
Symbolic Software Model Validation

Cynthia Sturton 1, Rohit Sinha 2, Thurston H.Y. Dang 2, Sakshi Jain 2, Michael McCoyd 2,
Wei Yang Tan 2, Petros Maniatis 3, Sanjit A. Seshia 2, and David Wagner 2

1University of North Carolina at Chapel Hill
2University of California, Berkeley

3Intel Labs

Abstract—Modeling is the crucial first step in formal verifi-
cation. Some models are constructed by humans from source
code, while others are extracted automatically by tools. Re-
gardless of how a model is constructed, verification is only
as good as the model; therefore, it is essential to validate the
model against the implementation it represents. In this paper
we present two complementary approaches to software model
validation. The first, data-centric model validation, checks that,
for data structures relevant to the property being verified, all
operations that update these data structures are captured in the
model. The second, operation-centric model validation, checks
that each operation being modeled is correctly simulated by the
model. Both techniques are based on a combination of symbolic
execution and satisfiability modulo theories (SMT) solving. We
demonstrate the application of our methods on several case
studies, including the address translation logic in the Bochs
x86 emulator, the Berkeley Packet Filter, a TCAS benchmark
suite, the FTP server from GNU Inetutils, and a component of
the XMHF hypervisor.

I. INTRODUCTION

In formal verification, one typically first creates a model of
the system to verify, and then uses techniques such as model
checking and theorem proving to prove properties about the
model. A model may be constructed manually from source
code or extracted automatically by a tool. In either case,
successful verification means the property has been proven
true of the model, but not necessarily of the original system.
This weakness is clear for manually-constructed models,
but also holds for tools operating directly on source code.
Software model checkers construct and internally maintain
a model of the code, on which the analysis is performed.
Moreover, to scale to large code bases, tools often require
human guidance (e.g., code annotations or modifications).
Thus, again, one implicitly trusts that the model is correct:
if model verification succeeds, one assumes the verification
also holds for the original system.

In this work we present a framework for validating that
assumption. We formalize the process of validating a model
against the original source code implementation of the
system to prove that a property proven true of the model is
also true of the system. We concentrate solely on validating

Work done while Sturton was at the University of California, Berkeley.

models that will be used for the verification of safety prop-
erties, and on systems implemented in imperative languages
(e.g., C/C++). A special focus is on systems software that
exports several “logical operations” that client programs can
use (or misuse), such as an FTP server and its commands
or a virtual machine monitor and its services to operating
systems hosted on it. Such systems are best understood as
being logically concurrent, even if they are single-threaded.
Each logical operation operates on an associated collection
of data. Therefore, the corresponding models are usually
specified as transition systems with logical operations that
can be interleaved in a specified manner to operate on
their associated data structures based on client inputs. Data-
structure complexity often necessitates the use of abstraction
using first-order logic with suitable background theories.

To be sound, model validation must show that all states
reachable in the original system are also reachable in the
model. However, often a system has many equivalent states
with respect to the property to be verified. Modelers use
this fact to model only relevant portions of the system. For
example, the Bochs CPU Emulator [21] is a large system
comprising over 400 C/C++ files, several files in other lan-
guages, and over 200 KLoC.1 A model of the entire system
is daunting, and possibly unnecessary. A property about
address translation, for example, might require a model
of only a few of the system modules. Modules for CPU-
instruction fetch and decode might safely be excluded from
the model. The first phase of model validation, therefore,
is to show that the modelers selected modules correctly: no
portion of the system was excluded from modeling while
being relevant to the property under consideration. This
requires first identifying the set of relevant variables and,
then, showing that those variables are never written by
program code that has been excluded from modeling.

The second phase of model validation is to show that the
model is an overapproximation of the code with respect to
the property in question. We check that the model simulates
the relevant code by checking that each logical operation in
the code is overapproximated by a corresponding operation

1Calculated for Bochs 2.6.2 using David A. Wheeler’s SLOCCount.

Figure 1: Model checking-based verification with model
validation. Model validation consists of the DMV and OMV
steps (shaded).

in the model. This is formulated as checking validity of a
logical formula and discharged using an SMT solver [1].

We propose the following work flow (see Figure 1):

1. System Pruning: Before modeling, modelers prune irrel-
evant code. Given a system S and a property Φ, relevant
code, FP , is identified. This is typically a manual step
that requires some domain expertise.

2. Data-Centric Model Validation (DMV): The pruning done
in the previous step is validated. If DMV finds that FP
is missing relevant code, the process returns to Step 1.

3. Model Construction: Given FP , modelers build a formal
model M of the pruned system.

4. Operation-Centric Model Validation (OMV): M is vali-
dated as a sound abstraction of FP with respect to Φ. If
OMV finds discrepancies, the process returns to Step 3.

5. Verification: Model checking-based verification is done.

In this paper we focus on Steps 2 and 4 of the work
flow; we assume pruning and modeling are manual, and
that any standard model-checking technique can be used
in Step 5. In our theoretical framework, DMV and OMV
are sound, but our current implementation is not. We use
symbolic execution [14] and SMT solving [1] to implement
DMV and OMV. The former is used to explore all feasible
code paths, and the latter to check the validity of queries
generated during DMV and OMV. Due to limitations of
symbolic execution tools, DMV, in some cases, fails to
catch portions of S that were omitted from FP . We rely
on modeler expertise to identify the relevant code to model
and use DMV for debugging. In that sense, our DMV
implementation increases the modeler’s confidence.

Our implementation currently uses KLEE [4] for symbolic
execution, the UCLID [2] language for building our models,
and the UCLID decision procedure for proving the SMT
queries that check validation. The methodology can be made
to work with other tools as well.

This paper makes the following contributions:

• A theoretical framework for software model validation.

if (curr privilege level == 3)
page fault = 1;

else page fault = 0;
...
update access dirty(...);

(a) Code.
page fault := (cpl[0] & cpl[1]);

(b) Model. curr_privilege_level is abbreviated to cpl.

Figure 2: A code snippet and the corresponding model.

• An implementation of the framework using symbolic
execution and SMT solving.

• Evaluation of our procedure on software benchmarks.
Our case studies include the Bochs address translation
logic, a component of the Berkeley Packet Filter, a
TCAS benchmark suite, the FTP server from GNU
Inetutils, and a component of the XMHF hypervisor.

II. RUNNING EXAMPLE

We present here an example snippet of code and the corre-
sponding model (Figure 2), which we use later to illustrate
our algorithm. The code snippet comes from the Bochs CPU
emulator. It tests, for memory pages marked as supervisor-
only, whether the CPU has a current privilege level (CPL) of
3. If it does, a page fault will be raised (page-fault flag set to
1), indicating a failed protection check. Otherwise, the page-
fault flag is set to 0. After a successful check for a page fault
(not shown), the access and dirty bits of the page table entry
are updated. In this example curr_privilege_level
and page_fault are both integer variables.

The modeler asserts that update_access_dirty is ir-
relevant to the CPL, so she prunes it.

In the model, if bits 0 and 1 of the current privilege variable
are both set, the page-fault flag is set to 1, otherwise, it
is set to 0. cpl is modeled as a 32-bit bitvector, and
page_fault as a 1-bit bitvector.

III. THEORETICAL FORMULATION AND APPROACH

A. Notation and Background

Program: We use “system” or S to refer to the original
software system to verify; Φ is the property to verify.

S is represented as a tuple S = (IS ,VS , InitS , CS), where

• IS is a finite set of input variables;
• VS is a finite set of state variables;
• InitS is a predicate characterizing the set of initial

valuations to variables in IS and VS ;

• CS is the code for the program (in an imperative pro-
gramming language such as C or C++) describing how
the system variables are updated.

The input variables, IS , are the read-only variables of the
system. The state variables, VS , are all other variables of the
program, including any global variables and return variables.

We make no assumptions about CS except the availability of
a function σ that maps CS to a transition relation between
pairs of system states, given a notion of a step. In other
words, σ gives relational semantics to S .

We term “annotated system” or A the representation of S
that highlights particular code fragments as being “relevant”
to the verification task at hand. More formally, we define A
as a tuple: A = (IA,VA, InitA,FA) where

• IA is a finite set of input variables: IA = IS ;
• VA is a finite set of state variables: VA = VS ;
• InitA is a predicate characterizing the set of initial

valuations to variables in IA and VA;
• FA = {f1, f2, . . . , fN , fmisc, forc} is a finite set of code

fragments in CS , where f1, f2, . . . , fN are code fragments
that capture the relevant parts of CS , fmisc, which is
disjoint from f1, f2, . . . , fN , represents the code in CS
deemed irrelevant, and forc is the code that orchestrates
how program execution interleaves between the code
fragments f1, f2, . . . , fN , fmisc.

For the rest of the paper, we assume the code fragments
f1, f2, . . . , fN , fmisc to be terminating.2 We do not make
this assumption about the orchestration code forc since in
general, for reactive systems like an operating system or
emulator, forc is designed to run forever. Often, the code
fragment fi (1 ≤ i ≤ N) is a single C/C++ function in CS ,
but in general we only require that each code fragment have
clearly specified entry and exit points. We also require that
each of f1, f2, . . . , fN executes atomically.

The code forc dictates how the code fragments
f1, f2, . . . , fN , fmisc are composed together. For example,
forc might simply be the sequential composition of two
code fragments. A more complicated orchestrator forc might
iterate over a “while(1)” loop, repeatedly selecting a code
fragment to execute based, for example, on a scheduling
policy or on a sequence of external inputs. An example
of the latter is a CPU emulator that repeatedly emulates
instructions within a loop, where each instruction type has
an associated function that emulates it. The form of the
orchestrator depends heavily on the type of system under
verification.

2Note that we may be able to lift the assumption about fmisc, the code
deemed irrelevant to the verification task, provided that the technique for
checking this irrelevance can handle non-terminating code. For simplicity,
we retain this assumption in the present paper.

The function σ applies to f1, f2, . . . , fN , fmisc in exactly the
same way as it applies to CS — it characterizes the code
fragments in terms of their underlying transition relation,
given the notion of a step. In this paper, since we assume
that f1, f2, . . . , fN , fmisc are terminating, the notion of a step
will be taken to be a single execution of a code fragment.
Thus, σ(fi) is the set of (pre, post) state pairs of fi. We will
often abbreviate σ(fi) by δi.

From A, we can create a “program” P by dropping fmisc
from the set FA and treating any invocation of fmisc from
forc as a no-op (stuttering step). We define P as a tuple
analogously to A: P = (IP ,VP , InitP ,FP) where

• IP is a finite set of input variables: IP ⊆ IA ∪ VA;
• VP is a finite set of state variables: VP ⊆ VA;
• InitP is a predicate characterizing the set of initial

valuations to variables in IP and VP ;
• FP = {f1, f2, . . . , fN , forc} is a finite set of code

fragments. The fi and forc are defined as in A.

The transition relation of the overall program P is deter-
mined from those of its code fragments by the form of
composition, i.e., by forc; we will denote it as δP .

As an example, consider the program in Figure 2a. This
program is modeled as the tuple P = (IP ,VP , InitP ,FP),
where IP = {curr privilege level}, VP = {page fault},
InitP = true (allowing arbitrary values to page fault
and curr privilege level), and FP = {f1, forc}
where f1 includes all the code except the function
update_access_dirty and forc is the sequential
composition f1; fmisc. In the corresponding A, fmisc was
defined to include only update_access_dirty.

Symbolic Execution: One approach to computing the rela-
tional semantics of a code fragment f is to enumerate its
paths, using symbolic execution [14] to compute path con-
ditions which can then be combined to form the transition
relation σ(f).

A program is symbolically executed in the following way.
Initially, the variables in IP and VP are each represented as
a symbolic value. Each variable starts with a fresh, uncon-
strained symbolic value. As the program executes, operations
are computed symbolically. At the first conditional branch,
execution can continue down one of two paths. The symbolic
execution engine forks execution, and for each path, creates
a new path condition, which is a predicate P (IP ,VP) on
the input and state variables that is true along that path. At
each subsequent conditional branch and execution fork, the
path condition for the current path of execution is updated
with the new predicate. If π is the current path condition and
a conditional branch creates the two predicates P,¬P , then
after forking execution, the two new path conditions will be
π1 = π∧P and π2 = π∧¬P . After execution has completed,
for every path explored, there is a path condition π, which is

a conjunction of predicates on the input and state variables.
Restricting InitP to values that satisfy the path condition
and then executing the program will always force execution
down the same path. Along with each π we can also take
note of the final value of the state variables of the program,
VP′. These values may be concrete or symbolic or some
combination of the two. After any execution of the program
along the path described by π, the state of the program will
be consistent with VP′.
Once the symbolic execution engine has explored all pos-
sible paths through the program fragment, we have a set
R = {(π,VP′)} of pairs of path conditions and their
corresponding output state. This set effectively describes the
input–output relation of the program.

Going back to the example in Figure 2a, note that there
are two possible paths through the code, with corresponding
path conditions:

π1 : curr privilege level = 3

π2 : curr privilege level 6= 3.

The corresponding next-states for each path are:
VP′1 : page fault = 1

VP′2 : page fault = 0.

Model: We now formalize the class of models considered in
this work. Our models are constructed as transition systems
where state variables have one of three possible types:
Boolean, bit-vector, or memory. The last type can be used
to model arrays or various data structures. Fig. 3 shows
the grammar for expressions in our modeling language.
Broadly speaking, the expressions are in a combination of
the theories of uninterpreted functions, finite-precision bit-
vector arithmetic, and arrays [1].

bE ::= true | false | b | ¬bE | bE1 ∨ bE2

| bE1 ∧ bE2 | bvE1 = bvE2 | bvrel(bvE1, . . . , bvEk)
| UP (bvE1, . . . , bvEk)

bvE ::= c | v | ITE(bE, bvE1, bvE2)
| bvop(bvE1, . . . , bvEk)
| mE(bvE1, . . . , bvEl) | UF (bvE1, . . . , bvEk)

mE ::= A |M | λ(x1, . . . , xk).bvE

Figure 3: The syntax of expressions. c and v denote a bit-
vector constant and variable, respectively, and b is a Boolean
variable. bvop denotes any arithmetic/bitwise operator map-
ping bit vectors to bit vectors, while bvrel is a relational
operator other than equality mapping bit vectors to a Boolean
value. UF and UP denote an uninterpreted function and
predicate symbol, respectively. A and M denote constant
and variable memories. x1, . . . , xk denote parameters (typi-
cally indices into memories) that appear in bvE.

A formal model is represented as a tuple M = (IM, VM,
InitM, OM) where

• IM is a finite set of input variables;
• VM is a finite set of state variables;
• InitM is a predicate characterizing the set of initial

valuations to variables in IM and VM;
• OM = {op1, op2, . . . , opN ,main} is a finite set of “op-

erations” that determine how the state variables evolve,
where main is a specially designated “top-level” operation
that determines how the remaining operations are com-
posed together. OM defines the transition relation δM of
the model, as described below.

Each operation is a finite set of assignments to variables in
VM. Assignments define how state variables are updated in a
single step of the transition system. A next-state assignment
α updates a state variable and is a rule with one of the
following forms:

next(v) := e,

next(v) := {e1, e2, . . . , en}, or
next(v) := ∗

where v is a signal in VM, e, e1, e2, . . . , en are expressions
in the grammar of Fig. 3 that are a function of VM ∪ IM,
and “∗” is a wildcard that is translated at each transition into
a fresh symbolic constant of the appropriate type. The curly
braces express non-deterministic choice.

The transition relation corresponding to an operation opi,
denoted δMi , is computed as δMi =

∧
α∈opi

r(α), where

r(next(v) := e) , (v′ = e);

r(next(v) := {e1, e2, . . . , en}) ,
n∨
i=1

(v′ = ei); and

r(next(v) := ∗) , (v′ = ∗)

and v′ denotes the next-state version of variable v.

The overall transition relation of the modelM is determined
by the form of composition expressed in main. For example,
if main composes {op1, op2, . . . , opN} asynchronously, then
the overall transition relation is δM =

∨N
i=1 δ

M
i .

As an example, consider the model in Figure 2b. It is
expressed as the tuple (IM, VM, InitM, OM), where
IM = {cpl}, VM = {page fault}, InitM is true (al-
lowing arbitrary values to cpl and page fault), and OM
has a single operation op which in turn contains only the
following next-state assignment:

next(page fault) := ITE(cpl [0] = 1 ∧ cpl [1] = 1, 1, 0)

Environment: The environment E that provides inputs to
the program is similarly modeled as a transition system,
where the input variables in M are the state variables of
E . The final model that is to be verified is the composition
of M and E , written M‖E . The form of the composition
depends on the context; both synchronous and asynchronous

compositions are possible. However, for this paper, and in all
of our examples, the environment E is stateless, generating
completely arbitrary inputs to M at each step.

Transition Systems and Simulation: Notice that the original
software system S, the program P , and its modelM are all
transition systems with the same basic form. Once composed
with an environment model E , the resulting transition system
has the form T = (V , Init , δ), where V are the state variables,
Init is the initial condition, and δ is the transition relation.
A state s of T is a valuation to the variables in V .

Given a transition system T and a set of variables VL ⊆ V ,
each state s of T can be labeled with a valuation to variables
in VL. We denote this labeling as L(s).

Given two transition systems T1 and T2 sharing a common
labeling function L, T1 is said to simulate T2 if there exists
a simulation relation H relating states in T1 and T2 with the
following properties:

(i) ∀s1, s2.H(s1, s2) =⇒ L(s1) = L(s2)

(ii) ∀s1, s2, s′2.[H(s1, s2) ∧ δ2(s2, s
′
2)] =⇒

∃s′1.δ1(s1, s
′
1) ∧H(s′1, s

′
2)

(iii) ∀s2.Init2(s2) =⇒ (∃s1.Init1(s1) ∧H(s1, s2))

We write “T1 simulates T2” as T2 � T1.

A slight variation is the notion of stuttering simulation. We
say that T1 stutter simulates T2 if there exists a relation
Hst between states in T1 and T2 where the second condition
above is modified as follows:

(ii) ∀s1, s2, s′2.[H(s1, s2) ∧ δ2(s2, s
′
2)] =⇒ [H(s1, s

′
2) ∨

∃s′1.δ1(s1, s
′
1) ∧H(s′1, s

′
2)].3

We write “T1 stutter simulates T2” as T2 �st T1.

B. Problem Definition and Approach

Models are always constructed based on the properties to be
verified. Therefore, a model must be validated with respect
to a specific property Φ.

In this paper, we focus on the verification of temporal safety
properties of the form Gφ, where G is the temporal operator
“always” and φ is a state predicate, i.e., a Boolean expression
over state variables with no temporal operators.

The overall model validation problem definition is as fol-
lows:

Definition 1 (Software Model Validation): Consider the
transition systems TS formed by composing S and E , and
TM formed by composing M and E . Determine whether
TM satisfies Φ only if TS satisfies Φ.

3Note that this definition is a slight variant of the standard one which
allows any finite number of stuttering steps in T1, but we chose this for
simplicity and since it fits our problem context.

This paper takes a particular approach towards solving this
problem, which can be formalized using the notion of
(stuttering) simulation. Specifically, we use the following
result (a proof of which one may find in any standard book
on model checking, such as the one by Clarke et al. [6]).

Proposition 1: Given two transition systems T1 and T2, and
a property Φ of the form Gφ. If, using a labeling function L
based on variables appearing in φ, T2 � T1, then T2 satisfies
Φ if T1 satisfies Φ.

The above result applies also when one uses stuttering
simulation instead of “plain” simulation.

Let V∗ ⊆ VS∪IS be a set of variables deemed to be relevant
to proving or disproving that S satisfies Φ. For soundness,
V∗ must contain all variables that influence the value of
φ. However, this set of variables is difficult to determine
exactly. Instead, we generate V∗ based on the “relevant”
code fragments left after pruning.

At a minimum, we include in V∗ the set Vφ of variables
that syntactically appear in φ. Conservatively, the rest of V∗
could be computed syntactically from the cone of influence
of Vφ on the entire code base [6]. However, this can lead to a
highly over-approximate set V∗. An alternative is to compute
V∗ as the syntactic cone-of-influence of Vφ only on the code
excluding fmisc. In this latter case, if we additionally verify
that V∗ is not modified in fmisc, we can conclude that there
is no code in fmisc that influences the value of φ. This is the
approach we adopt in the present paper.

Label the states of TS and TM using valuations to the
variables in V∗. Then, the approach of this paper can be
outlined as follows:

1. Transform S to A by identifying fragments FP in S;
2. From A, obtain a new program P by dropping fmisc from

the set FA and treating any invocation of fmisc from forc
as a no-op (stuttering step);

3. Check that S �st P using the labeling function from V∗;
4. Create a model M of P (manually or automatically),

where each operation opi has a 1-1 correspondence with
a code fragment fi in P , and

5. Validate M by checking that: (i) IM = IP ; (ii) VM ⊇
VP ; (iii) InitM is equivalent to InitP when projected
on the common variables, and (iv) P � M using the
labeling function based on V∗.

The third step above is implemented as data-centric model
validation (DMV), and the fifth step is operation-centric
model validation (OMV). Note that we allow M to have
more variables than P (and S), since models often have
extra “specification” variables for use in the proof. If the
two simulation checking steps pass, then we can conclude
that M stutter simulates S and therefore satisfies Φ only if
S satisfies Φ. Note that this is only true for safety properties,

which is what we consider in this paper. It is possible for a
model that stutter simulates S to satisfy a liveness property,
even though S does not.

The two simulation checking steps are the most important
ones. We implement them as follows:

• Checking if S �st P: To do this, it is sufficient to verify
that fmisc does not modify the values of variables in
V∗. There are several ways to do this, and we take the
approach of using an assertion checking tool based on
symbolic execution, described further in Sec. IV.

• Checking if P �M: For this, we check that the transition
relation δMi of each opi overapproximates that of the cor-
responding code fragment fi, denoted δPi . The transition
relations are computed using symbolic execution, and the
check δPi =⇒ δMi is discharged using SMT solving.

In theory, our methodology is sound, meaning that we never
wrongly conclude that a model M satisfies Φ when the
system S does not. However, in practice, our implementation
has encountered significant practical limitations of symbolic
execution tools, especially in the DMV step. Due to this,
the implementation described in the following sections is
a bug-finding tool rather than a verifier. Nevertheless, we
demonstrate that it is useful in practice in weeding out
various kinds of bugs in our models.

C. Example

Consider applying our problem definition to validate the
model in Figure 2b against the program in Figure 2a.
Assume that we have already performed the DMV step
and determined that update_access_dirty does not
modify any relevant state variables.

Our OMV methodology then produces the following two
SMT queries, a query for each pair (π,VP′) in the program’s
symbolic summary. The model is valid iff both queries are
proved correct by the backend solver.

1) (page fault ′ = ITE(cpl [0] = 1 ∧ cpl [1] = 1, 1, 0)
∧ cpl = 3)⇒ (page fault ′ = 1)

2) (page fault ′ = ITE(cpl [0] = 1 ∧ cpl [1] = 1, 1, 0)
∧ cpl 6= 3)⇒ (page fault ′ = 0)

The first query is proven valid by our SMT solver. However,
the second query is invalid, indicating that our model does
not correctly capture the behavior of the code. The returned
counter-example is this: when cpl = 7, the two low-order
bits are both set, and therefore, page fault is set. The model
makes an implicit assumption that cpl will never be higher
than 6. This seems reasonable, considering a physical CPU’s
CPL is never higher than 3. However, the C code enforces
no such assumption, and so the model is incorrect.

Figure 4: The five steps in our model validation process.

IV. IMPLEMENTATION

Section III-B outlined our formal approach to validating a
model. This section describes our practical implementation.
Figure 4 depicts the data flow of the process.

A. Pruning the System

The pruning step of our implementation corresponds to
steps 1 and 2 of the outline given in Section III-B. In our
implementation, the pruning stage is performed manually by
a domain expert. Given the system S and the property Φ, the
expert decides which code fragments are relevant and creates
A, with the set FP identified. The expert then returns P , in
which code in fmisc has been replaced with no-ops.

B. DMV

Although pruning is performed by experts with knowledge
of S, it is error-prone. Some function or module in S that is
relevant to Φ may get overlooked and be mislabeled as fmisc
during annotation of A. DMV takes as inputs S, Φ, and P
and returns a Yes/No answer, indicating whether P and S are
equivalent with respect to Φ. If the answer is No, the domain
expert repeats the pruning stage until DMV can return Yes.
The step corresponds to step 3 of the theoretical approach
given in Section III-B. In that step we prove S �st P by
checking that fmisc does not modify the values of variables
in V∗. In our implementation, we relax this requirement and
check only for a subset of V∗. As a result, we can not prove
the simulation, only find instances when it fails.

We start by identifying the program variables Vφ that the
property Φ directly depends on. This can be done syntacti-
cally: the variables in Vφ are those variables mentioned in φ.
We wish to establish that any state change described in fmisc
does not affect, directly or indirectly, the state described by
Vφ; i.e., those pruned state changes are stuttering steps with
respect to Vφ. To do this, we attempt to show variables in Vφ
do not change value within fmisc. Intuitively, we tackle this
by keeping track of the last valuation of Vφ and ensuring
that it does not change after any statement that appears in
fmisc.

More specifically, we create a system S ′ that is identical to
S, except for the following modifications. For each variable

v ∈ Vφ, we create a new shadow variable v′ in S ′. After
every (atomic) statement in S ′ that is also in P , we add a
statement that assigns the value of v to v′. In other words,
we attempt to keep the value of v′ synchronized with the
value of v across P statements in S ′. In contrast, after every
(atomic) statement in S ′ that is a statement in fmisc, we add
an assertion that v equals v′ for each v ∈ Vφ, which asserts
that these statements do not write to any variable in Vφ,
or equivalently, that every statement in fmisc is a stuttering
step with respect to Vφ. Note that, since v′ variables do not
appear in S and do not alter the control flow, they do not
alter the behavior of S ′ with respect to S state.

We then use KLEE to search for a path through S ′ where
one of the inserted assertions fails. If KLEE is successful,
we have found a fmisc statement that updates Vφ, so our
DMV algorithm returns No. The path and inputs that cause
the violation are passed back to the pruning stage, allowing
the expert to refine the definition of P to incorporate the
previously missed Vφ update.

In practice, the extra statements in S ′ increase by |Vφ| the
size of the original system S, which complicates and pro-
longs the execution time of the dynamic analysis performed
by KLEE or other symbolic-execution engines. What is
more, many of the added statements are ineffectual: in most
practical systems, Vφ will not be updated in every single
statement, so checking even one assertion per statement can
be overkill. To ease the burden on the symbolic execution
engine, our prototype relaxes the strict definition of S ′,
aiming to capture commonly missed Vφ updates, but at
the expense of soundness. Specifically, our prototype adds
v′ := v statements into S ′ only after P statements that
the domain expert knows to be updating v. Furthermore,
our prototype adds v′ = v assertions into S ′ only before
P statements known to be updating v (contrast that to
the original definition, which adds assertions after every
fmisc statement). The rationale for this last relaxation is that
updates to v′ are good enforcement points for the equality
between v′ and v, and this requires fewer changes to the
program. Finally, our prototype checks the v′ = v assertion
at all exit points from S ′, to capture any Vφ updates on
execution suffixes that do not include a known P update.

Our prototype’s relaxation is unsound. It may miss suc-
cessive updates to a v between known updates to it; if a
statement reads such a missed v update, affecting the result
of P , our validation down the pipeline may be unsound as
well. Since our prototype is a bug-finding tool inspired by
our idealized methodology, this unsoundness is acceptable
for our purposes. A more effective, sound relaxation would
be to assert that v = v′ before every read of v, but finding all
reads of v is, in itself, another hard problem, with similarities
to alias analysis. A promising direction for future work
would be to modify the KLEE symbolic execution engine to

include watchpoints on symbolic state, effectively checking
that v = v′ after every statement of fmisc (or some optimized
version that is semantically equivalent but that adds the
fewest extra statements and assertions necessary). The use of
dynamic slicing [29] may also be useful. Initial experiments
with a Hoare-style, deductive verifier indicate that symbolic
execution may be better suited to this type of verification
task, but we leave to future work a more rigorous comparison
of the two methods.

C. Modeling the Program

From the selected P , a model M is built using UCLID’s
modeling language. We are agnostic as to how the modeling
is done; it can be a manual or an automated process. This
corresponds to step 4 of the outline given in Section III-B.

D. Validating the Model

In the last step (step 5 of the outline in Section III-B),
we validate the model M correctly simulates the program
P . We use KLEE for this step, as well. KLEE performs
a combination of symbolic and concrete execution, based
on which inputs and state bits are made symbolic. We
use KLEE to learn R = {(πP ,VP′)}, the set of path
conditions and corresponding outputs describing the input–
output relation of P . First, we set all global state VP and
input variables IP to be unconstrained, symbolic values.
When execution reaches a conditional branch point, KLEE
forks and follows all feasible branches. As KLEE explores
these program paths, it maintains a path condition for each
path that is a function of VP ∪ IP . When a path terminates
via exit statement or end of program, we note the path
condition πP for that path and the state of VP′ at the point
of termination. Once KLEE has explored all possible paths,
we have R.

Once we have computed R, we use UCLID’s decision
procedure to verify that for every path condition describing a
portion of the input space in P , bothM and P produce the
same (symbolic) output. Our queries to the UCLID decision
procedure take the form of decide(πP ⇒ (VM′ = VP′)),
and we have a separate query for each (πP ,VP′) pair in
R. If one of the queries fails, UCLID will return a counter-
example with concrete values for IP and VP that satisfy the
path condition, but for which VM′ 6= VP′.
Translating Path Conditions to SMT queries: In order to
create each query, we must first translate the πP generated
by KLEE to a format suitable for UCLID’s input language.
KLEE’s path conditions are written in KQuery4, the input
language to KLEE’s backend constraint solver (Kleaver).
The symbolic states of VP are given in a similar syntax. We
built a tool to translate path conditions and symbolic state

4http://klee.llvm.org/KQuery.html

1 int loop prog(int bound) {
2 int retval = 0; //E2L, lines 2,3,4
3 if (bound <= 0)
4 return −1;
5 for (int i = 0; i < bound; i++)
6 retval++; //L2L, lines 5,6
7 return retval; //L2E
8 }

Figure 5: A program with a dynamically-determined loop
bound. Validation of the model is done in three parts.

from KLEE into SMT queries in UCLID’s input language.
Our tool requires the user to provide an input file that maps
variable names used in P to variable names used inM. All
variables in KQuery are represented as an array of bits; these
are easily translated to UCLID’s bitvector type. UCLID
allows two additional types: Boolean, and uninterpreted
functions. Currently, we require UCLID models to not use
Boolean types; bitvectors of length 1 can be used instead.
Seamlessly converting between the two is functionality that
can be added to future versions of our tool. UCLID models
are free to use uninterpreted functions, but we do not handle
verification with respect to properties that include universal
quantification over an uninterpreted function. For example,
if f is an uninterpreted function in a UCLID model and i
is a bitvector variable in that model, our tool can validate a
model with respect to the property φ(f(i)), but would not be
able to validate a model with respect to the property φ(f).

Handling Loops: For programs that contain loops, the
number of paths possible through the code can explode
quickly. In cases where the loop bound can be determined
statically, this is not a problem, but when the loop bound
is determined at run time, complete path coverage requires
exploring all possible loop bounds, causing an exponential
blow-up in the number of paths through the program.

In some cases we can handle this using a divide & conquer
approach. Figure 5 illustrates the idea. For a program P
with a single loop, we can divide the source code of the
program into three parts: the code from program entry to
the loop, the loop code itself, and the code from loop
exit to program exit. In Figure 5, these sections are labled
E2L, L2L, and L2E, respectively. We then explore each
section of code independently of the other two. At the start
of each exploration we set the current constraints on IP
and VP to reflect the invariants of the previous section(s).
These invariants are determined manually and care must
be taken to not over-constrain the starting conditions of
each section. At a minimum, the following weak invariants
can safely be used: no constraints set for E2L, the loop
guard forms the constraints for L2L, and no constraints
set for L2E. These constraints will form part of the path
conditions created during subsequent exploration of the
section. For example, in Figure 5, execution of E2L starts

with no constraints on bound or retval and the starting path
condition is πE2L = True; execution of L2L is started
with the path condition (and corresponding constraints)
πL2L = (i ≥ 0) ∧ (i < bound); and execution of L2E is
started with no constraints.

We divide the model into three parts as well. We create
a separate model for the E2L, L2L, and L2E program
fragments, and separately validate each model against its
corresponding program fragment. Because each fragment is
explored starting from an over-approximation of reachable
starting states, the explored paths through the fragments
will constitute a superset of reachable paths in the original
program. If the model is shown to be consistent with each of
these paths, and the corresponding output, a property proven
true of the model will be true of the program. However, this
method is not complete, and a property that is disproven for
the model may in fact be true of the program.

In some cases, it may be possible to strengthen the invariant
through manual inspection of the code. For example, in
Figure 5, the execution of L2L can be started with the path
condition πL2L = (i ≥ 0) ∧ (i < bound) ∧ (bound >
0) ∧ (retval ≥ 0), and execution of E2L can be started
with the path condition πL2E = (i ≥ bound) ∧ (bound >
0) ∧ (retval ≥ 0). This will increase the completeness
of model validation for some programs, but still does not
guarantee it. Furthermore, our divide & conquer approach
is suitable to code with single loops, but is not applicable
to code with nested loops or recursion.

V. EVALUATION: DATA-CENTRIC VALIDATION

A. BPF

The Berkeley Packet Filter (BPF) is a kernel module that
filters network packets, sending only the desired ones to the
user. The user provides a filter program, written in the BPF
pseudo-machine language. The BPF kernel module contains
an interpreter that runs the filter program on each network
packet. The property Φ asserts that the BPF interpreter
(bpf filter) has a monotonically increasing program counter;
this is desirable, since it implies that all filter programs must
eventually halt. One challenge is that it is not practical to
explore all reachable states by running the BPF interpreter
on all filter programs of n fully-symbolic instructions.
Therefore, we over-approximate its behavior: we run one
iteration of the interpreter loop on a single fully-symbolic
BPF instruction, starting from a fully symbolic state.

In particular, we made the accumulator, the index registers,
the temporary variable k, and the memory fully symbolic.
The inputs were fully symbolic two-instruction BPF pro-
grams that had passed the bpf validate function (Figure 6).5

5A valid BPF program must end with a return instruction, so our input
approximates a fully symbolic “one-instruction” program.

1 int bpf validate(filter, len) {
2 for (i = 0; i < len; ++i) {
3 switch (BPF CLASS(filter[i].code)) {
4 case BPF ST:
5 if (filter[i]−>k >= BPF MEMWORDS)
6 return 0;
7 break;
8 case BPF DIV:
9 // Check for division by 0.

10 if (filter[i]−>k == 0)
11 return 0;
12 break;
13 ...
14 }
15 }
16 return BPF CLASS(filter[len−1].code) == BPF RET;
17 }

Figure 6: Simplified code from bpf validate, which checks
that the BPF program cannot write out-of-bounds, cannot
divide by zero, and ends with a return.

1 pass (const char ∗passwd) {
2 if (cred.logged in || askpasswd == 0)
3 return;
4 askpasswd = 0;
5 cred.logged in = 1; }
6

7 user (const char ∗name) {
8 if (cred.logged in)
9 end login (&cred);

10 askpasswd = 1; }
11

12 end login (struct credentials ∗pcred) {
13 memset (pcred, 0, sizeof (∗pcred)); }

Figure 7: The PASS and USER commands (simplified code).

We encountered no spurious counter-examples. We were
able to efficiently explore all paths of bpf filter using KLEE
(in a few seconds) and confirm that we had identified all
writes to the program counter. Thus, our data-centric model
validation was successful.

B. ftpd

ftpd is GNU’s File Transfer Protocol server. The main loop
reads input from the network client, parses the command,
and runs the appropriate block of code (which might be
inline or in a separate function) to execute the command.

We sought to model the blocks of code that affect whether
the user is considered to be logged in. There are many FTP
commands, but we would expect very few to be relevant.
A simple syntactic approach of searching for logged in =
identifies only the PASS function (Figure 7), so we used
DMV to check that there are no other writes to logged in.

We modified the ftpd software so that its input was partly
symbolic: it could choose to explore any of USER and PASS
(with a prespecified, known-good username and password),

1 void interceptHandler(VCPU ∗vcpu, struct registers ∗regs) {
2 switch(vcpu−>vmcs.vmexit reason) {
3 case CRX ACCESS: handle crx access(vcpu, regs); break;
4 case IO: handle ioport access(vcpu, regs); break;
5 case WRMSR: handle wrmsr(vcpu, regs); break;
6 case EPT VIOLATION: handle pagetable(vcpu, regs); break;
7 ... }}

Figure 8: Simplified code for XMHF intercept handler.

nine other commands that had no parameters, and nine com-
mands with partly symbolic parameters (two alphanumeric
characters). We excluded other commands because it was
difficult to make their parameters symbolic while respecting
validity constraints, because they were not implemented by
ftpd, or because they modified the filesystem (e.g., RMD),
which is not well handled with KLEE. In some cases, we
also modified functions (e.g., CWD) to remove system calls
or side effects. We then added the shadow credentials data
structure, copying cred to shadow cred after the known
write to logged in, and placed assert (cred.logged in ==
shadow cred.logged in); before the write and in the body
of the parser loop.

We started the analysis from a partly symbolic state, with
the askpasswd global variable and all of the credentials data
structure made symbolic (for each string, we stored two
symbolic characters). KLEE produced a test case where the
assertion failed: when the client is already logged in, and
issues another USER command, the entire credentials data
structure is zeroed out by end login() (Figure 7). This is
non-trivial to identify syntactically.

After adding the update to shadow cred.logged in after the
write in the user function, we verified with DMV that we
had not missed any writes. In a separate experiment, we
confirmed that DMV would also have been able to identify
a missing write to cred.logged in in the PASS function. Each
experiment required less than 3 minutes of run-time.

C. XMHF hypervisor

The eXtensible Modular Hypervisor Framework
(XMHF) [30] is a hypervisor with a small trusted core
(about 6000 LoC) that is amenable to formal verification,
and Vasudevan et al. have proven a memory integrity
property of XMHF [30]. A hypervisor runs at a higher
privilege level, and supports the execution of guest software
running at a lower privilege level. For that reason, whenever
a guest executes a privileged instruction (e.g., to set the
CR3 register), the CPU transfers control to the hypervisor,
which uses an intercept handler (see Figure 8) to take the
necessary action.

Consider the following property: the extended page
tables must remain constant after setup. This prop-
erty requires us to model all program paths in inter-

ceptHandler that might update relevant state such as
the vcpu→vmx vaddr ept pml4 table field, which shad-
ows the address pointing to the base of the extended
page tables. Instead of modeling all intercept handlers,
we prune away handlers that do not appear to update the
vcpu→vmx vaddr ept pml4 table field and then use DMV
to check that we did not miss any updates. Forcing the input
data structures vcpu and regs to be symbolic, we use KLEE
to symbolically explore paths in interceptHandler. DMV
found no writes to the vcpu→vmx vaddr ept pml4 table
field in each handler that the expert decided to prune away.
This allows us to prune away the following handlers: set
CR0 register, set CR4 register, read MSR register, write
MSR register, read CPU id, access IO ports. This experiment
used KLEE to evaluate 300 LoC (in C) in 5 seconds.

Note that the intercept handlers rely on inlined assembly
instructions to perform certain operations such as reading
the MSR register. Since we do not model the x86 hardware,
we assume that none of the inlined assembly operations
impact the vcpu→vmx vaddr ept pml4 table field. While
we are confident of this assumption, we do recognize this
as a potential weakness of this case study.

VI. EVALUATION: OPERATION-CENTRIC VALIDATION

A. Bochs address translation function

Bochs [21] is an open-source C++ x86 emulator. The code
base is large and previous research has shown that manual
analysis and testing, while useful, are not enough to guaran-
tee correctness [19], [20]. At the same time, new techniques
have shown that model checking can be a practical approach
to verifying the correctness of the Bochs CPU emulator and
other virtualization technologies like it [27]. In this case
study, we validate the model of the Bochs address translation
function used by Sinha et al. [27], who verified whether the
function returned the correct physical address when the TLB
optimization was used.

The address translation function in Bochs (f1) is 98 LoC
and the corresponding UCLID model is about 300 LoC.
There are three input variables IP : the linear address to
be translated, the read or write permissions requested of the
address, and the emulated CPU’s current privilege level. We
make symbolic the input variables, the variables VP (which
consist of the two page table entries and the single TLB entry
that the translation could access), and all global variables.

During symbolic execution, KLEE explored 219 paths
through the code in roughly nine seconds. KLEE achieves
full code coverage of the function, as seen in Table I. There
is one branch not taken by KLEE; manual analysis reveals
that taking this branch would not cover any new state in the
code.

UCLID discharged the queries comparing each path con-

dition to the model in under a minute and found seven
discrepancies between the behavior of the source code and
the behavior of the model. Each discrepancy was ultimately
due to a bug in the model. For this and the other case
studies, while running UCLID was quick, finding the root
cause of each discrepancy was a manual process that took
anywhere from a few minutes to close to an hour, per bug.
We categorize these bugs by the likely cause of the modeling
error: there was one typo, two implicit assumptions, and four
logic errors. Our running example (Section II) corresponds
to one of these bugs in the model, in which the modeler
assumed the CPU privilege level was never higher than
3. The extended version of this paper [28] also shows the
source and model code for six of the bugs.

B. TCAS

Traffic Collision Avoidance Software (TCAS) [9], [18] is
an aircraft collision avoidance system. The TCAS soft-
ware is complex and safety-critical, and verification of its
correctness is well-suited to model checking. In this case
study, we used a simplified and publicly available version of
TCAS that the software engineering research community has
used to evaluate the efficacy of various test case generation
techniques [23]. Though only 133 LoC (in C), the TCAS
code includes 9 functions and complicated control flow.

From the TCAS code, we created 23 different models, each
injected with a different fault developed by Hutchins et
al. [13]. We validated each model against the TCAS source
code, checking whether model validation was able to find the
injected fault.

We made symbolic all 12 inputs to the TCAS program. Dur-
ing symbolic execution, KLEE explored 29 paths through the
code and completed in less than a second. There was one
line of code not covered by KLEE (see Table I), and manual
analysis revealed this line of code to be unreachable. There
were eight branches not taken by KLEE and these were
either infeasible or redundant branches.

Our model validation found the errors in all 23 models,
and took roughly 5 seconds per model. It is difficult to
categorize these bugs since they did not naturally arise
during the translation from code to model. However, they
included: using a less-than-or-equal (≤) sign in place of
a less-than sign (<), or vice versa; using a logical AND
(&) in place of a logical OR (|), or vice versa; leaving an
entire clause out of a series of conjunctions and disjunctions;
and typographical errors such as setting a variable to the
wrong value. In addition to the 23 injected faults, model
validation also revealed two model bugs that were introduced
unintentionally during the modeling phase (see Table II).

Lines Lines Branches
Program of Code Executed Branches Taken
Bochs 98 98 30 29
TCAS 60 59 68 60
bpf validate 71 69 28 24

Table I: Code and path coverage achieved during symbolic
exploration of the code by KLEE. The total LoC given refers
only to the pruned program, not the original system.

C. BPF

Prior to running a filter, BPF runs a validator (Figure 6) to
ensure the filter is valid and satisfies three properties: 1) all
jumps in the program move forward (no loops are allowed),
2) all jumps move to a legitimate place in the program (i.e.,
do not jump past the end the program), and 3) the program
always terminates with either an accept or reject. Validation
before use is a common strategy for security-critical code.

In this case study, we show how one might verify Φ, that
filter programs are marked valid if and only if they satisfy
the three properties above. This case study demonstrates
validation of non-statically bounded loops, which are not
handled by model validation on hardware designs.

We use FP = {bpf validate, fmisc, forc}. bpf validate takes
two inputs, IP = {filter program, filter program length}. It
has two local variables, VP = {current program instruction
pointer, loop iteration counter}. As bpf validate has a single
loop, it can be structured in three blocks: E2L, L2L, and
L2E. Because the for-loop does not have a bound that
can be determined statically, we use the divide & conquer
technique for model validation outlined in Section IV-D.

Each iteration of the loop reads and checks a single instruc-
tion, and does not propagate any state between iterations.
Therefore, we run a single iteration of the loop on a fully
symbolic instruction, with the len parameter symbolic (but
constrained to be less than or equal to the length of the
program) as well.

Symbolic execution completed in less than 0.2 seconds, and
the verification of path conditions against the model took less
than 2 seconds. Model validation found four modeling bugs,
all in the for-loop. Two of the bugs involved an inverted logic
statement. The third and fourth were errors in calculating
the return values, return and return happened: both are
computed using switch statements in the model, and in both
cases there was a case missing.

VII. RELATED WORK

There has been previous work on model validation in both
the hardware and software verification communities. Much
of the work focuses on checking that the model is function-
ally equivalent to the code (or at least overapproximate),
similar to our OMV step. Many efforts are also focused

Assumption about
Program Typo Logic Error System Invariants Total
Bochs 1 4 2 7
TCAS 1 1 0 2
bpf validate 0 4 0 4

Table II: Types of bugs in the model found during operation-
centric model validation. For TCAS, only bugs introduced
unwittingly during the modeling phase are categorized.

on the case when the models and code are in the same
programming language. Our work is distinguished from the
previous work on two counts: (i) we combine OMV and
DMV, checking both that the model does not miss relevant
code and that it is functionally overapproximate, and (ii) we
handle cases where the model and the code are in different
languages with different underlying formalisms.

Several efforts [5], [7], [12], [15]–[17] have focused on
validating a design written in a high-level language like
C against a register transfer level (RTL) implementation
written in a language such as Verilog or VHDL. The basic
idea is similar to our operation-centric model validation:
derive an expression, for both the C program and the RTL
program, describing the input-output transition relation of
the program and use symbolic execution and satisfiability
solving to check equivalence between the two expressions.
Past work assumes that the C function is written for eventual
implementation in hardware and therefore some restrictions
can be placed on the expressiveness of the C code that reduce
the problem to one of checking equivalence of combinational
circuits. These approaches typically do not have a step
similar to our DMV step.

Model validation has not been studied as widely in the
software community. Heitmeyer et al. present a manual,
theorem-proving based approach to partitioning code for a
separation kernel, so one can concentrate verification efforts
only on those portions of code that are relevant to the
property [10]. This is similar in spirit to our pruning phase,
although our approach is more automated and our imple-
mentation is more focused on bug-finding. Their manual
approach might not scale well to software systems as large
as Bochs or XMHF. Static analysis techniques such as alias
analysis, Mod/Ref analysis, and program slicing [8], [11],
[29] might be helpful for performing DMV on large code
bases, but at the cost of lower precision, potentially resulting
in a high false alarm rate.

Caballero et al. [3] use a combination of concrete and
symbolic exploration of a function at the binary level to
find cases where the behavior of security-sensitive functions
deviates from those of manually written models of those
functions. Symbolic execution has also been used to compare
two versions of the same code fragment or function, e.g.,
for checking code optimizations, version tracking, regression

testing, and code refactorization [24], [26]. Similarly, com-
piler translation validation [22], [25] has similar objectives to
OMV, although in translation validation there are significant
similarities between the programs before and after compi-
lation that can be exploited in the validation process; such
similarities cannot be relied upon in our model validation
setting.

VIII. CONCLUSION

We have proposed a formal framework for validating a
model of a software system against the code it was created
from. Using an implementation based on symbolic execution
and SMT solving, we have demonstrated the utility of
our approach on several case studies. Among the many
directions for future work, we believe the most important
is to improve the implementation of DMV, potentially by
combining scalable static analysis methods with selective
assertion checking.

Acknowledgment: This work was funded in part by the Intel
Science and Technology Center for Secure Computing, by
SRC grants 2045.001 and 2460.001, by NSF grant 0644436,
and by the AFOSR under MURI award FA9550-09-1-0539.

REFERENCES

[1] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Sat-
isfiability Modulo Theories. In Handbook of Satisfiability,
volume 4. IOS Press, 2009.

[2] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and
Verifying Systems Using a Logic of Counter Arithmetic with
Lambda Expressions and Uninterpreted Functions. In CAV,
2002.

[3] J. Caballero, S. McCamant, A. Barth, and D. Song. Extract-
ing Models of Security-Sensitive Operations using String-
Enhanced White-Box Exploration on Binaries. Technical
Report UCB/EECS-2009-36, EECS Department, University
of California, Berkeley, Mar 2009.

[4] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs. In OSDI, 2008.

[5] E. Clarke and D. Kroening. Hardware Verification using
ANSI-C Programs as a Reference. In ASP-DAC, 2003.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 2000.

[7] X. Feng and A. J. Hu. Early Cutpoint Insertion for High-
Level Software vs. RTL Formal Combinational Equivalence
Verification. In DAC, 2006.

[8] B. Hardekopf and C. Lin. Flow-Sensitive Pointer Analysis
for Millions of Lines of Code. In CGO, 2011.

[9] W. Harman. TCAS – A System for Preventing Midair
Collisions. The Lincoln Laboratory Journal, 2, 1989.

[10] C. L. Heitmeyer, M. Archer, E. I. Leonard, and J. McLean.
Formal Specification and Verification of Data Separation in a
Separation Kernel for an Embedded System. In ACM CCS,
2006.

[11] M. Hind and A. Pioli. Which pointer analysis should I use?
In ACM SIGSOFT Software Engineering Notes, 2000.

[12] A. J. Hu. High-Level vs. RTL Combinational Equivalence:
An Introduction. In ICCD, 2007.

[13] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Exper-
iments on the Effectiveness of Dataflow- and Control Flow-
Based Test Adequacy Criteria. In ICSE, 1994.

[14] J. C. King. Symbolic Execution and Program Testing.
Commun. ACM, 19(7), 1976.

[15] A. Koelbl, J. R. Burch, and C. Pixley. Memory Modeling in
ESL-RTL Equivalence Checking. In DAC, 2007.

[16] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley. Solver Tech-
nology for System-Level to RTL Equivalence Checking. In
DATE, 2009.

[17] A. Koelbl and C. Pixley. Constructing efficient formal models
from high-level descriptions using symbolic simulation. Int.
J. of Par. Prog., 33(6), 2005.

[18] J. Kuchar and A. C. Drumm. The Traffic Alert and Collision
Avoidance System. Lincoln Laboratory Journal, 16(2), 2007.

[19] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and
P. Maniatis. Path-Exploration Lifting: Hi-Fi Tests for Lo-Fi
Emulators. In ASPLOS, 2012.

[20] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi.
Testing CPU Emulators. In ISSTA, 2009.

[21] D. Mihocka and S. Shwartsman. Virtualization without Direct
Execution or Jitting: Designing a Portable Virtual Machine
Infrastructure. In ISCA WAMSBT, 2008.

[22] G. C. Necula. Translation validation for an optimizing
compiler. ACM SIGPLAN Notices, 35(5), 2000.

[23] T. Ostrand. TCAS. Software-artifact Infrastructure Reposi-
tory. http://sir.unl.edu/portal/bios/tcas.php, Last checked May,
2013.

[24] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu.
Differential symbolic execution. In FSE, 2008.

[25] A. Pnueli, M. Siegel, and O. Shtrichman. The Code Valida-
tion Tool (CVT) – Automatic Verification of a Compilation
Process. STTT, 2(2), 1998.

[26] D. A. Ramos and D. R. Engler. Practical, Low-Effort
Equivalence Verification of Real Code. In CAV, 2011.

[27] R. Sinha, C. Sturton, P. Maniatis, S. A. Seshia, and D. Wagner.
Verification with Small and Short Worlds. In FMCAD, 2012.

[28] C. Sturton, R. Sinha, T. H. Dang, S. Jain, M. McCoyd, W. Y.
Tan, P. Maniatis, S. A. Seshia, and D. Wagner. Symbolic Soft-
ware Model Validation. Technical report, EECS Department,
University of California, Berkeley, 2013.

[29] F. Tip. A Survey of Program Slicing Techniques. J. of Prog.
Lang., 3(3), 1995.

[30] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome,
and A. Datta. Design, Implementation and Verification of
an eXtensible and Modular Hypervisor Framework. In IEEE
S&P, 2013.

