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ABSTRACT
We present an approach for the design and analysis of an electronic
voting machine based on a novel combination of formal verifica-
tion and systematic testing. The system was designed specifically
to enable verification and testing. In our architecture, the voting
machine is a finite-state transducer that implements the bare es-
sentials required for an election. We formally specify how each
component of the machine is intended to work and formally verify
that a Verilog implementation of our design meets this specifica-
tion. However, it is more challenging to verify that the composition
of these components will behave as a voter would expect, because
formalizing human expectations is difficult. We show how system-
atic testing can be used to address this issue, and in particular to
verify that the machine will behave correctly on election day.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-Level Implementation]: Design Aids;
D.2.1 [Software Engineering]: Requirements/Specifications; D.2.4
[Software/Program Verification]; H.1.2 [Human factors]

General Terms
Design, Security, Verification, Human Factors

1. INTRODUCTION
Electronic voting has brought with it concerns about reliability, ac-
curacy, and trustworthiness. A challenge with using technology to
run elections is that it is difficult to be sure that a complex computer
system will perform correctly and as desired. Existing electronic
voting systems provide a relatively low level of assurance. They
are complex systems, often consisting of hundreds of thousands of
lines of code, and a single bug anywhere in the code could poten-
tially cause votes to be lost, misrecorded, or altered. As a result,
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it is difficult for independent evaluators to be confident that these
systems will record and count the votes accurately. Moreover, in
order to completely verify the voting machine, it is necessary to
also verify the interface to human voters, i.e., that the operation
of the voting machine is consistent with the behavior expected by
voters.
In this paper, we present a new approach: design an electronic vot-
ing machine with assurance that it will work correctly. The nov-
elty of our approach is in the manner in which we integrate design,
formal verification, and systematic testing to certify correctness.
We make three key contributions. First, we present the design of
a voting machine where design decisions are made so as to ease
verification and testability. Second, we formally and automatically
verify that the implementation satisfies a number of low-level cor-
rectness properties. Third, we show how to verify that the machine
will behave on election day in a manner consistent with the voters’
expectations of correct operation, by using a combination of sys-
tematic testing and formal methods. We elaborate below on this
integration of design, verification, and testing.
We follow the philosophy of “design for verification” and “design
for testability.” Rather than waiting until the implementation is fin-
ished to begin verification or testing, every design choice was made
with an eye towards its impact on our ability to verify these prop-
erties, and the implementation was built with verification in mind
from the start. In many cases, we started with the properties we
wanted to prove, and then considered how to design the system so
that these properties would be easy to verify.
We formally verify the correctness of each of the individual mod-
ules of the voting machine, as well as verifying some crucial cor-
rectness properties of their composition. For each module, we con-
struct a formal specification that fully characterizes the intended
behavior of that module. Also, we identify a number of structural
and functional properties that the machine as a whole must satisfy.
We use automated techniques such as model checking and satisfia-
bility solving to verify that our Verilog implementation meets these
specifications. We emphasize that we apply formal verification to
the actual code that is executed, not just to a high-level abstract
model. One of the contributions of this work is to demonstrate that
formal verification of voting machine logic is feasible.
In addition, we use systematic manual testing to check that the ma-
chine will behave on election day in a way consistent with voter
expectations. Verifying this with formal methods is challenging,
because it is difficult to formally specify how a voter might expect
the machine to behave. Instead, we assume that an observant hu-



man tester can recognize incorrect behavior if it should occur (e.g.,
if the voting machine records a vote for a candidate the tester did
not select, the tester will detect this fact). We generate a set of tests
that, in combination with the formal verification, are provably suf-
ficient to explore all possible behaviors of the machine, and we em-
ploy human testers to systematically check that the machine works
correctly in these tests.
Testing is well-suited for checking election-specific behavior, such
as that the machine is properly configured for this election with
the correct set of contests and candidates. However, a limitation of
conventional testing is that exhaustive testing takes too long (e.g.
exponential time), so in practice testing can only find bugs; it can-
not guarantee their absence. Perhaps surprisingly, we show that
this limitation of testing can be eliminated if testing is combined
with a limited amount of formal verification and if the machine is
designed appropriately. In particular, we show that for an election
with N contests in which each contest involves selecting one out
of k candidates, we can verify correctness with justO(kN) tests,
instead of theΩ(kN ) tests exhaustive testing would require.
The kind of voting machine that we focus on in this paper is known
as a direct-recording electronic (DRE) voting machine. A DRE
voting machine is one where voters interact with the machine to
make their selections and then the votes are recorded electroni-
cally. The most familiar example is a touchscreen voting machine,
where the voter interacts with a graphical user interface displayed
on the screen by software running on the voting machine. The voter
presses at various locations on the screen to register her selections,
and the voting software records the voter’s selections once she is
ready to cast her ballot. DREs are widely deployed throughout the
US: for instance, in 2008 DREs were used by approximately 33%
of registered voters [2].
DRE’s are commonly thought to be large, complex machines, but
we demonstrate that a small finite-state machine is sufficient to
build a functional DRE. Our design is a finite-state machine that
implements a bare-bones, stripped-down DRE. We implement the
machine directly in hardware, in custom Verilog code, so that there
is no operating system or runtime to verify. At present, one limi-
tation of our implementation is that it supports only the minimum
functionality needed to conduct an election, and does not support
many features typically found in today’s deployed DREs. How-
ever, using this stripped-down version helps to enable verification
and has the added benefit that the complete state machine can be
“held in your head”, allowing for better design decisions than can
be commonly achieved in commodity software.
In order to deem an electronic voting system secure, one must con-
sider everything from the machine on which users make their se-
lections and the tabulator that counts votes to the poll workers on
election day and the layout of the polling place [16]. Our goal in
this work is to provide a provably correct electronic voting machine
that can provide a foundation for secure elections. We do not claim
that a provably correct voting machine is sufficient for a secure vot-
ing system, but it is certainly necessary.
The paper is structured as follows. We mathematically specify the
intended behavior of the machine in Section 2. We describe the
design principles and architecture of our voting machine in Sec-
tion 3 and then discuss in Sections 5 and 6 how we formally veri-
fied that the components of the implementation meet their specifi-
cations. Section 7 explains how we use systematic testing to check
that the whole machine behaves as desired, when these components
are put together. Finally, we conclude the paper with a discussion
of lessons learned.

2. SPECIFICATION

In order to validate a voting machine and guarantee its correctness,
we need to formalize the specifications and properties that we are
trying to prove. We focus on four verification goals:

1. Each individual component of the voting machine must work
correctly (i.e., meet its specification) when considered in isola-
tion;

2. When these components are composed, the resulting machine
must satisfy certain behavioral properties that we would expect
a correct voting machine to satisfy;

3. The voting machine must be structured in a way that makes our
use of systematic testing sound; and,

4. When configured with a particular election definition file, the
voting machine must display and allow selection of candidates
in accordance with the election definition, and must behave and
record votes in a way consistent with what a typical human voter
would expect.

The first three are properties of the voting machine’s design alone
and thus can be verified once and for all, without any election-
specific information. The fourth is election-specific and, in our
approach, must be verified separately for each election.
To enable verification of the first three goals above, our specifica-
tion includes the following three parts:

• for each component of the voting machine, a formal specifica-
tion of the desired behavior of that component;

• behavioral properties of the voting machine, specified as state-
ments in some formal logic; and,

• structural properties, specified as constraints on which input vari-
ables and state-variables each state-variable can depend upon.

Sections 3.2, 3.3, and 3.4 formalize these parts of the specifica-
tion. In our approach, these are verified using formal verification
techniques, namely, model checking [7] and satisfiability check-
ing [31].
This leaves the question of how to formalize our fourth verifica-
tion goal: that the voting machine must behave consistently with
human expectations. This is much more difficult to cleanly specify
in a precise, mathematical manner. For instance, if there is a rect-
angular region on the screen that displays “Thomas Jefferson” in
some readable font, a human might expect that pressing that por-
tion of the screen would select Jefferson, causing Jefferson’s name
to be highlighted and eventually causing a vote to be recorded for
Jefferson if no other selection is subsequently made in this con-
test. However, because it involves semantic interpretation of the
contents of a particular screen image by a human it is not clear
how to specify this expected behavior in a precise, mathematical
fashion. For instance, given a bitmap image, mechanically rec-
ognizing which portions of the screen a human would expect to
correspond to a touchable region might require non-trivial image
processing; moreover, mechanically determining that the touchable
region should be associated with Thomas Jefferson might require
OCR and other complex computation. Formalizing these kinds of
human expectations in a formal logic would be horribly messy, and
probably error-prone as well.
We take a different approach: we involve humans in the validation
process. In particular, we ask human voters to cast test votes on the
voting machine during pre-election testing. We ask them to check
that the machine seems to be working correctly and recording their
votes accurately. We assume that if the machine behaves in a way
inconsistent with their expectations, they will notice and complain.
Consequently, if the voting machine passes all of these tests, then
at least we know that the voting machine has behaved in a way
consistent with human expectations during those tests. We assume



the voting machine will be used in the election only if it passes all
of these tests.
In addition, we formally verify that the voting machine behaves
deterministically. This ensures that the voting machine will behave
the same way on election day as it did in pre-election testing. So,
if a real voter interacts with the machine on election day in exactly
the same way as some tester did during pre-election testing, then
we can be confident that the machine will behave correctly and will
record the voter’s vote in accordance with the voter’s intentions.
However, this alone is not enough to provide useful guarantees in
practice, because the number of tests needed to exhaustively test all
possible machine behaviors is astronomically large. For instance,
in an election withN contests andk choices in each contest, the
number of different ways to vote (assuming voters are only allowed
to vote for a single candidate in each contest) iskN , an exponential
function ofN . Taking into account the possibility to change one’s
selections in a contest as many times as one likes, the number of
ways to interact with the voting machine becomes infinitely large.
Clearly, we cannot exhaustively try all of these possibilities in pre-
election testing: we need something more selective.
Our approach involves conducting many fewer tests: something
like O(kN) tests. We prove that, if the machine behaves as ex-
pected in each of these tests, then it will behave as expected for
every possible interaction. Of course, this does not follow in gen-
eral: for any fixed set of tests, one can devise a machine that works
correctly on those tests but behaves incorrectly on some other in-
teraction. We are able to show that if the voting machine has a
particular structure, then a limited number of tests suffice.
Very roughly speaking, if the state and behavior for each contest is
independent of the state of all other contests, it suffices to choose
a test suite that attains 100% transition coverage in each individ-
ual contest and of navigation between contests, rather than 100%
coverage of the whole voting machine’s statespace. This can be
achieved withO(k) tests per contest, since the state space in a sin-
gle contest is only of sizeO(k) (whereas the statespace for the
entire voting machine has sizeO(kN ) and thus would require ex-
ponentially many tests to fully cover).
Therefore, we must verify that our voting machine has the appro-
priate structure needed in order to apply these results, e.g., that it
behaves deterministically and that its state and behavior in each
contest is independent of the state of all other contests. The struc-
tural properties, mentioned earlier and described in more detail in
Section 3.4, are intended to capture these requirements and ensure
that our use of systematic testing is sound.
It is also necessary to formalize what it means for the voting ma-
chine to behave as a human would expect. We model this in two
pieces: a model of human expectations for how the voting machine
should respond to inputs; and human interpretation of the meaning
of each screen image produced by the voting machine. We for-
malize the former by defining aspecification voting machine(Sec-
tion 2.2), which captures our assumptions about how voters will
expect the voting machine to update its internal state in response
to inputs from the voter. The specification machine specifies, for
instance, how the set of candidates currently selected should be up-
dated when the voter presses a button. However, the specification
machine does not specify what kinds of screen images should be
produced by the voting machine: it is solely concerned with the
evolution of the internal state of the machine.
Reasoning about the interface provided by the voting machine to
human voters requires us to reason about how humans will interpret
any particular screen image. Therefore, we assume the existence of
an interpretation functionI that maps screen images to their hu-
man interpretation (Section 2.3). For the purposes of this paper,

we assume that all humans will interpret any given screen image in
the same way, and thus a single function suffices; usability issues
are outside the scope of this paper. In particular, we assume that
testers will interpret screen images in the same way as voters. We
make no attempt to specifyI formally. Instead, we devise a set of
tests that suffice to check that the screen images produced by the
voting machine will be interpreted by humans in a way that accu-
rately represents the internal state of the machine, no matter what
I may be. The assumptions mentioned above cannot be mathe-
matically proven; rather, they serve as a way to make precise what
assumptions we do and do not make about the nature of human
expectations.
Accordingly, the fourth part of our specification is:

• a formal model of a human’s view of how the voting machine
should operate, which we call thespecification voting machine.

The fourth verification goal listed above then becomes to verify that
the actual voting machine’s behavior is consistent with the specifi-
cation machine: i.e., that a human will interpret the screen images
produced by the actual voting machine in a way consistent with
how the specification machine mandates that its state should evolve.
This is verified using systematic testing. As mentioned above, we
provide formal verification of structural properties of the actual vot-
ing machine which, when combined with testing using a test suite
that attains 100% transition coverage in each individual contest and
of navigation between contests, is sufficient to guarantee trace cor-
respondence between the voting machine and the specification vot-
ing machine.
In the rest of this section, we describe the specification machine
in detail. The formal specification of each component, behavioral
properties, and structural properties are presented in Section 3.

2.1 Notation and definitions
We begin by briefly defining some voting-related terms that are
used throughout the discussion.
Contest: A single race, such as President, that a voter will vote on.
Ballot: The physical or electronic representation of all contests that
a voter will be deciding on election day.
Candidate: A choice in a particular contest. The voter will typi-
cally choose from among two or more candidates for each contest
on the ballot.
Voting Session: A voter’s interaction with the machine from the
time they are given a new ballot until the time their entire ballot
is stored in non-volatile memory, i.e., until the time they cast the
ballot.
Cast: Casting a vote refers to the action taken at the end of a voting
session that causes the selections made in all contests to be irre-
vocably written to non-volatile memory. Making a selection in a
particular contest and moving on to the next contest isnot consid-
ered casting a vote.
Selection State: The state representing the set of all candidates
currently selected in a particular contest.
Button: A (usually rectangular) region on the screen. Touching
anywhere within this region activates a particular functionality of
the machine. The corresponding part of the screen image is often
designed to provide the appearance of a physical button.

Next we provide definitions for the transducers that make up the
specification voting machine.

DEFINITION 1. A deterministic finite-state transducerM is a
6-tuple(I,O,S, δ, ρ, sinit) where

• I is the set of input events,
• O is the set of outputs,
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• S is the set of states ofM ,
• δ : S × I → S is the transition function,
• ρ : S → O is the output function, and
• sinit ∈ S is the initial state ofM .

We introduce the notion of controlled composition, where we com-
poseN transducersM1, . . . ,MN and a controllerC whose output
set is{1, . . . , N}. The output ofC determines which transducer
is active. Inactive transducers produce no output and do not tran-
sition between states. We assume that theMi’s share a common
input setIM , and that the input set ofC is disjoint fromIM . Any
input fromIM will be routed to whichever transducer is currently
active, and any other input will be provided toC. The output of
the composition is taken from the output of whichever transducer
is currently active. See Figure 1(a) for a visualization. Formally:

DEFINITION 2. LetC,M1, . . . ,MN be deterministic finite-state
transducers, given by

• C = (IC , {1, . . . , N},SC , δC , ρC , s
init
C ) and

• Mi = (IM ,O,Si, δi, ρi, s
init
i ).

SupposeIC∩IM = ∅. Then their controlled composition, denoted
LC;M1, . . . ,MN M, is the transducer

(IC ∪ IM ,O,SC × S1 × · · · × SN , δ
∗, ρ∗, (sinit

C , sinit
1 , . . . , sinit

N )),

whereδ∗ andρ∗ are defined as

δ∗((i, s1, . . . , sN ), b)

=

{

(δC(i, b), s1, . . . , sN ) if b ∈ IC ,

(i, s1, . . . , si−1, δi(si, b), si+1, . . . , sN ) if b ∈ IM ;

ρ∗(i, s1, . . . , sN ) = ρi(si).

We also use the notion of sequential composition of transducers.
If M1,M2 are two transducers with common input and output sets
I,O, andb is another input not inI, then the sequential composi-

tionM1

b
→ M2 is a transducer that initially begins executingM1.

When it receives inputb, it immediately transfers control toM2,
starting at the initial state ofM2. Equivalently, letC be a two-state
transducer that begins executing in state 1 and transitions to state
2 upon receiving inputb, and whose output function is the identity

function. ThenM1

b
→M2 = LC;M1,M2M.

2.2 Specification Voting Machine
The specification voting machine formalizes how voters will ex-
pect the voting machine to respond to inputs from the voter, and
how voters will expect the final votes recorded by the machine to
correspond to these actions. Therefore, we start with a list of prob-
able voter expectations:

1. If the voter presses a button for a candidate who is not already
selected, then the effect will be to add that candidate to the list of
selected candidates if this is legal (and nothing else will change).
If the voter presses a button for a candidate who is already se-
lected, the effect will be to remove that selection.

2. If the voter presses a button to navigate among contests, the vot-
ing machine will do so appropriately.

3. When the voter casts their ballot, the state of each contest equals
the state of that contest the last time the voter saw that contest’s
screen.

From these expectations we develop a specification voting machine.
Instead of outputting screen images (like the actual voting ma-
chine), it outputs only an abstract representation of what should be
displayed upon the screen. Similarly, instead of receiving as input
(x, y)-locations where the voter touched the screen (like the actual
voting machine), the specification voting machine receives only an
abstract representation of the button pressed. This abstract button
number not distinguish between different locations corresponding
to the same button.
The specification machineP is a deterministic finite-state trans-
ducer with a special structure, depicted in Figure 2. Conceptually,
P operates in two modes in which its operation is respectively de-
fined by two transducersMmain andMcast. Mmain represents the
main modeof operation, in whichP begins and processes voter
selections, andMcast is thecast modein which the voter casts her
ballot and the machine records the vote and resets itself for the next
voter. Mmain is itself the composition ofN + 1 state machines,
Mnav, M1, M2, . . ., MN , whereMnav controls navigation across
contests, andMi is the state machine responsible for processing
votes for contesti.
Formally,P is the sequential compositionP = Mmain

cast

→ Mcast.
Mmain is the controlled compositionMmain = LMnav;M1, . . . ,MN M.
Mcast is a transducer with only a single state and a self-loop on ev-
ery input.

DEFINITION 3. P is a 6-tuple(I,O,SP , δP , ρ, sinit) where

• I is the set of input events from the voter, corresponding to but-
tons that the voter can press,

• O is the set of outputs from the specification machine,
• SP is the set of states of the specification machine,
• δP : SP × I → SP is the transition function,
• ρ : SP → O is the output function, and
• sinit ∈ SP is the initial state ofP for each voter.

Note that this formulation requiresP to be adeterministicfinite-
state transducer. It also requires the output to depend only upon the
current state, not upon the input.
The output setO of the specification machine is partitioned into
two kinds of outputs:O = Omain∪Ocast. Each element ofOmain has
the form(i, si), wherei indicates the current contest andsi is the
set of candidates selected in that contest. This is an abstraction of
the information that should be displayed on the screen at that point,
and is output when the machine is in main mode. Each element of
Ocast has the form(s1, . . . , sN ), representing a record of the votes
cast in allN contests, and is output when the machine is in cast
mode.
The input setI of the specification machine is partitioned into two
sets: I = IN ∪ IS . The setIN corresponds to buttons that a
voter can press to navigate between contests, whileIS corresponds
to buttons that a voter can press to select or deselect the options
within a contest. We useIN = {next, prev, cast}; next moves
from contesti to contesti+1, prev moves from contesti to contest
i − 1, andcast irrevocably casts the voter’s ballot and moves to
a final screen informing the voter that her vote has been recorded.
Also we assumeIS = {0, 1, . . . , k − 1}, wherek is an upper
bound on the number of choices in any contest. The eventb ∈ IS

corresponds to pressing a button to select/deselect thebth candidate
in the contest that is currently active.
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Specification ofMnav. The controllerMnav can be specified for-
mally as follows. Its state set is{1, 2, . . . , N}, corresponding to
the set ofN contests, with1 as its initial state, corresponding to
the fact that the specification machine starts at the first contest. Its
input set is{next, prev}. Its transition function is given by

δnav(i, b) =











i+ 1 if i < N andb = next

i− 1 if i > 1 andb = prev

i otherwise.

Its output function is the identity function:ρnav(i) = i.

Specification ofMi, the machine for contesti. We specify
the transducerMi for an arbitrary contesti (for 1 ≤ i ≤ N ).
This transducer is implicitly parametrized by two election-specific
parameters:ki, the number of candidates in contesti; andℓi, the
maximum number of candidates who can be selected at a time in
contesti. For instance, in a contest where the candidate is entitled
to vote for up to 2 candidates, out of a list of 10, we haveℓi = 2
andki = 10.
A statesi ofMi is a set of candidates who are currently selected in
contesti: namely,si ⊆ {0, . . . , ki − 1} where|si| ≤ ℓi; j ∈ si
indicates that thej th candidate in contesti is currently selected.
The initial state is∅, indicating that no selection has been made in
this contest. The input set isIS . The transition function is given by

δi(si, b) =











si ∪ {b} if b /∈ si, b < ki, and|si| < ℓi

si \ {b} if b ∈ si

si otherwise.

The output functionρi is given byρi(si) = (i, si).

States ofP. Given the structure ofP defined above, the overall
set of statesSP of P can be written asSP = S × {Main,Cast}.
The setS is in turn partitioned into states ofMnav,M1,M2, . . . ,MN :
S = {1, . . . , N}×S1×· · ·×SN . The overall initial state issinit =
(s0,Main) wheres0 = (1, ∅, . . . , ∅). The transition function ofP
is constructed fromδnav andδi as described in Section 2.1. The out-
put function in cast mode isρcast(i, s1, . . . , sN ) = (s1, . . . , sN ),
and the output function in main mode is constructed fromρi as
defined in Section 2.1.

Meeting voter expectations.The specification machine mod-
els the expected behavior of the voting machine for a single voter.
Above, we listed several voter expectations on which we based this
specification.P was designed so that each of these expectations
holds by construction. For instance, when the voter casts their bal-
lot they expect the votes cast in each contest to match the voter’s
last view of that contest. This expectation follows from the sepa-
ration between theMis and by the sequential composition ofMnav

andMcast. The specification states that eachMi can only transition
between states when it is active, which is exactly when the voter

sees its output on the screen. Furthermore, the transition toMcast

can cause no transitions in any of theMi.

2.3 Interpretation Functions
The touch-screen input-output interface of the voting machine plays
a very important role since it is through this interface that a human
voter perceives the execution of the voting machine.
Consider the output screen images. It is difficult to predict a priori
how a human might interpret any particular screen image. Instead,
we assume that everyone will interpret any screen image output by
the voting machine in the same way, and introduce a functionIO
that maps screen images to their abstract content. Ifz is a screen
image, thenIO(z) is defined by the following thought experiment:
we imagine showingz to a prototypical human; we ask the human
which contest this screen is associated with, and leti ∈ {1, . . . , N}
denote the contest they identified; we ask the human which candi-
dates are currently selected in this contest, and letsi denote the set
of candidates they identify; thenIO(z) = (i, si).
Similarly, we introduce an interpretation functionII that maps a
screen imagez and an(x, y)-location on that screen to an input
in I. II formalizes how a prototypical human would map screen
locations to buttons.
The crucial assumption we make is that everyone—all voters and
testers alike—will use the same input/output interpretation func-
tions. Testing procedures can partially validate this assumption:
we can ask testers to check that each screen image output by the
voting machine appears unambiguous, and if the voting machine
ever outputs a screen image whose interpretation is ambiguous, we
can declare the tests a failure. Nonetheless, we still must assume
that, if all tests pass, then every voter will interpret each such screen
image the same way. Consequently, this assumption cannot be fully
rigorously verified and serves to formalize one of the assumptions
underlying our approach.
Note that the interpretation functionsIO andII are not known a
priori. We make no attempt to formally specify or explicitly recon-
struct these functions. Instead, we show that if some interpretation
functions exist that describes how all humans will interpret each
screen image (an unverified assumption), then our testing process
suffices.

Formal model.We now define our notion of correctness for the
actual voting machine. Atraceof the specification machineP is a
sequence(z0, b1, z1, b2, . . . , zℓ) of outputs and inputs, wherezj ∈
O andbj ∈ I. A complete traceof P is a sequence(z0, . . . , zℓ)
wherez0, . . . , zℓ−1 ∈ Omain andzℓ ∈ Ocast.
A trace of the actual voting machineA is a sequence(z0, b1, . . . , zℓ)
of outputs and inputs, where eachzj is a screen image or cast vote
record and eachbj is an(x, y)-location where the voter pressed the
screen; a complete trace is one where thez0, . . . , zℓ−1 are screen
images andzℓ is a cast vote record.
If τ = (z0, b1, z1, . . . , zℓ) is a trace ofA, we defineI(τ) =
(IO(z0), II(z0, b1), IO(z1), II(z1, b2), . . . , IO(oℓ)). For a given
I, we say that a traceτA = (z0, b1, z1, . . . , zℓ) of the actual voting
machineA is correct if the traceτP of P on the input sequence
II(z0, b1), II(z1, b2), II(z2, b3) . . . , satisfies the relationτP =
I(τA). Equivalently,τA is correct if and only ifI(τA) is a valid
trace ofP. Let Tr(P) denote the set of traces ofP, andTr(A)
the set of traces of the actual voting machineA. We consider the
actual voting machinecorrect if Tr(P) = {I(τ) : τ ∈ Tr(A)}.
Equivalently,A is correct if and only if every feasible trace ofA is
correct. Our testing procedure (Section 7) is designed to prove that
the actual voting machine is correct.



3. DESIGN
We designed and implemented a prototype voting machineA; in
this section we describe the details of that design. We start with an
explanation of the organization of the voting machine followed by a
full specification of each module in the machine. We then describe
the behavioral and structural properties of the composition of those
modules. These properties help us verify thatA is equivalent toP.

3.1 Component Level Design
We use a LCD touch screen as the user interface to the voting ma-
chine. The(x, y) coordinates corresponding to a user’s touch on
the screen are the input to the voting machine. The output is the
image displayed on the screen. In addition to the voter interface,
the machine interfaces with non-volatile memory: it reads an elec-
tion definition file (EDF) from read-only memory and writes the
cast ballot to a separate memory bank at the end of each session.
There is an additional input,reset, which clears all register values
to logic 0. It is intended thatreset will be tied to a keyed mech-
anism that only a poll worker has access to. This allows the poll
worker to prepare the voting machine for the next voter, after the
previous voter has finished. Thus every voting session begins and
ends with a reset. Resetting the state in this way guarantees that
one voter’s session can not affect any other session and that every
voter will have the same experience [25].
In our design, a single ballot can have up to 8 contests, labeled 0–7,
and each contest can have up to 12 candidates. To make the discus-
sion more concrete, we will use these parameters, but an implemen-
tation could easily increase them if needed. The full architecture is
shown in Figure 3.

Election Definition File.The EDF contains all the parameters
for a particular election, for example, the list of contests and the
candidates in each contest. The contents of the EDF are used by
three modules,Map, Selection State, andDisplay. The particulars
of the EDF’s content will be explained in the discussion of those
three modules.

Map. TheMap module converts the(x, y) coordinate pair of the
voter’s touch on the screen to a signal,button_num, representing
one of 15 logical buttons. For each candidate in a particular contest
there will be a selectable region on the screen. The user touches
somewhere in that region to select the candidate. That region is
called a button. In addition to the buttons for each candidate, every
screen also has the navigation buttonsprev andnext, which let
the voter move from contest to contest, and acast button which
allows the user to cast their entire ballot as it currently stands.
In order to know the set of(x, y) coordinates covered by each but-
ton,Map reads a button map from the EDF that provides this infor-
mation for each contest. The input signalcontest_num identifies
which contest is currently active so thatMap can apply the cor-
rect mapping. In order forMap to work correctly, the button map
has to be well-formatted; we formulated a precise mathematical ex-
pression defining a valid button map in our work, but intuitively it
corresponds to saying each button is defined by two coordinates,
lower left and upper right, and no two buttons may overlap.
By separating out the functionality required to convert an(x, y)
signal to its associated logical button, we are able to more closely
match the structure ofP in the remainder of our design. This in
turn makes the verification of our implementation simpler.

Controller. TheController module controls which contest is cur-
rently active. It is analogous toMnav in P. The inputs to the
module arebutton_num, touch, andreset; the outputs arecast,
contest_num, andss_enable. The only state maintained by the

module iscontest_num, the index of the currently active contest.
This value changes accordingly as the voter navigates from contest
to contest.ss_enable is set when (and only when) the voter presses
a button that is valid for selecting or deselecting a candidate in the
current contest.cast is set when the voter presses thecast button
and remains set thereafter, until the machine is reset.

Selection_State.There is oneSelection State module for each
possible contest on the ballot:Selection State 0 . . . Selection State 7.
These correspond to theMi state machines ofP. If an election con-
tains fewer than 8 contests, the remainingSelection State modules
will simply go unused. The state of each module,selection_state,
reflects the selections that have been made in that contest and is im-
plemented as a 12-bit bitmap. The bit at indexi is set if and only if
theith candidate in that contest is currently selected.
The EDF includes a parameter indicating the maximum number
of candidates a voter is allowed to select for that particular con-
test. If the voter tries to select more than the maximum allowed,
selection_state will not change until one of the current choices is
deselected.

Cast. TheCast module is responsible for writing the final values
of the selection state for each contest to non-volatile memory. It
does not maintain any state as the voter proceeds through the vot-
ing session, but oncecast is set, the module freezes a snapshot
of all theselection_state and writes these values to non-volatile
memory. TheCast module corresponds toMcast in P; the transition
to Cast is triggered when the voter presses thecast button on their
screen.

Display. Pvote showed that pre-rendering of screen images could
greatly reduce the complexity of a voting machine [29]. We use
this idea and include in our definition of the EDF a series of bitmap
images for each contest. The base bitmap for a contest shows the
buttons for each candidate as well as the navigation buttons. There
is an additional overlay bitmap for each candidate in the contest.
Each of these candidate overlays contains only highlighting in the
region corresponding to that candidate’s button. The screen out-
put is produced by displaying one overlay for each candidate that
has been selected in that contest, on top of the base bitmap image.
When the user presses the cast button a final screen is displayed
indicating that the ballot has been cast.
TheDisplay module acts as the interface between the electronic vot-
ing machine and the LCD controller. A multiplexor provides the
selection state of the active contest to theDisplay module, which
then generates the correct output signals to display on the screen.

3.2 Component-Level Specifications
As part of the design process we fully specified each core com-
ponent so that its behavior under all possible input combinations
was well defined. Once implementation was complete, we were
able to verify it against these specifications (see Section 5). The
one exception was theDisplay module; its behavior was well speci-
fied, but we did not formally verify the implementation against the
specification, in part because our prototype’s display module is so
simplified. We briefly summarize the specification for each com-
ponent here.

Map. The touch is set if and only if a touch event occurs (the
voter presses somewhere on the touchscreen)andthe touch is within
the boundaries of a touchable button for the current screen as de-
fined by the EDF. if a touch event occurs which causes thetouch
to be set then the value ofbutton_num will be the logical button
number corresponding to the touchable region pressed by the voter.

Controller. The three output signals should behave as follows:



Figure 3: Design of the voting machine.

• cast should be set whenever a valid touch forbutton_num =
13 occurs. Once set, cast remains unchanged untilreset is set.

• ss_enable should be low wheneverreset or cast is high. When
neither of those are set thenss_enable should be set when a
valid touch for a candidate selection button is touched.

• contest_num should be low wheneverreset is triggered. The
value of the signal should increment whenever a validnext but-
ton is touched and decrements if a validprev button is touched.
Otherwise the value ofcontest_num should remain unchanged.
In addition, thenext andprev buttons must not cause the value
of contest_num to overflow or underflow.

Selection_State.If ss_selector is high for an instance of the
Selection State module and the buttoni has been touched, then the
ith bit of selection_state will be toggled as long as this does not
cause the total number of bits set inselection_state to exceed the
maximum number of candidates that can be selected in this contest.

Cast. In our prototype we usememory to model the cast vote
record that is stored in non-volatile memory. Whencast is initially
triggered, we writeselection_state[i] intomemoryi, for eachi;
thereafter,memory remains unchanged.

3.3 System-Level Behavioral Properties
We identify a number of properties pertaining to the behavior of
the voting machine as a whole. These properties are necessary but
not sufficient for correct behavior. See Appendix A for the for-
mal specification of these properties in linear temporal logic (LTL).
Section 5 discusses how we verified these properties against our
implementation.

1. At any given time, no more than one contest can be active.
2. A contesti is active if and only if the current contest number is
i.

3. The total number of candidates selected for any contest is not
more than the maximum allowed as given by the election defi-
nition file.

4. The selection state of a contest can not change if neitherss_selector
norreset are set.

5. The selection state of a contest can not change if the pressed
button is not within the set of valid selection buttons. Thus, the
next, prev, andcast buttons cannot affect the selection state
of any contest.

6. Settingreset clears the selection state for all contests.
7. On reset, the current contest number and cast are reset and se-

lection mode is disabled.
8. Once the voting machine enterscast mode,cast is not cleared

until the next cycle of the voting machine beginning withreset.
9. Once the voting machine enterscast mode, the selection states

of all the contests become frozen and do not change until the
next cycle beginning withreset.

10. Selection of a candidate and casting of votes can not take place
at the same time.

3.4 Structural Properties
The voting machine is structured to provide several properties, cho-
sen so that testing will suffice to establish the equivalence of the im-
plemented voting machine with the specification voting machine.
Section 6 discusses how we verified all of these properties.

1. The voting machine should be a deterministic finite state ma-
chine.

2. Contests should be independent of each other, i.e., the selection
state of one contest should not have any influence on the evolu-
tion of the selection state of any other contest.

3. A contest’s selection state after a single transition should depend
only on that contest’s previous selection state, the active contest
number, and whether any selection button was pressed and if so
which one.

4. If a navigation button is pressed, the next active contest number
should depend only on the previous active contest number and
which button was pressed. Otherwise, the active contest number
should not change.

5. For any fixed EDF, when in main mode (i.e., before the ballot
is cast), the output screen should be a deterministic function of
the active contest number and the selection state of the current
contest; moreover, this function should be bijective.

6. The final memory storing the selection state should be com-
pletely determined by the selection states of the contests before
cast.

4. IMPLEMENTATION
We implemented the above design in Verilog, a hardware descrip-
tion language which describes a circuit. We synthesized our imple-
mentation onto actual hardware, namely, the Altera FPGA, Nios II
Embedded Evaluation Kit, Cyclone III Edition.
Our implementation differs from the design in one respect: our
current prototype does not include an interface to non-volatile stor-
age. In particular, while we would expect the EDF and cast vote
records to be stored on flash memory in a finished implementation,
our prototype uses volatile memory (e.g., registers) to simulate this
functionality. This represents a limitation of our current engineer-
ing and is not a fundamental shortcoming of our approach.
This limitation has several implications:

1. In our prototype, the EDF is hard-coded into register arrays.
Map has a register array containing a button map for a partic-
ular election andSelection State has a register array storing the
maximum number of candidates a voter can choose in each con-
test. In a finished implementation, this data might be read in
from removable flash memory.

2. In our prototype,Cast writes the cast vote record to a regis-
ter array calledmemory instead of to external storage. When
we verify properties about the cast ballot, we verify them on
memory. A finished implementation might write the cast vote
record to external storage, such as a removable SD flash card;



then we’d also need to verify the interface to the SD card.
3. In our prototype,Display outputs an extremely simplified screen

image indicating the candidates chosen for the current contest.
As a result, the current screen images would not be usable by
anyone other than the system developers. This limitation exists
because our FPGA has only a limited amount of on-chip mem-
ory available for storage of the bitmap images. In a finished
implementation, the EDF would be read from external storage,
making it possible to store and use high-resolution images.

5. FORMAL VERIFICATION
Using formal verification techniques we show that our implemen-
tation follows our design specifications and satisfies the desired be-
havioral properties. We used Cadence SMV [17], a symbolic model
checker, for verification. The tool includes a Verilog-to-SMV trans-
lator so that we were able to run the verification directly on our
Verilog implementation.

5.1 Component-Level Specifications
As mentioned in Section 3.2, with the exception of theDisplay mod-
ule, we fully specified the behavior of each component in the ma-
chine under all possible inputs. For all but theMap module, we
used Cadence SMV to verify that the implementation conforms to
these specifications. Specifically, we used the SMV notion of a
layer, a formal specification written in the SMV language. The
model checker verifies that the implementation refines the layer,
that is, that all possible behaviors of the implementation are consis-
tent with the component-level specification.
We were unable to verify the component-level specifications for
Map using Cadence SMV, since the large register holding the EDF’s
button map made the state space too large to model check at the
bit level. Instead, we constructed a SMT instance encoding (in
the combination of the theories of uninterpreted functions and bit-
vectors) the assertion that the module’s behavior matches its spec-
ification. The memory inMap was modeled as an uninterpreted
function, and the Yices [30] SMT solver was used to complete the
verification. Under the assumption that the EDF is valid, we were
able to verify that theMap module meets its component-level spec-
ification.

5.2 System-Level Behavioral Properties
We formulated each behavioral property from Section 3.3 as an
LTL formula and then ran the SMV model checker to verify the
property holds true for our implementation. The LTL formulation
of each property is given in Appendix A. Deriving the correct LTL
formula for a given property was not always straightforward and
we did not always get it right on the first try. However, the Verilog
code, the SMV layers, and the LTL properties represent three inde-
pendent means of describing our voting machine. Once mutually
consistent, each one provides a crosscheck on the other two and
gives us increased confidence that they are each correct.

6. VERIFYING STRUCTURAL PROPERTIES
Next, we describe how we verified that the implementation of our
voting machine meets the structural properties articulated earlier
(Section 3.4). These properties all involve checking that a vari-
ablev depends only on some specified setW = {w1, . . . , wn}
of variables, and nothing else. In other words, we must verify that
v can be expressed as a deterministic function of the other vari-
ables:v = f(w1, . . . , wn), for some functionf , or in shorthand,
v = f(W ). Put another way, we want to check thatv determin-
istically depends onW , and onlyW , i.e., for every other variable

x /∈ W , v is conditionally independent ofx givenW . We verify
this kind of property by formulating it as a Boolean satisfiability
(SAT) problem.

6.1 Approach
The first step is to express the transducer as a Boolean system.
Let’s introduce some notation. We assume there is a setS of state
variables, so that each valuation of values to these variables corre-
sponds to a state of the system. Similarly, letI be a set of input
variables, andO a set of output variables. For each state variable
s, let the variables′ denote the previous value ofs; let S′ denote
the set of these variables. Then we can write the transition rela-
tion as a functionδ, which expresses the state as a function of the
previous state and the input via the relationS = δ(S′, I). (This
is shorthand forsi = δi(s

′
1, . . . , s

′
k, i1, . . . , iℓ) for i = 1, . . . , k,

assumingS = {s1, . . . , sk} andI = {i1, . . . , iℓ}.) Similarly, we
assume the output function is modelled as a functionρ, via the rela-
tionO = ρ(S). Thus, we can model the transducer by the formula

φ(S, S′, I, O) ≡ S = δ(S′, I) ∧O = ρ(S).

Now suppose we wish to check that state or output variablev is a
deterministic function of a setW of state or input variables. Let
S1, S2 be two copies of the state variables,I1, I2 be two copies of
I, andO1, O2 be two copies ofO. Consider the formula

ψ(S1, S
′

1, I1, O1, S2, S
′

2, I2, O2) ≡

φ(S1, S
′

1, I1, O1) ∧ φ(S2, S
′

2, I2, O2)∧

v1 6= v2 ∧ ∀w ∈W . w1 = w2.

Effectively, we make two copies of our model of the system. We
then check whether it is possible forv to take on two different val-
ues in the two copies, while all variables inW take on the same
value in both copies; the answer reveals whetherv depends deter-
ministically uponW . In particular,v can be expressed as a deter-
ministic function ofW (v = f(W )) if and only if ψ is unsatisfi-
able. Figure 4(a) illustrates this idea. This approach to checking
dependence is similar to the technique of using self-composition
for checking information flow [26]. The key idea is to formulate
non-interference as a 2-safety property.

6.2 Application
We verify the structural properties from Section 3.4 by checking
deterministic dependence properties. For instance, to help verify
structural property 4, we verify that the active contest number de-
pends deterministically upon the previous contest number and the
button pressed.
We applied the approach sketched above to the Verilog implemen-
tation of our voting machine, using the Beaver SMT solver [4, 13]
to check satisfiability.
We illustrate some of the results of our dependency analysis in Fig-
ure 4(b). We draw an edge from state/input variabler to state vari-
ables if the value ofs after a single transition depends on the value
of r before the transition. If there is no edge fromr to s, then
the new value ofs does not depend upon the prior value ofr. We
excluded theMap andDisplay modules from this figure for clarity,
and so the relevant input variables aretouch and button_num,
and the state variables are theselection_state[i] andmemory[i]
for each contesti as well ascontest_num. We include the se-
lection state for two examplar contests,selection_state[i] and
selection_state[j] (wherei 6= j), to help demonstrate the inde-
pendence between contests.
We applied dependency analysis to the entire machine and to every
module. For instance, we verified that theselection_state for a
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Figure 4: Checking independence and deterministic dependence

contesti is independent ofselection_state for any other contest.
Also,memory for contesti depends only on theselection_state
for the same contest and is independent of any other contest.
Thus, we were able to verify the independence of contests from
each other. For the display module we verified that the current
display is abijective function of contest_num and the current
selection_state when in main mode. This bijectivity will be im-
portant when we discuss testing in section 7. In addition, we veri-
fiedMap is dependent only on its explicit input signals and contains
no non-deterministic behavior. In this way, we were able to verify
all the structural properties specified in Section 3.4.

6.3 Structural Decomposition
We also verify that the Verilog implementation takes the form of
a controlled composition of finite-state transducers, as defined in
Section 2.1. In particular, we show that it can be expressed in the
form LMnav;M1, . . . ,MN M

cast

→ Mcast, augmented with a transition
onreset back to its initial state.
We do this by showing that the transition relationS = δ(S′, I) can
be partitioned into four disjoint cases, representing the four types of
transitions that can occur in this controlled composition: navigation
(which corresponds to transitions inMnav), contesti (transitions
Mi, for somei with 1 ≤ i ≤ N ), cast (the transition toMcast on
cast), and reset (the transition onreset). Associated with each
casex there is a guardgx, which identifies the condition under
which the case is active, a setVx of state variables updated in this
case, and an update rulev := f(D′

v) for each state variablev ∈ Vx.
The state variables not inVx remain unchanged:v := v′ for each
state variablev /∈ Vx. We verified that the transition relation can
be written as

δ(S′, I) =



















δnavigate(S
′, I) if gnavigate(S

′, I)

δi(S
′, I) if gi(S′, I)

δcast(S
′, I) if gcast(S

′, I)

δreset(S
′, I) if greset(S

′, I).

The guards are disjoint: only one of the four guard predicates can
be true at any one time. See Table 1.
Also, each state variable can be updated by only one of the four
cases:Vnavigate, Vi, Vcast, andVreset are pairwise disjoint. In other
words, at each time step, each state variable is controlled by exactly
one component. For instance,contest_num can change only dur-
ing navigation,selection_state[i] can change only when contest
numberi is active and a selection button is pressed, andmemory
can not change except in cast mode.
This decomposition helps us to verify the structural properties. For
instance, we can conclude that the next value ofselection_state[i]

may depend upon the previous value ofselection_state[i] but not
upon the previous value of any otherselection_state[j], as as-
serted in structural property 3. The structural properties plays a
very important role in testing the voting machine, as discussed in
the next section.

7. TESTABILITY
We describe how systematic testing is used in conjunction with the
formal verification performed earlier to ensure that the input-output
behavior exhibited by the actual voting machine is identical to that
exhibited by the specification voting machine.
Specifically, our goal is to give a testing protocol such that if all
tests pass, we can conclude thatA is correct as defined in Sec-
tion 2.3, i.e., thatA andP are trace-equivalent after application of
the interpretation functionI to traces ofA.

7.1 Preliminaries
We are concerned with testing finite-length behaviors of the voting
machine. Atest input(or just test) is a sequence of inputs to the
specification voting machineP of the form b1, b2, . . . , bℓ where
bj ∈ I \ {cast} for 1 ≤ j < ℓ andbℓ ∈ I. A complete test input
(or complete test) is a test input whose last elementbℓ corresponds
to casting the vote; i.e.,bℓ = cast.
Recall from Section 2.3 the definitions ofinterpretation functions
I, IO, II , and oftracesof the actual and specification voting ma-
chines. We make the following assumption aboutII :

A0: For a given election definition file (EDF), for every
screenz and every(x, y) location on the touch screen,
II(z, (x, y)) = Map(z, (x, y)).

In the above statement,Map denotes the Map module ofA. Note
that we have considered the range ofII andMap to be the same;
strictly speaking, although the ranges are isomorphic to each other,
they could be different sets.
Intuitively, a human tester would administer a testT = (b1, . . . , bℓ)
by “inverting” the input interpretation functionII on eachbj to find
a corresponding(x, y)-positionaj to press on. To formalize it a bit
more, if the initial screen isz0 and the first button press in the test
sequence isb1, then we assume that the tester computesa1 such
thatII(z0, a1) = b1, and then presses the screen at(x, y)-position
a1. The tester then observes the next screen image, sayz1, finds
a2 such thatII(z1, a2) = b2, and presses the screen at(x, y)-
positiona2. This process continues, yielding a sequenceTA =
a1, a2, . . . , aℓ of inputs to the actual voting machineA.
Let τA be the trace exhibited byA on inputTA, and letτP be
the trace exhibited byP on inputT . As noted earlier, we ensure



by design and formal verification thatA andP are deterministic,
meaning that for anyT , there exists exactly oneτA and exactly one
τP . If I(τA) = τP , we say thatA is correct on testT or that test
T passes.
Intuitively, at each step, the tester will check the output screen to
make sure that the voting machine appears to have responded cor-
rectly, according to their expectations about correct behavior (e.g.,
after selecting a candidate, the candidate should be highlighted or
otherwise appear to be selected). After casting their ballot, the
tester will inspect the cast vote record produced by the voting ma-
chine and check that it appears to be correct (i.e., it is consistent
with the selections the tester has made during this test, according
to their interpretation of the test inputs). If any of these checks
fail, the human tester will fail the machine; otherwise, the human
tester will pass the machine. Based upon our assumptions about
human expectations, as formalized in Section 2.3, we assume that
the behavior of human testers can be modelled as follows:

A1: We assume that there exists a single interpretation function
I = (II , IO) such that, for every human tester, the human
tester passes the voting machine on testT if and only if it is
correct on testT .

A test suiteT is a set of complete tests. We say thatT passes if
everyT ∈ T passes.
We assume that if any test fails, the voting system will not be used
in an election. Therefore, we wish to identify a condition onT
so that if every test inT passes, then we can be assured thatA is
correct in the sense defined in Section 2.3: i.e., it is trace-equivalent
to P after application of the interpretation function. We identify
such a sufficient condition onT in Section 7.2.
Such a result is only possible if we know that the voting machine
has a certain structure. We rely upon the following properties of
the actual and specification voting machines:

P0: The output function of the voting machine is a bijective func-
tion of the contest number and selection state of the current
contest.

P1: The voting machine is a deterministic transducer.
P2: The state of a contest is updated independently of the state of

other contests.
P3: If a navigation button is pressed, the selection state remains

unchanged.
P4: If a selection button is pressed, the current contest number

stays unchanged.

These five properties have been formally verified forA, as de-
scribed in Sections 3, 5 and 6. ForP, properties P0–P4 follow
from the specification given in Section 2.2.
In addition, we require another property ofA:

P5: The electronic cast vote record that is produced when we cast
the ballot is an accurate copy of the selection state for each
contest.

Property P5 has been formally verified under the assumption that
the machine’s record of the cast vote is correctly output on persis-
tent storage (e.g., paper) for the human to check.

7.2 Coverage Criteria
We say that a test suiteT satisfies our coverage criteria if the re-
sulting set of traces ofP satisfies the following conditions:

C0: (Initial State Coverage) There is a test in which, from the ini-
tial output screenz0, P receives thecast input.

C1: (Transition Coverage)

(a) (Selection transitions) For every contesti, every selec-
tion statesi within contesti, and every inputb ∈ IS ,
there is some trace whereP receivesb in a state(i, s)
where theith component ofs is si.

(b) (Navigation transitions) For every contesti, and every
input b ∈ IN , there is some trace whereP receivesb
in a state of the form(i, s).

C2: (Output Screen Coverage) For every contesti and every se-
lection statesi of P within contesti, there is some trace of
P wherethe last transitionwithin contesti ended atsi and
then at some point thereafterP receives thecast input.

Criterion C0 specifies that a human tester must verify thatA andP
start with the same selection state.
Criterion C1 specifies that we must cover all transitions of eachMi

within P (for everyi), and all transitions ofMnav within P.
Criterion C2 ensures that for every(i, si), the tester gets an oppor-
tunity to view the output screen for thatsi as the last step in contest
i. This in turn ensures (through properties P2 and P3) that this se-
lection state ofA for contesti appears on the cast vote record. The
main purpose of this criterion is to check that the interpretation
function IO is consistent withA’s output function, call itρA, as
defined byA’s Display module. Formally,IO must be the inverse
of A’s output functionρA. We know from Property P0 thatρA is
invertible, and that in contesti, it is only a function of(i, si), not of
anysj for i 6= j. Thus, effectively, C2 ensures that for every(i, si)
pair, the human tester computes(i′, s′i) = IO(ρA(i, si)). The test
passes only ifi = i′ andsi = s′i; i.e., only if IO is the inverse of
ρA. We formalize this result in Appendix C.

7.3 Main Theorem
We now state our main theorem that shows how our test coverage
criteria and results of formal verification combine to ensure trace-
equivalence ofA andP (up to an application ofI).
Recall from Section 3.2 thatA is correct iff Tr(P) = {I(τ) : τ ∈
Tr(A)}.

THEOREM 1. Consider a test suiteT that satisfies coverage
criteria C0–C2. Then,T passes if and only ifA is correct.

The “if” part of the above theorem follows trivially. For brevity, we
only sketch out the proof of the “only if” part here, and include the
full proof in Appendix C.

PROOF. (sketch) Briefly, the proof works by induction on the
length of the input sequence to the voting machine.
The idea is as follows. Consider an arbitrary input sequenceT to
A. Due to determinism, we know that there is a single traceτA of
A onT . Correspondingly, we can extract the sequenceI(τA), the
sequence of button presses forP, andP ’s traceτP .
Due to coverage criterion C1, we know that each transition inτP ,
for each(i, si) pair, have been covered by some test. We case-split
on the input supplied on this transition and show that in each case,
the verified properties P0–P5 ensure that the contest numbers and
selection states inI(τA) are identical to those inτP .

7.4 A Sample Testing Protocol
We present one way to meet the coverage criteria C0–C2 stated
above. We assume that it is possible to provide acast input from
any screen of the voting machine. This is clearly possible forP,
by definition. It is also possible in the voting machine we have
designed.
The testing protocol builds upon the following ideas:



1. Due to properties P2–P4, we can cover transitions ofMnav and
eachMi by separate tests. Note that transitions can be parti-
tioned into two sets depending on the inputs labeling those tran-
sitions (inIS or IN ).

2. Each trace makes selections in at most one contest. For each
i and for each transition ofMi, there is a trace that makes no
selections in any contest other thani (simply following next

button presses to reach contesti) and at some point follows this
transition inMi.

3. Similarly, for each transition ofMnav, we explore the shortest
trace that ends in that transition and then acast.

Operationally, human testers would do the following:

1. Supply the input sequences (prev), (next), (next, prev),
(next, next), (next, next, prev), etc., each followed by a
cast, and then check that the correct output is received. Each
of these tests contains 0 toN + 1 nexts, followed possibly by
aprev, followed by acast. These tests cover the transitions of
Mnav, and in particular, note that they satisfy coverage criterion
C0. ForN contests, there areO(N) tests of this form.

2. Recall that in contesti, the selection statesi is a setsi ⊆
{0, 1, . . . , ki − 1}, subject to the constraint|si| ≤ ℓi, where
contesti involves selecting at mostℓi out of ki possible candi-
dates. For each contesti and for each valid selection statesi in
this contest, perform the test

(nexti, c1, . . . , cj , 0, 0, 1, 1, 2, 2, . . . , k − 1, k − 1, cast),

wheresi = {c1, . . . , cj}. Intuitively, we navigate to contesti
usingi nexts; we select the candidates specified bysi; we try
de-selecting and subsequently re-selecting each selected candi-
date; we try selecting and subsequently de-selecting each unse-
lected candidate; and finally we cast the ballot. If the machine
is working properly, de-selecting and immediately re-selecting
a candidate (or vice versa) should leave the selection state un-
changed, and thus return one to the same output screen as be-
fore. In the special case of selecting exactlyℓi candidates, i.e.,
where|si| = ℓi, selecting an unselected candidate should have
no effect, so doing that twice should also have no effect.
Note that these tests satisfy coverage criteria C1 and C2. If
every contest involves selecting at most one candidate (i.e.,
ℓ1 = · · · = ℓN = 1), there areO(N · k) tests of this form.

Thus, if the voting machine is correct, this protocol certifies its
correctness withO(N · k) tests (assumingℓ1 = · · · = ℓN = 1).

8. DISCUSSION
Related Work.There has been considerable prior work on using
formal verification to build high-assurance systems. In many cases,
the designers manually constructed a model of the system and then
formally verified that the model satisfies desirable properties. In
comparison, we directly verify the source code itself, which pro-
vides higher assurance. Like much prior work on high-assurance
systems, we too have carefully chosen our design to be modular
and to reduce the size of the correctness-critical portion of the code
(the TCB) [15].
We are not the first to propose a new architecture for voting ma-
chines, with the goal of greater assurance. The “frog” architec-
ture is based upon separating vote-selection (which is performed
on one device) from vote-confirmation (which is performed on an-
other device), to reduce the trust that is needed in the vote-selection
device [5]. Later, Sastry et al. showed how to provide this func-
tional separation with a single device, and also introduced the idea
of forcibly resetting the system after each voter finishes, to ensure

independence of voter sessions [25]. We borrow the idea of using
resets for independence. Also, Yee et al. proposed pre-rendering
of the user interface as a technique to reduce the size of the TCB,
and showed that this makes it possible to build a voting machine
with a rich UI in only 300–500 lines of Python code [27–29]. We
adopt the pre-rendering approach to simplify interpretation of user
inputs and generation of screen images. These systems were built
in a general-purpose programming language and thus rely upon the
correctness of an OS, language runtime/interpreter, and language
libraries; in contrast, because our system is implemented directly
in Verilog, we eliminate the need for these elements (although we
trust the tools that synthesize a circuit from Verilog) and thus fur-
ther reduce the size of the TCB. More recently, others have built a
voting machine on a FPGA platform [22]. However, none of these
systems were subjected to formal verification.
Our use of determinism to help verify complex, application-specific
properties was inspired by other work on verification of functional
purity [10].
Many authors have explored the use of independent, orthogonal
mechanisms to verify the vote totals. Today, one widely deployed
example is the use of a voter-verified paper audit trail (VVPAT)
printer attached to a DRE, combined with post-election audits of
the VVPAT records [3, 12, 14, 18, 19, 21]. However, one recent
study showed that about two-thirds of voters failed to notice er-
rors on the summary screen [9], raising questions about the effec-
tiveness of VVPAT records. Many researchers have studied cryp-
tographic mechanisms for end-to-end verification that the voter’s
vote has been recorded and counted accurately [1, 6, 8, 20, 23, 24].
These techniques provide a way to detect problems after the fact,
but may not provide any way to recover from some failures and
do not proactively prevent election-day failures. For instance, if
the voting machine displays the set of options inaccurately—e.g.,
inverting the explanation of a bond measure—the voter might be
tricked into voting contrary to her intentions (previously dubbed
a presentation attack [11]). Preventing these kinds of failures re-
quires verifying the user interface logic to a high degree of assur-
ance, as our work does. On the other hand, our approach provides
no way for an ordinary voter to verify, for herself, without trust in
complex technology, that her vote was recorded and counted accu-
rately; that requires some form of independent verification. Conse-
quently, we believe that our techniques are complementary to end-
to-end verification measures: it would make sense to use both.

Analysis of Limitations.Our general philosophy is to pare a
voting machine down to the simplest possible core, and as a re-
sult our design provides only a bare minimum of functionality. We
do support contests, ballot measures, propositions, and any contest
that can be expressed in terms of selecting at mostℓ out of a list
of k options. We do not support write-ins, straight-party voting,
controlled contests, or cross-endorsement. Some of these are ob-
scure or arguably unnecessary features, but the lack of support for
write-ins is a significant limitation.
Also, our system is not as flexible, in terms of the kinds of user
interface designs that can be supported, as a system written in a
general-purpose programming language. We require that contests
be presented one per screen: contests cannot be split across two
pages, and one page cannot contain more than one contest. We
currently do not support alternative languages, audio output, some
kinds of accessible input mechanisms (e.g., sip-and-puff devices),
zoomable display, or high-contrast or reverse-color modes. Many
of these would be needed before our system could be considered
accessible to voters with disabilities. We do not provide a summary
screen that voters can use to confirm their selections before casting



their ballot; this is a significant limitation.
We have not yet implemented a module to interface with external
memory; this will be necessary to store votes in non-volatile stor-
age (e.g., on flash). It also has consequences for both the touch
screen and the video output. Our synthesized voting machine in-
cludes a module to translate analog inputs from the touchscreen to
(x, y) coordinates and a module to drive an LCD display however,
both these modules require access to data in the EDF. As a tempo-
rary measure, we hard-coded in values needed by the touch screen
module and the video output module. In addition, in the case of the
video output module we use a very simplified display. We expect
the memory interface to be relatively straightforward to implement,
and consequently we view these gaps as primarily a shortcoming of
our implementation, rather than a fundamental limitation of our ar-
chitecture.
We do not provide any kind of administrative functionality, e.g., for
poll workers to configure the machine. We do not support casting
of provisional ballots.
It is reasonable to suppose our architecture could be extended to
provide verifiably correct implementations of some of these fea-
tures, such as alternative languages and summary screens, more
easily than others, such as write-ins or audio. Of course, it would
be straightforward to extend our design with unverified implemen-
tations of these additional features, but we believe that it would be
preferable to provide the same high level of assurance for all modes
of operation of the voting machine.

9. CONCLUSION
We have designed a simple finite-state voting machine guided by
the goals of verification and testability. A voter’s view of correct
operation was formalized using the concept of a specification vot-
ing machine. We used the results of formal verification to develop
coverage criteria with which human testers can provably assure, us-
ing a reasonable (polynomial) number of tests, the correct operation
of a voting machine prior to an election. Although several features
remain to be addressed, the presented framework is an important
step towards a fully, formally verified voting machine.
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APPENDIX

A. BEHAVIORAL PROPERTIES
We formalize the behavioral properties from Section 3.3 in LTL.

1. At any given time, no more than one contest can be active.
G(ss_selector[0] + · · ·+ ss_selector[contest number −
1] ≤ 1)

2. A contesti is active if and only if the current contest number
is i.
G((contest_num = i ∧ ss_enable) ⇐⇒ ss_selector[i])

3. The total number of candidates selected for any contest is not
more than the maximum allowed as given by the election def-
inition file.
G(reset→ XG(total_selections ≤ max_selections))
wheretotal_selections = selection_state[0] + · · ·+
selection_state[number of candidates− 1].

4. The selection state of a contest can not change ifss_selector
and reset are not set. Note that in the case where
selection_state[i] starts low, it suffices to check that it re-
mains low ifss_selector is not set regardless of the value of
reset.
∀i G((¬reset

∧

¬ss_selector
∧

selection_state[i])
→ X(selection_state[i]))

∀i G((¬ss_selector
∧

¬selection_state[i])
→ X(¬selection_state[i]))

5. The selection state of a contest can not change if the pressed
button is not within the set of valid selection buttons. Thus,
thenext, prev, andcast buttons cannot affect the selection
state of any contest.
∀i G(¬reset

∧

button_num 6∈ Bsel

∧

selection_state[i]
→ X(selection_state[i]))

∀i G((button_num 6∈ Bsel

∧

¬selection_state[i])
→ X(¬selection_state[i]))

6. Settingreset clears the selection state for all contests.
∀i G(reset→ X(¬selection_state[i]))

7. On reset, the current contest number and cast are reset and
selection mode is disabled.
G((reset→ X(¬cast

∧

¬ss_enable
∧

¬contest_num))

8. Once the voting machine enterscast mode, cast is not
cleared until the next cycle of the voting machine beginning
with reset.
G(reset→ (XG(cast→ cast U reset)))

9. Once the voting machine enterscast mode, the selection
states of all the contests become frozen and do not change
until the next cycle beginning withreset.
G(reset→ (XG(cast→ ¬ss_enable U reset)))

10. Selection of a candidate and casting of votes can not take
place at the same time.
reset→ XG(¬(cast

∧

ss_enable))

B. THE TRANSITION RELATION
In Table 1, we show how each of the component of the transition
relation can be expressed as a set of guarded update rules. Further,
these components are disjoint in their guards. If none of the guards
are true, there is no change in the state of the voting machine. Also,
in one voting cycle between resets, any state variable is updated
only by one component of the transition relation.

C. PROOF OF THEOREM 1
We prove Theorem 1 (from Section 7.3) using induction on the
length of the input sequence.
Our proof makes use of the following lemma.

LEMMA 1. Suppose that a test suite satisfying coverage crite-
rion C2 passes. If there exists a trace ofA s.t. its state at an arbi-
trary stepj has contest numberi and selection statesi in contest
i, and the output screen ofA at stepj is z, thenIO(z) = (i, si).

PROOF. Denote the output function ofA by ρA. From Property
P0, we know thatρA is a function only ofi andsi. Thus,z =
ρA(i, si).
By Coverage Criterion C2, there exists some testT in which the
last screen in contesti is z and then some time later the vote is
cast. By Property P2 and P3,si should appear on the cast vote
record as the selection state of theith contest. IfA is correct on
testT , it implies that the selection state ofP in contesti at stepj is
alsosi, matching the cast vote record. Moreover, sinceT passed,
it must also hold thatIO(z) matchesP ’s output at stepj. Thus,
IO(z) = (i, si).

Since we have proved the above lemma for arbitraryi, si, andz,
the following corollary is also obtained:

COROLLARY 1. If a test suite satisfying coverage criterion C2
passes, thenIO is the inverse ofρA.

We now return to the proof of the main theorem.

PROOF. (Theorem 1)
Consider an input sequenceA = (a1, a2, . . . , aℓ) toA of finite but
arbitrary length. Eachaj is an(x, y)-location on the touch screen.
Let τA = (z0, a1, z1, a2, z2, . . . , zℓ) be the trace ofA on this input
sequence. By determinism ofA (Property P1), we know thatτA is
unique. Also, we have

I(τA) = (IO(z0), II(z0, a1), IO(z1), II(z1, a2), . . . , IO(zℓ)).

The sequence of button presses corresponding toA is

(II(z0, a1), II(z1, a2), . . . , II(zℓ−1, aℓ)).



type of guard (gx) update rule
transition (x)

navigation (¬reset ∧ touch ∧ ¬cast contest_num := f1(contest_num, navigation_buttons)
cast (¬reset ∧ touch ∧ cast_button) cast := f2(cast_button) final_memory[i] := f3(selection_state[i]) for all i
contesti (¬reset ∧ touch ∧ ¬cast selection_state[i] := f4(selection_state[i], selection_buttons,max_selections)
reset reset clearcontest_num, cast, selection_state, andfinal_memory

Table 1: Structural decomposition of the prototype voting machine’s transition function (see Section 6.3)

Let bi = II(zi−1, ai). Suppose thatτP is the trace ofP on
T = (b1, b2, . . . , bℓ). Let τP = (z′0, b1, z

′
1, b2, . . . , z

′
ℓ). By de-

terminism ofP (Property P1), we know thatτP is unique.
We wish to prove thatτP = I(τA). In other words, we want to
prove thatIO(zi) = z′i for all i s.t.0 ≤ i ≤ ℓ.
In fact, we will prove that, in addition to the above equality, the
sequences of selection states ofA and P corresponding to the
above input sequence are the same. (We know that these se-
quences are unique due to determinism ofA andP.) Specifically,
if (s0, s1, s2, . . . , sℓ) is the sequence of selection states forA and
(s0

′
, s1

′
, s2

′
, . . . , sℓ

′
) is the sequence forP, thensj = sj

′
for all

j. This result will be used as an “auxiliary invariant” in proving the
statement of the theorem.
Base case:
Consider the empty input sequenceA = (). Thus,τA = (z0).
From coverage criterion C0, we know that the testT = (cast)
passed. The tracesτA, τP are a prefix of that passing test, so it
follows that IO(z0) = z′0. Also, sinceT passed, we know that
afterT , the selection state ofA was(∅, ∅, . . . , ∅). Sincecast does
not change any selection state, this was also the initial selection
state. Therefore,s0 = (∅, . . . , ∅) = s0

′
.

Inductive step:
Suppose thatIO(zj) = z′j for all j s.t. 0 ≤ j < m. We show that
IO(zm) = z′m. For convenience, we abbreviate the selection state
at them− 1th step,sm−1, simply ass.
Let z′m−1 = (i, si) wherei is the contest number andsi is the
state of theith contest. The full selection state iss = (s1, . . . , sN )
where theith entry issi. From the induction hypothesis we know
that, at them− 1th step,i is the contest number ands is the selec-
tion state of bothP andA.
Recall thatbm is the button pressed on themth step. We will case-
split on the form ofbm.

• Case 1:bm ∈ IN \ {cast}.
Sincebm ∈ {next, prev}, by Property P3 and Assumption
A0, we know that the selection states remains unchanged on
this transition inT for bothA andP. Thus,sm = sm′ = s.
Suppose thatP transitions onbm from (i, s) to some state
(i′, s), as per its definition in Section 2.2. Thus,z′m = (i′, si′).
By coverage criterion C1(b), there exists some passing testT̂
that covers the transition ofP on bm from some state(i, ŝ)
where theith component of̂s is si. Note thatP ’s contest num-
ber would also change toi′ on this transition.
Consider any inputa′m to A corresponding tobm. Consider
the transition ona′m in A from a state corresponding to contest
numberi and selection statês. SinceT̂ passed, we know that
the contest number component ofIO(zm) is i′, matching the
contest number ofP.
Thus, by Lemma 1, and sinceA’s selection state for contesti′

is si′ , IO(zm) = (i′, si′) = z′m.
• Case 2:bm ∈ IS .

Sincebm ∈ IS , by Property P4 and Assumption A0, we know
that this transition inT leaves the contest number unchanged at
i for bothA andP. Also, by Property P2, we know that this

transition can only modify the selection statessm andsm′ in
their ith components.
Suppose thatP transitions onbm from (i, s) to some state
(i, s′), as per its definition in Section 2.2. Lets′ =
(s1, s2, . . . , s

′
i, . . . , sN ). Then,z′m = (i, s′i).

By coverage criterion C1(a), there exists some passing testT̂
that covers the transition ofP on bm from some state(i, ŝ)
where theith component of̂s is si. Note thatP ’s selection state
in theith contest would also change tos′i on this transition.
Consider any inputa′m to A corresponding tobm. Consider
the transition ona′m in A from a state corresponding to contest
numberi and selection statês. SinceT̂ passed, we know that
the ith entry in the selection state component ofIO(zm) is s′i,
matching the corresponding entry forP. Since the value ofs′i
does not depend on the state of any contest other thani, this
implies that theA’s selection state at stepm in τA, sm, is s′.
Thus,sm = sm′ = s′.
By Lemma 1, sinceA’s selection state iss′ and contest number
is i, IO(zm) = (i, s′i) = z′m.

• Case 3:bm = cast.
Consider the finalcast input. From the formal verification of
the properties in Sections 3.2 and 3.3, and Assumption A0 (that
the tester presses a button thatA interprets ascast), we know
that the contest numberi and selection states of A remain un-
changed oncast. Similarly, from Section 2.2, we also know
that (i, s) remains unchanged oncast by P. Moreover, we
know that the final output ofP is s, while by design ofA and
Property P5, the cast vote record ofA generates an accurate
copy ofs. Thus,IO(zm) = z′m = s.

In all cases, we have shown thatIO(zm) = z′m and thatsm =
(sm)′. Thus, by induction we have shown thatIO(zi) = z′i for all
i s.t.0 ≤ i ≤ ℓ. In other words,τP = I(τA).


