, finite portions of large data
structures.

We check the safety property on the small world using BMC.
To make BMC sound, we first find and prove the length of the
diameter D of our small world to use as the bound – i.e., D
is an integer such that every state reachable in D+ 1 steps is
also reachable in D or fewer steps. Proving that a conjectured
diameter D is correct is undecidable in our formalism [10].

The key to our approach is a set of heuristics that are
effective in our chosen application domain of emulators and
hypervisors. For our examples, the diameter of the mostly-
abstracted system is typically small; we therefore term this
the “short world.”

If BMC runs for D steps and does not find a violation of the
safety property in our small world, then the original model is
safe. If BMC finds a counter-example, we cannot say whether
the property holds for the original model: BMC can return
a spurious counter-example. Choosing the small world well
reduces the likelihood of finding spurious counter-examples.

To summarize, there are two crucial pieces to our approach:
choosing the right small world and proving the length of the
short world. We discuss both of these in more detail below.

As an optimization, we prefix the above approach with an at-
tempt to prove the safety property using one-step induction (on
the original, non-abstract model, M). If that succeeds, there
is no need to continue on to S2W’s abstraction. (This step can
be generalized to perform k-step induction as needed.)

For the presentation in this section, it is convenient to rep-
resent the system under verification S as a transition system
(I,V,R, Init) where the elements of the tuple have the same
meanings as in Sec. III. The environment E sets the values of
the input variables in I at each step; in all our case studies,
the inputs from E are completely unconstrained. Verification
(using induction or BMC) is performed on the composition
of S and E .

A. Induction

First, S2W attempts to prove the safety property using simple
one-step induction on the non-abstract model M. We check
the validity of the following two formulas, as per standard
practice:

InitM(VM)→ Φ(VM) (3)
Φ(VM) ∧RM(VM,V ′M)→ Φ(V ′M) (4)

If both checks pass, the verification is complete. We report
“Property valid” and exit. If check (3) fails, the property is
invalid. We report “Property invalid in initial state” and exit.
If check (4) fails, we continue with S2W, to find the small
world.

B. Small World

The objective of this step is to identify a small portion of
system state that we should model precisely during BMC.
Everything else will be allowed to take on arbitrary values at
each step of execution.

It is important to note that the soundness of S2W does not
depend on the choice we make for the small world; we could
randomly select some portion of the state to model precisely,
abstract everything else away, and if our three steps complete
and verify the property, the property would be true of the
original, non-abstracted system. However, choosing the small
world wisely ensures that the short world is indeed short,
which allows BMC to complete in a reasonable amount of
time. A well-chosen small world also reduces the amount of
spurious counter-examples returned by the BMC step.

We present here a heuristic for choosing the small world
when dealing with systems involving large or unbounded data
structures. In our case studies, the heuristic found a small
world whose short world was reasonable in length and for
which no spurious counter-examples were returned by the
BMC.

To select those state variables to model precisely, S2W
starts with the property G Φ, where Φ is of the form
∀x1, x2, . . . , xn. φ(x1, x2, . . . , xn). If we prove Φ by instan-
tiating the quantifier with a completely arbitrary, symbolic
parameter vector (a1, a2, . . . , an), that suffices to prove the
original property. Thus, starting with the symbolic vector
(a1, a2, . . . , an), we compute a dependence set (U) for the in-
stantiated property φ(a1, a2, . . . , an). U is a set of expressions
involving state variables and the parameters a1, . . . , an such
that fixing the values of the expressions in this set fixes the
value of the instantiated property. For variable M modeling a
memory, these expressions typically involve indexing into M
at a finite number of (symbolic) addresses. For a Boolean or
bit-vector variable, either the variable is in U or not.

Typically, this set of expressions is derived syntactically by
traversing the expression graph of the formula φ represented
in terms of state and input variables (after performing certain
simplifications).

Example 3: In our running example, recall that the property
is G Φ2 where:

Φ2
.
= ∀x. (addr = x)→

((cache.addr = addr ∧ cache.addr 6= 0)→
cache.data = mem[addr])

Φ2 has the form ∀x. φ(x). Instantiating x with a, a fresh
symbolic constant, we can drop the quantifer and get φ(a),
for which, by propagating the equality addr = a, we see that
its value is determined by the expressions mem[a] and cache.
Thus, we use U = {mem[a], cache} as our dependence set.

Once we have computed U , using the above heuristic or some
other method, we can define our small world. Recall that S
is represented as a symbolic transition system (I,V,R, Init).
Let R̂ be a transition relation that differs from R by setting
all state not in U to a non-deterministic value and leaving all
others unchanged. Abusing notation slightly to use U wherever
we use V , this means that R̂(U , I,U ′) = R(U , I,U ′), and
R̂(W, I,W ′) = true for W = V \ U . Similarly, ˆInit(U) =
Init(U) and ˆInit(W) = true.

Then the abstracted small world is Ŝ = (I,V, R̂, ˆInit). Ŝ
is an overapproximate (abstract) version of S that precisely
tracks only the state in U , and allows all other variables
to change arbitrarily at each step of execution. Thus, the
composition of Ŝ and E is an overapproximate model M̂.
(Note that if M was infinite-state, M̂ is too.)

The next step is proving a short world for M̂ and using BMC
on M̂ to verify the property.

C. Short World

The objective of this phase is to determine a bound on the
diameter D of the abstract model M̂. For this section, we
will assume that E is stateless, as is the case for all of our

case studies; the approach extends in a straightforward manner
for the general case. Thus, the diameter of M̂ is the same as
that of Ŝ.

Suppose we believe the diameter to be ≤ k. To verify this
bound, we check the validity of the following logical formula:

∀V0,V1, . . . ,Vk+1, I1, I2, . . . , Ik+1.[
Init(V0) ∧

k∧
i=0

R̂(Vi, Ii+1,Vi+1)
]

→
[
∃V ′0,V ′1, . . . ,V ′k, I ′1, I ′2, . . . , I ′k.

Init(V ′0) ∧
k−1∧
i=0

R̂(V ′i, I ′i+1,V ′i+1) ∧
k∨
i=0

Vk+1 = V ′i
]

(5)

Since R̂ modifies state expressions outside U arbitrarily on
each step, we can replace V everywhere in the above formula
with U , and obtain the actual convergence criterion that must
be checked.

Nevertheless, checking the convergence criterion is undecid-
able for the class of systems we are interested in, due to the
presence of uninterpreted functions, memories, and possibly
parameters with unbounded bitwidth [10]. The quantified
formula in (5) is also very hard to solve in practice. Therefore,
quantifier instantiation heuristics must be devised to perform
the convergence check. In this section, we present two such
heuristics that have worked well for the range of case studies
considered in this paper.

The Sub-Sequence Heuristic: The first heuristic checks that
for any state reachable in k + 1 steps using k + 1 symbolic
inputs to Ŝ, one can also reach that state using some sub-
sequence of length ≤ k of those k+1 symbolic inputs. We can
express the sub-sequence heuristic as performing a particular
instantiation of the existential quantifiers in criterion (5), and
checking the validity of the following formula that results:

∀U0,U1, . . . ,Uk+1, I1, I2, . . . , Ik+1,U ′0,U ′1, . . . ,U ′k.[
Init(U0) ∧ (U0 = U ′0) ∧

k∧
i=0

R̂(Ui, Ii+1,Ui+1)
]
→

∨
(I′1,...,I′k)≺(I1,...,Ik+1)

[
k−1∧
i=0

R̂(U ′i , I ′i+1,U ′i+1) ∧
k∨
i=0

Uk+1 = U ′i

]
(6)

Here the symbol≺ denotes that (I ′1, . . . , I ′k) is a sub-sequence
of (I1, . . . , Ik+1).

The intuition for the sub-sequence heuristic is that in many
systems with large arrays and tables, locations in those tables
are updated destructively based on the current input, meaning
that past updates do not matter. The address translation logic
in the emulators we have studied has this nature. Thus, for
such systems, it is possible to drop from the input sequence
inputs that have no effect on the k + 1-st step.

Observe the quantifier alternation in criterion (5) has been
eliminated in the stronger criterion (6). Thus, we can simply
perform a validity check of an SMT formula in the combi-
nation of theories required by our model. If the sub-sequence
criterion (6) holds, then so does (5). However, it is possible
that criterion (6) is too strong, even when a short diameter

exists. This scenario necessitates an alternative semi-automatic
approach, described next.

The Gadget Heuristic: The gadget heuristic is an approach to
instantiating the existential quantified variables in criterion (5)
that is particularly useful for systems in which some state
in U depends on the past history of state updates in a non-
trivial manner. A gadget is a small sequence of state transitions
manually constructed to generate some subset of all reachable
system state. A universal gadget set is a set of such sequences
that, in concert, can generate any reachable system state1. The
length k of the longest gadget in the universal gadget set is
then an upper bound on the diameter of the system.

In terms of the formula expressed as criterion (5), a gadget
is a particular guess for a set of initial states V ′0 (expressed
symbolically) and a sequence I ′1, I ′2, . . . , I ′l (for l ≤ k) of
symbolic input expressions to use. For a finite number of
gadgets, the inner existential quantifier in criterion (5) can
be replaced as a disjunction over all the formulas obtained
by substituting the gadget expressions for (V ′0, I ′1, I ′2, . . . , I ′l).
If this instantiated formula is valid, then so is the original
formula (5).

We defer further discussion about gadget construction to
Sec. IV-D, where we discuss its use on our running example.

Performing BMC: Once we have proven k is an upper bound
on the length of the diameter of Ŝ, we run BMC on Ŝ for k
steps. If φ(a1, . . . , an) holds at each step of the simulation,
then it follows that Ŝ satisfies G Φ. Because Ŝ is an
overapproximation of all states reachable by S, it follows that
S satisfies G Φ.

If BMC fails, we return a “short” counter-example. The
counter-example will be no longer than k. If this is a valid
counter-example, the property does not hold. If it is a spurious
counter-example, we can return to step two of S2W and
expand our set U to include more state variables and inputs.
Such a strategy would be an instance of counterexample-
guided abstraction refinement.

Restricted State Spaces: In some systems, we are interested
in proving a safety property over a restricted state space,
where the restriction can be captured by a predicate over state
variables. The restriction predicate is often specified as an
antecedent in the temporal safety property. Examples of such
a restriction can be found in Sections V-A and V-B. In such
cases, we note that it is enough to compute a bound on the
reachability diameter — the short world bound — under that
restriction. It also sufficient to perform model checking under
this restriction.

D. Example

To illustrate the above approach, we apply it to our example.
In step one we attempt to prove property G Φ2 by induction.
For this, we perform the following two checks:

Init(mem, cache)→ Φ2 (7)
Φ2 ∧RT (V,V ′)→ Φ2 (8)

1Our gadgets are inspired by “state-generation gadgets,” used for automated
testing of CPU emulators from arbitrary but reachable initial states [19], and
by gadgets identified for return-oriented programming, used to produce a
Turing-complete command set for malicious exploits [26].

Check (7) passes, since the cache is initially empty. However,
the induction step (check (8)) does not pass. Starting from
a state in which Φ2 holds, it is possible to transition to a
state in which Φ2 is violated. To see why this is so, consider
the following state for the cache and two particular entries of
mem:

mem[i] := a, mem[j] := b, cache.addr := i, cache.data := z

where z 6= a, the last read was for address j, and the output
was b. (This state is not reachable in our model, but one-step
induction does not take this into account.) Note that Φ2 holds
in this state: for every x 6= j, the antecedent (addr = x)
of the property is false and therefore the property is true;
when x = j, the nested antecedent (cache.addr = addr ∧
cache.addr 6= 0) is false and therefore the property is true. In
this state, a read(i) command will hit in the cache and the
output will be z, making the property evaluate to false in the
next state.

Since simple induction failed for our toy example, we move
to the next step, identifying the small world ŜT . As described
in Section IV-B, we introduce a fresh symbolic constant a
for x, removing the ∀x quantifier from the property. We
then select U syntactically from the property to be the set
of expressions U = {mem[a], cache}. In ŜT the variables
in U are updated according to the original model (ST). All
other state variables (all entries of mem other than mem[a])
are made to be fully abstract: they are allowed to update to
non-deterministic values on every step. The same symbolic
constant is used throughout the following short world checks.

The last step of our verification is to identify a short world
and then run BMC on the abstract model for the length of
the short world. We describe the gadget heuristic here; the
sub-sequence heuristic would also work, although it finds a
slightly looser bound on the length of the diameter. To build
the gadgets we enumerate the possible end-state valuations
for the system’s state variables (cache, mem[a]) and for each,
determine how to get there from a possible starting state.
Notice that we only need to consider mem[a] and not all of
mem. This is because, in our small world ŜT , all entries of
mem other than mem[a] receive new arbitrary values at the
end of each step, so we know they can hold any possible
value at every step of any trace. In theory there are 234 end-
states: one for each possible value of cache.addr times the two
possible values of cache.data and mem[a] each. However, for
our property, we do not really care about the precise valuation
of cache.addr, rather, we care about whether cache.addr = a
and whether cache.addr = 0. So we can abstract away the
details of cache.addr and consider the following 16 ending
states:

{cache.addr = a, cache.addr 6= a,

cache.addr = 0 cache.addr 6= 0}
× {cache.data = 0, cache.data = 1}
× {mem[a] = 0,mem[a] = 1}

Not all of the above 16 states are reachable, and in the end
four gadgets are enough to reach all reachable states. Each
gadget uses either one or two read commands. We build the
gadgets with the appropriate values for addr and show they
form a universal gadget set and therefore, that the short world

Page

Word

Word

...

Page Table

PTE

PTE

...

Page Directory

PDE

...

PDE

dir table offset

VPN

vaddrvaddr
paddr

PPN

TLB

VPN PPN R/W/X/G

VPN PPN R/W/X/G

...

VPN PPN R/W/X/G

Fig. 3: On the left, we show a two-level page walk translating VPN
to PPN addresses. The TLB caches VPN to PPN translations along with
read/write/execute/global permission bits.

has length two. We then perform BMC and verify that the
property holds.

V. EVALUATION

We have evaluated S2W on six case studies and describe them
here: the TLB of the Bochs x86 emulator, a set-associative
cache, shadow paging in a hypervisor, hypervisor integrity
for SecVisor [12], the Chinese Wall access-control policy
in sHype [12], and separation in the original version of
ShadowVisor [11]. We describe the first three in detail; the last
three were verified using one-step induction and we describe
them only briefly. The code for all of our models, along
with their verification, is available online.2 All experiments
were performed using UCLID [3] (with the Plingeling SAT
solver [1] backend) on a machine with 8 Intel Xeon cores and
4 GB RAM.

A. Bochs’ TLB

Bochs [23] is an open source x86 emulator (in C++) for
emulating CPU, BIOS, and I/O peripherals. Bochs emu-
lates virtual memory using paging, which includes logic
to translate a virtual address (VPN) to a physical address
(PPN). Figure 3 illustrates the steps of a page walk. The
input virtual address vaddr is partitioned into 3 sets of bits
(vaddrdir, vaddrtable, vaddroffset). First, the vaddrdir bits index a
page directory entry (PDE) within the page directory region.
The PDE contents, along with the vaddrtable bits, index into
the page tables to retrieve a page table entry (PTE). The PTE
contents identify a 4KB physical page, and when concatenated
with the 12 bit vaddroffset index a particular byte within
this page. Since the above page walk includes two memory
lookups, most x86 processors implement a TLB to cache
VPN to PPN translations. The TLB also caches permission
bits (r/w/x/g) checked during memory accesses. With this
optimization, Bochs’ address translation logic first checks its
TLB for an entry describing the wanted VPN. If no such
entry exists, Bochs performs a page walk to compute the
corresponding PPN, and then stores that translation in its TLB
for future accesses. We would like to prove that the optimized
paging unit (with Bochs TLB) is functionally equivalent to the
original paging unit (without TLB).

The Bochs TLB + page table system is modeled as a tuple
SBochs = (I, O, V , Init , A) where

• I = {vaddr, data, pl, rwx, command}. vaddr is the virtual
address to translate. data is used to update the page table

2http://uclid.eecs.berkeley.edu/s2w/

Command Modifies Guard
write pte mem true
write pde mem true
translate TLB ¬present ∨ ¬permission
set cr3 TLB true
invlpg TLB TLB[vaddrtable].vpn31:12 = (vaddrdir ◦

vaddrtable)
invlpg all TLB TLB[vaddrtable].vpn31:22 = vaddrdir

TABLE I: The allowable operations in our model of the Bochs TLB.

memory. pl indicates the CPU’s current privilege level
(either user or supervisor mode). rwx indicates whether
this memory access writes and/or executes this address.

• O = {paddr TLB, pagefault TLB, paddr noTLB,
pagefault noTLB}. paddr TLB is the result of address
translation with TLB. paddr noTLB is the result of
address translation without the TLB. pagefault TLB in-
dicates a page fault occurred (due to insufficient per-
mission) during translation with TLB. pagefault noTLB
indicates a page fault during translation without the TLB.

• V = {mem,TLB, legal}, where mem is a 32-bit address-
able memory containing both the page directory and page
tables. TLB is an array (210 entries in Bochs) of structs,
where each struct is 160 bits wide and has 5 32-bit fields:
vpn, ppn, access bits (ab), etc. legal is a Boolean variable
denoting whether the system reached the current state via
a legal sequence of transitions.

• Init = (mem0,TLB0, true), where TLB0[i].vpn :=
0xffffffff for all i and mem0 is an uninterpreted function
from 32 bit addresses to arbitrary 32 bit values. The
Bochs TLB is initialized with its vpn field set to 0xffffffff
in all entries, thus making it empty. legal is initialized to
true.

• A: V evolves via operations write pde, write pte, invlpg,
invlpg all, setcr3, and translate, and the environment
non-deterministically chooses one of these operations at
each step. Table I describes each of these commands.

Each command is implemented in distinct functions within
Bochs (src/cpu/paging.cc). Since Bochs executes on a single
thread, we can safely model each function as an atomic
operation, i.e., a single step in the state transition system.
The commands write pde and write pte are used to update
the page directory and page tables respectively, typically
to modify access permissions or page mapping. translate
performs address translation and assigns the result to variables
in O. Furthermore, if a page walk was deemed necessary,
then translate updates a TLB entry with the results of that
page walk. If global pages are enabled, then a setcr3 (which
switches to a new page table, typically during a context
switch) flushes all non-global entries in the TLB. Otherwise
if global pages are disabled, all TLB entries are flushed on
a setcr3. The x86 instruction invlpg flushes a specific TLB
entry containing the translation for vaddr; invlpg is needed
to invalidate the TLB entry following a write to the page
table. invlpg all atomically flushes all TLB entries that have
vaddrtable in their vpn (bits 31 to 22); invlpg all is needed to
invalidate a set of TLB entries following a write to the page
directory.

We check equivalence of both the physical address and
whether a page fault occurred. Since the x86 manual only
guarantees cache coherency when the TLB is flushed properly,
we only require equivalence on traces where each write pde

http://uclid.eecs.berkeley.edu/s2w/

is followed by a invlpg all and each write pte is followed by
invlpg. This constraint is enforced by legal, which is true only
if the sequence of operations abides by these constraints. Any
state that satisfies legal is guaranteed to be reachable from the
initial state via a legal sequence of state transitions.

The property that we check is:

Φ9
.
= ∀v, p, r. (vaddr = v ∧ pl = p ∧ rwx = r)→

legal→ ((pagefault TLB⇔ pagefault noTLB) ∧
(¬pagefault noTLB→ (paddr noTLB = paddr TLB))) (9)

1) Induction: The one-step induction check consists of prov-
ing (10) and (11) using the UCLID verifier.

Init(VBochs)→ Φ9(VBochs) (10)
Φ9(VBochs) ∧R(VBochs,V ′Bochs)→ Φ9(V ′Bochs) (11)

Our initial state satisfies Φ9 because the TLB is initialized
to be empty, thereby forcing both optimized and unoptimized
designs to undergo the two-level page walk. However, one-
step induction (check (11)) fails because the back-end SMT
engine cannot solve the formula, which has a quantifier
alternation. Consequently, we proceed onto the small and short
world steps.

2) Small World: We syntactically derive the dependence set
UΦ9 by traversing the expression graph of Φ9. After introduc-
ing a fresh 32-bit symbolic constant v = (vdir, vtable, voffset),
the dependence set is

UΦ9 = {legal,TLB[vtable],mem[cr331:12 ◦ vdir],

mem[mem[cr331:12 ◦ vdir]31:12 ◦ vtable]}

The last three expressions represent the TLB entry, page direc-
tory entry, and page table entry pointed to by v, respectively.
(Here cr331:12 refers to the upper 20 bits of the cr3 control
register and is modeled as a symbolic constant.) Our abstract
model ŜBochs precisely tracks only the variables in UΦ9 ; other
state elements get updated with arbitrary values at each step.

3) Short World: We use the sub-sequence heuristic to find an
upper bound on the diameter of ŜBochs. We find a bound of
9 steps. Finally, we perform bounded model checking for 9
steps, proving that all reachable states of ŜBochs‖EBochs satisfy
Φ9. The sub-sequence check and BMC took about 45 minutes
and 25 minutes respectively.

B. Content Addressable Memory

While the TLB functions as a direct-mapped cache (each
concrete logical address is associated with a single TLB
entry), S2W also applies to systems with set-associative caches
and Content Addressable Memories (CAMs). A CAM stores
associations between keys and data. The key is typically stored
as part of the data, and is used for comparison during lookups.

Figure 4 shows a system containing slow memory and a CAM-
based cache. We would like to prove that a lookup in slow
memory yields the same data as lookup in the CAM-based
cache (if the data is present in the CAM). We model the
CAM’s state using a variable cam that maps a CAM index
to its contents, a 65-bit vector containing fields present, key,
and data. The cam[i].present bit indicates whether the key
cam[i].key and data cam[i].data are valid entries. cam[i].key

Fig. 4: Our model of a slow memory and its CAM-based cache.

and cam[i].data contain the 32-bit key and 32-bit data stored
at CAM index i (if cam[i].present is true). Memory is modeled
as an variable mem mapping a 32-bit address to a 32-bit vector.
That is, mem[a] refers to the 32-bit data at address a.

We also maintain a state variable map that maps an address
a to a 32-bit CAM index. map is updated when data is
added or deleted from the CAM. A read(addr) command
checks the contents of the CAM at index map[addr]. If
cam[map[addr]].key = addr and cam[map[addr]].present is
true, then SCAM assigns cam[map[addr]].data to output vari-
able out camdata and true to output variable out campresent.
Otherwise, SCAM assigns false to out campresent. read also
assigns mem[addr] to output variable out memdata. The
insert(addr, data) command checks map for an existing map-
ping of address addr. If map[addr] 6= ⊥, then SCAM updates
the CAM at index map[addr] with data data and key addr.1

Otherwise, we arbitrarily choose a new location arb[addr] to
insert data and addr, and update map[addr] with this new
location. The set(addr, data) command updates mem[addr]
with data, possibly making the CAM contents stale. The
reset(addr) command resynchronizes cam with mem at ad-
dress addr (if the CAM contains a valid entry for address
addr). These commands are implemented using atomic oper-
ations, and they update map, mem and cam in parallel.

The CAM + memory system is modeled as a tuple SCAM =
(I, O, V , Init , A) where

• I = {addr, data, command}
• O = {out camdata, out campresent, out memdata}
• V = {cam,mem,map, legal}: These are all modeled

as bit-vector functions. cam returns a 65-bit vector: 1-
bit present, 32-bit data, 32-bit addr. Both mem and
map return a 32-bit vector. legal is a Boolean variable
denoting whether the system legally reached the current
state.

• Init = (c0,m0,map0, true), where map0[a] = ⊥ for all
a, the present field of each CAM entry is initialized to
false, memory is initialized to arbitrary values, and legal
is initialized to true.

1Note that ⊥ in our model equals 0x00000000; it is an acceptable design
choice to not cache that address.

• A: The state evolves via commands insert, delete, set,
reset and read. The environment non-deterministically
chooses one of these commands at each step. Figure 4
defines the state transition relation for each command.

The safety property Φ12 checks that the CAM and memory
have the same data for all keys present in CAM. Note that the
CAM only guarantees cache coherency if it is resynchronized
with memory after each set. The state variable legal enforces
this constraint: it is true if every set is followed by a reset.

Φ12
.
= ∀a. (addr = a)→ legal→

(out campresent → (out camdata = out memdata)) (12)

Since Φ12 is expressed over output variables, we check if a
state s satisfies Φ12 by performing a read operation on state
s with a fresh symbolic constant for a.

1) Induction: We first try one-step induction on this system
to prove Φ12. The initial state satisfies Φ12 because both the
CAM and map are empty. However, the inductive check fails
because of the quantifier alternation, similar to the TLB case
study. Hence, we continue onto the small world step of our
approach.

2) Small World: We syntactically derive the dependence set
by traversing the expression graph of Φ12. We introduce a
fresh 32-bit symbolic constant a for the address that we
precisely track in map and mem. We precisely track legal,
map[a], mem[a], and cam[map[a]].

UΦ12
= {legal, cam[map[a]],mem[a],map[a]} (13)

Our abstract model ŜCAM precisely tracks updates to only these
variables.

3) Short World: Using the sub-sequence heuristic, we find an
upper bound on the reachability diameter of 5 steps. Finally,
we perform bounded model checking for 5 steps, proving
that all reachable states of ŜCAM‖ECAM satisfy Φ12. The sub-
sequence check and BMC takes about 15 seconds and 5
seconds respectively.

C. Shadow Paging

For our third case study, we model a shadow page table
system. A hypervisor may use shadow page tables to assure
address space separation between the guest and host. The
guest page tables can be updated arbitrarily by the guest
operating system, while the shadow page tables are updated
only by the hypervisor. The hardware uses the shadow page
tables for address translation, so it is the hypervisor’s responsi-
bility to make sure the shadow page tables stay synchronized
with the guest tables, while at the same time ensuring no
translation will ever allows the guest to access memory outside
its allocated sandbox. We model the synchronization process
and verify that the physical address returned by translation
never exceeds some constant limit, LIMIT.

Our shadow paging model (Figure 5) is as follows. There
are two page table structures: guest and host. Each is a two-
level structure: a page directory table (PDT) and a page table
(PT). We refer to the guest and shadow page tables as gPDT,
gPT and sPDT, sPT, respectively. Entries in the PDT have
three fields: present (p), page-size-extension (pse), and address

sPDT

p pse addr

p pse addr

p pse addr

p pse addr

...

...

...

sPT

...

...

p addr

p addr

p addr

p addr

gPDT

p pse addr

p pse addr

p pse addr

p pse addr

...

...

...

gPT

...

...
p addr

p addr

p addr

p addri

j

i

j

page-faultinval-page

j

i

adversarynew-context

Fig. 5: An illustration of the shadow page table model.

(addr). Entries in each nested PT have two fields: present (p)
and address (addr).

Let SSP = (I, V , Init , A) be the shadow paging model with

• I = {i, j, command}: i and j index into the PDT and
PT, respectively; command is one of page-fault, inval-page,
new-context, or adversary.

• V = {gPDT, gPT, sPDT, sPT,LIMIT}. gPDT, gPT, sPDT,
and sPT are modeled as functions that map indices to bit-
vectors. gPDT and sPDT return 34-bit vectors: (1-bit p,
1-bit pse, 32-bit addr). gPT and sPT return 33-bit vectors:
(1-bit p, 32-bit addr). LIMIT is a constant 32-bit vector.

• Init = (sPDT0, sPT0, gPDT0, gPT0), where sPDT and sPT
are both initialized with the p bit cleared in all entries.
gPDT and gPT are initialized to arbitrary values.

• A: The four commands update state in the following
way: page-fault synchronizes the shadow tables with the
guest tables. inval-page conditionally invalidates (zeros
out) entries in sPDT and sPT. new-context unconditionally
invalidates entries in sPDT. adversary writes to gPDT and
gPT. The assignments to gPDT, gPT, sPDT, and sPT are
summarized in Table II.

Command Modifies Guard

page-fault(i, j)

sPDT[i]
gPDT[i].pse ∧ gPDT[i].p∧
(gPDT[i].addr < LIMIT)

sPDT[i]
gPDT[i].pse ∧ ¬(gPDT[i].p∧
(gPDT[i].addr < LIMIT))

sPDT[i], sPT[j]
¬gPDT[i].pse ∧ gPDT[i].p∧
(gPDT[i].addr < LIMIT)∧
gPT[j].p ∧ (gPT[j].addr < LIMIT)

sPDT[i]

¬gPDT[i].pse ∧ gPDT[i].p∧
(gPDT[i].addr < LIMIT)∧
¬(gPT[j].p ∧ (gPT[j].addr < LIMIT))∧
¬(sPDT[i].p ∧ ¬sPDT[i].pse)

sPDT[i]
¬gPDT[i].pse ∧ ¬(gPDT[i].p∧
(gPDT[i].addr < LIMIT))

sPT[j]

¬gPDT[i].pse ∧ gPDT[i].p∧
(gPDT[i].addr < LIMIT)∧
¬(gPT[j].p ∧ (gPT[j].addr < LIMIT))∧
(sPDT[i].p ∧ ¬sPDT[i].pse

inval-page(i, j)
sPDT[i]

(sPDT[i].p ∧ ¬gPDT[i].p)∨
(sPDT[i].p ∧ gPDT[i].p∧
(sPDT[i].pse ∨ gPDT[i].pse))

sPT[j]
sPDT[i].p ∧ gPDT[i].p∧
¬gPDT[i].pse ∧ ¬sPDT(i).pse

new-context gPDT true

adversary gPDT true
gPT true

TABLE II: Next-state assignments for the shadow paging model.

Our model is based on the ShadowVisor model [11], but has
been extended to introduce pointers. The safety properties we
verify are similar to those of ShadowVisor. We verify that a
translation using the shadow page tables will never return an
address above a fixed limit.

Φ14 = ∀i. (sPDT[i].p ∧ sPDT[i].pse)→
sPDT[i].addr < LIMIT (14)

Φ15 = ∀i, j. (sPDT[i].p ∧ ¬sPDT[i].pse ∧ sPT[j].p)→
sPT[j].addr < LIMIT (15)

1) Induction: The property G Φ14 is proven by induction.
However, one-step induction fails to prove G Φ15. If sPT[j]
is marked as present, but has an address greater than LIMIT,
Φ15 is still true as long as sPDT[i] is marked not present.
From that state, it is possible to update sPDT[i] to present
without updating sPT[j], so that in the next state the sPDT[i]
and sPT[j] entry are both marked present and the data in the
sPT[j] entry is greater than LIMIT, violating Φ15. Therefore,
we move on to the small and short world steps for G Φ15.

2) Small World: The properties are concerned with a single
entry i in sPDT and a single entry j in sPT. Therefore
we use a fresh symbolic constant to choose an arbitrary
entry from each. In particular, our conditional dependency
set is Uφ15

= {sPDT[ai], sPT[aj]}. In our abstract symbolic
transition system, ŜSP , we track precisely only the state in
Uφ15

. ai, aj stay constant.

3) Short World: The sub-sequence short-world heuristic does
not work for page tables, because page-table entry updates can
depend on previous writes to the entry or to other entries; it is
not always possible to drop one step of a trace to achieve an
equivalent final state. Instead, we use gadgets to find and prove
the short world. We manually construct a universal gadget set
to prove the length of the diameter of ŜSP .

To build the gadgets we case split on the possible end-state
valuations for the variables in Uφ15

, and for each, determine
how to get there from a valid starting state. The model has
only four commands and it was usually obvious which com-
mands were needed to get to a particular state. The gadgets
must also specify the parameters (i, j) to the command, and,
in the case of the adversary command, the value that gets
written to the guest tables. Figuring out the correct parameters
to use for each command was more difficult. In this case, the
parameters were always either i := ai or i := a′i (where
a′i 6= ai is arbitrarily chosen), and similarly for j. The
adversary data that gets written to the guest tables was a
combination of the addr field of the (symbolic) end-state
valuation we were trying to achieve and a particular value for
the p and pse bits, which we chose according to the particular
gadget we were building.

We needed a total of thirteen gadgets, each four commands
or less, to prove the short world has length four. We then ran
BMC on ŜSP for four steps and verified the property held at
each step. The verification of the short world took less than
a minute; BMC took approximately five seconds.

D. Other Hypervisor Models

We applied our abstraction technique to three additional
hypervisor models. All were verified using one-step induction,
each within 5 seconds.

SecVisor: SecVisor [12], [25] is a small hypervisor that sup-
ports a single guest OS. It virtualizes the memory management
unit by implementing shadow page tables and synchroniz-
ing them with the guest page tables. The model assumes
an adversary can write arbitrary values to the guest page
tables. SecVisor aims to execute only approved code in kernel

mode; therefore, the page-table synchronization must prevent
adversary-provided code from having execute permissions
while in kernel mode. We verified the security property using
one-step induction on a model given by Franklin et al. [12].

sHype: sHype [12] is an access control system used by the
Xen [2] hypervisor. Based on the Chinese Wall policy, it
establishes “conflict of interest” classes and guarantees each
virtual machine will never access two pieces of data from
the same conflict of interest class. We verified the security
property using a model presented by Franklin et al. [12].

ShadowVisor: ShadowVisor [11] served as the starting point
for our shadow page table model. It models the page tables
of a simple hypervisor that assures address space separation
between guest and host by maintaining separate guest and
shadow page tables. Like our shadow page table model,
ShadowVisor guarantees that if an address is marked as
present, it will never exceed a certain fixed limit. We model
ShadowVisor in our modeling language and use one-step
induction to verify the property.

VI. RELATED WORK

Verification of infinite-state or parametrized systems has been
well-studied. Here we present the most closely-related work.

Franklin et al. [11], [12] present a small-model approach to
verifying systems with parametrized data structures (arrays).
In essence, they present a formal language such that if the
system can be modeled in their language, then a small-model
theorem applies, stating that the unbounded arrays can be
reduced to arrays with one designated element alone. Finite-
state model checking can then be employed on the resulting
system. While this approach is very elegant, there are some
important differences with the approach in this paper. First,
our modeling language is more expressive, allowing us to
model the Bochs TLB, CAM, and shadow paging examples
which cannot be modeled in their language. Second, our
approach is different: we compute an abstraction based on
localization within the large data structures, and we use
bounded model checking.

The use of inductive invariant checking is common in this
problem domain. The method of invisible invariants [6], [22]
is an example of an inductive verification technique applied
to systems of N identical finite-state processes. The core
idea in this method is to generalize from the reachable states
of a small number of processes into a quantified inductive
assertion of the form ∀i.φ(i), where the index i ranges over
process IDs. Namjoshi [24] also discusses the so-called cutoff
method, which is a small-model approach for such systems
of parametrized processes, drawing connections between in-
ductive methods, small-model approaches and compositional
reasoning. In general, these approaches are not easily applied
to our examples since they are not naturally decomposed
into a system of N identical finite-state processes. Instead,
in our problem domain, the number of interacting processes
is usually finite and small, but the shared data structures are
large and complicated.

Abstraction-based approaches have also been presented for
infinite-state or parametrized systems similar to those studied
in this paper. Lahiri and Bryant [18] presented an approach
for verifying universally-quantified invariants on parametrized

systems using predicate abstraction. While predicate abstrac-
tion can be quite effective for verifying control-related prop-
erties, especially when one can guess suitable predicates, it
is not suitable for verifying equivalence of two code versions
(such as in the Bochs TLB case study), which is a highly data-
dependent property. McMillan [21] presents a semi-automatic
approach to compositional reasoning using an abstraction
similar to ours. Given a system with large arrays, he uses
a form of localization abstraction (guided by case splitting
performed by the user) to only model a few entries in the
arrays precisely, allowing all other entries to be updated by an
arbitrary value ⊥. This abstraction is used to compute a finite-
state abstract model on which reachability analysis is per-
formed. In contrast, our method computes an abstraction based
on index terms derived from the property, and uses a BMC-
based approach to verify the system. Bjesse [8] describes an
automatic approach for verifying sequential circuits with large
memories, if the memories are “remodellable” (a notion made
formal in [8]). The work takes a “small-world” approach,
transforming an initial netlist into another with memories with
precise updates only to a small number of entries in memories,
and uses counterexample-guided abstraction-refinement. Our
work does not require the “remodellable” restriction. Ger-
man [14] presents a novel approach for constructing sound
and complete abstractions for similar systems. The approach
is based on performing static analysis on the system model,
and (in contrast to [8]) can handle unbounded delays between
the time the array is read and when the read value propagates
to the output. While the approach is completely automatic, it
cannot handle certain data structures such as CAMs, in which
a read, in principle, requires scanning the entire array. Our
approach, while not always automatic, does handle structures
such as CAMs (see Sec. V-B).

Efficient memory modeling is a technique used for bounded
verification problems, either symbolic simulation (e.g. [27]) or
bounded model checking (e.g. [13]). In contrast, our approach
focuses on unbounded verification based on abstraction and
a sound application of BMC based on heuristics to find the
reachability diameter.

There has also been prior work on verifying emulators and
hypervisors. Alkassar et al. [5] presented the verification
of the TLB logic in the Hyper-V hypervisor. They verify
invariant properties of the TLB using the VCC verifier. Their
approach, like ours, is not fully automatic. While our approach
uses abstraction-based model checking, assuming a particular
model of atomicity of operations, theirs is a classic deductive
verifier for C code (using VC generation and theorem proving)
that operates at a somewhat lower level of abstraction.

VII. CONCLUSION

We have presented S2W, a new approach to verifying systems
with large or unbounded data structures that combines in-
duction and abstraction-based model checking. Experimental
results have been presented on several examples of emulators
and hypervisors. In ongoing work, we are investigating how to
make the technique more automated, to automatically generate
abstract, term-level models from C/C++ code, and to validate
these models.
Acknowledgments. This research was supported in part by
SRC contract 2045.001, by Intel through the ISTC for Secure

Computing, by the AFOSR under MURI award FA9550-09-1-
0539, and by a generous gift from Intel. We thank Randal E.
Bryant, Orna Kupferman, and Anupam Datta for their valuable
feedback.

REFERENCES

[1] Plingeling SAT Solver. http://fmv.jku.at/lingeling.
[2] The Xen Hypervisor. http://www.xen.org/.
[3] UCLID Verification System. Available at http://uclid.eecs.berkeley.edu.
[4] VMware Security Advisory vmsa-2009-0015. http://www.vmware.com/

security/advisories/VMSA-2009-0015.html, 2009.
[5] E. Alkassar, E. Cohen, M. A. Hillebrand, M. Kovalev, and W. J. Paul.

Verifying shadow page table algorithms. In FMCAD, 2010.
[6] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck. Parameterized

Verification with Automatically Computed Inductive Assertions. In
CAV, 2001.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In
SOSP, 2003.

[8] P. Bjesse. Word-Level Sequential Memory Abstraction for Model
Checking. In Formal Methods in Computer-Aided Design (FMCAD),
2008.

[9] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and Verifying
Systems using a Logic of Counter Arithmetic with Lambda Expressions
and Uninterpreted Functions. In Computer-Aided Verification (CAV’02),
2002.

[10] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Convergence Testing in
Term-Level Bounded Model Checking. In Correct Hardware Design
and Verification Methods (CHARME), 2003.

[11] J. Franklin, S. Chaki, A. Datta, J. M. McCune, and A. Vasudevan.
Parametric Verification of Address Space Separation. In POST, 2012.

[12] J. Franklin, S. Chaki, A. Datta, and A. Seshadri. Scalable Parametric
Verification of Secure Systems: How to Verify Reference Monitors
without Worrying about Data Structure Size. In IEEE Security &
Privacy, 2010.

[13] M. K. Ganai, A. Gupta, and P. Ashar. Efficient Modeling of Embedded
Memories in Bounded Model Checking. In Proc. Computer-Aided
Verification (CAV), 2004.

[14] S. German. A theory of abstraction for arrays. In FMCAD, 2011.
[15] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Practical

Taint-Based Protection using Demand Emulation. In EuroSys, 2006.
[16] A. J. Isles, R. Hojati, and R. K. Brayton. Computing reachable control

states of systems modeled with uninterpreted functions and infinite
memory. In Computer-Aided Verification (CAV ’98), 1998.

[17] R. Kurshan. Automata-Theoretic Verification of Coordinating Processes.
In 11th International Conference on Analysis and Optimization of
Systems – Discrete Event Systems, volume 199. Springer Berlin /
Heidelberg, 1994.

[18] S. K. Lahiri and R. E. Bryant. Predicate abstraction with indexed
predicates. ACM Trans. Comput. Log., 9(1), 2007.

[19] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis.
Path-Exploration Lifting: Hi-Fi Tests for Lo-Fi Emulators. In ASPLOS,
2012.

[20] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi. Testing CPU
Emulators. In ISSTA, 2009.

[21] K. L. McMillan. Verification of Infinite State Systems by Compositional
Model Checking. In Correct Hardware Design and Verification Methods
(CHARME), 1999.

[22] K. L. McMillan and L. D. Zuck. Invisible Invariants and Abstract
Interpretation. In SAS, 2011.

[23] D. Mihocka and S. Shwartsman. Virtualization Without Direct Execu-
tion or Jitting : Designing a Portable Virtual Machine Infrastructure.
AMASBT, 2008.

[24] K. S. Namjoshi. Symmetry and Completeness in the Analysis of
Parameterized Systems. In VMCAI, 2007.

[25] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny Hypervisor
to Provide Lifetime Kernel Code Integrity for Commodity OSes. In
SOSP, 2007.

[26] H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-
Into-Libc Without Function Calls (on the x86). In ACM CCS, 2007.

[27] M. N. Velev, R. E. Bryant, and A. Jain. Efficient Modeling of Memory
Arrays in Symbolic Simulation. In Proc. Computer-Aided Verification
(CAV), 1997.

[28] Q. Zhang, J. McCullough, J. Ma, N. Schear, M. Vrable, A. Vahdat,
A. C. Snoeren, G. M. Voelker, and S. Savage. Neon: System Support
for Derived Data Management. In VEE, 2010.

http://www.xen.org/
http://uclid.eecs.berkeley.edu
http://www.vmware.com/security/advisories/VMSA-2009-0015.html
http://www.vmware.com/security/advisories/VMSA-2009-0015.html

	Introduction
	Running Example
	Formal Description of Problem
	Notation and Terminology
	Problem Definition

	Methodology
	Induction
	Small World
	Short World
	Example

	Evaluation
	Bochs' TLB
	Induction
	Small World
	Short World

	Content Addressable Memory
	Induction
	Small World
	Short World

	Shadow Paging
	Induction
	Small World
	Short World

	Other Hypervisor Models

	Related Work
	Conclusion
	References

