On Voting Machine Design for Verification and Testability

Cynthia Sturton Susmit Jha Sanjit A. Seshia
EECS Department EECS Department EECS Department
University of California, University of California, University of California,
Berkeley Berkeley Berkeley
Berkeley, CA 94720 Berkeley, CA 94720 Berkeley, CA 94720

csturton@cs.berkeley.edu jha@eecs.berkeley.edu sseshia@eecs.berkeley.edu

David Wagner
EECS Department
University of California,
Berkeley
Berkeley, CA 94720
daw@cs.berkeley.edu

ABSTRACT it is difficult for independent evaluators to be confident that these

We present an approach for the design and analysis of an electroniccyStems will record and count the votes accurately. Moreover, in
voting machine based on a novel combination of formal verifica- °der to completely verify the voting machine, it is necessary to

tion and systematic testing. The system was designed specificallyaisf] verlfy the |nt§'rfac.e to hqman vqtﬁrsﬁ "E"htha.lt the operac}ut))n
to enable verification and testing. In our architecture, the voting ©' th€ voting machine is consistent with the behavior expected by

machine is a finite-state transducer that implements the bare es-Volers.

sentials required for an election. We formally specify how each _In this paper, we presenta new ap_pro_ach: design an electronic vot-
component of the machine is intended to work and formally verify 'nlg mfachme with a;]s§uranr$e that it W.'” Wrc])_rkhcorrgctly. Thz nov-
that a Verilog implementation of our design meets this specifica- €'Y Of 0Ur approach is in the manner in which we integrate design,

tion. However, it is more challenging to verify that the composition formal verification, and systematic testing to certify correctness.

of these components will behave as a voter would expect, because’Ve Make three key contributions. First, we present the design of

formalizing human expectations is difficult. We show how system- & Voting machine where design decisions are made so as to ease

atic testing can be used to address this issue, and in particular toverification and testability. Second, we formally and automatically

verify that the machine will behave correctly on election day. verify that the |m_plemer_1tat|0n satisfies a numb_er of low-level cor-
rectness properties. Third, we show how to verify that the machine

will behave on election day in a manner consistent with the voters’

Categories and Subject Descriptors expectations of correct operation, by using a combination of sys-
B.5.2 [Register-Transfer-Level Implementatiorj: Design Aids; tematic testing and formal methods. We elaborate below on this
D.2.1 [Software Engineering: Requirements/Specifications; D.2.4 integration of design, verification, and testing.
[Software/Program Verification]; H.1.2 [Human factors] We follow the philosophy of “design for verification” and “design
for testability.” Rather than waiting until the implementation is fin-
ished to begin verification or testing, every design choice was made
General Terms with an eye towards its impact on our ability to verify these prop-
Design, Security, Verification, Human Factors erties, and the implementation was built with verification in mind
from the start. In many cases, we started with the properties we
1. INTRODUCTION wanted to prove, and then considered how to design the system so

that these properties would be easy to verify.

We formally verify the correctness of each of the individual mod-
ules of the voting machine, as well as verifying some crucial cor-
rectness properties of their composition. For each module, we con-

system will perform correctly and as desired. Existing electronic P . .
. . . struct a formal specification that fully characterizes the intended
voting systems provide a relatively low level of assurance. They . : .
-2 behavior of that module. Also, we identify a number of structural
are complex systems, often consisting of hundreds of thousands of . . . .
. ) . and functional properties that the machine as a whole must satisfy.
lines of code, and a single bug anywhere in the code could poten- . . 2
. . We use automated techniques such as model checking and satisfia-
tially cause votes to be lost, misrecorded, or altered. As a result, . . . o ;
bility solving to verify that our Verilog implementation meets these
specifications. We emphasize that we apply formal verification to
the actual code that is executed, not just to a high-level abstract
Permission to make digital or hard copies of all or part of thisrkafor model. One of the contributions of this work is to demonstrate that
personal or classroom use is granted without fee providatiabpies are  formal verification of voting machine logic is feasible.
not made or distributed for profit or commercial advantage aatidbpies In addition, we use systematic manual testing to check that the ma-
bear this notice and the full citation on the first page. Toycojherwise, to chine will behave on election day in a way consistent with voter
republish, to post on servers or to redistribute to listguiees prior specific expectations. Verifying this with formal methods is challenging,
permission and/or a fee. because it is difficult to formally specify how a voter might expect
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Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00. the machine to behave. Instead, we assume that an observant hu-

Electronic voting has brought with it concerns about reliability, ac-
curacy, and trustworthiness. A challenge with using technology to
run elections is that it is difficult to be sure that a complex computer



man tester can recognize incorrect behavior if it should occur (e.g., In order to validate a voting machine and guarantee its correctness,
if the voting machine records a vote for a candidate the tester did we need to formalize the specifications and properties that we are
not select, the tester will detect this fact). We generate a set of teststrying to prove. We focus on four verification goals:

that, in combination with the formal verification, are provably suf- 1 Each individual component of the voting machine must work

ficient to explore all possible behaviors of the machine, and we em-  correctiy (i.e., meet its specification) when considered in isola-
ploy human testers to systematically check that the machine works  jgp:

correctly in these tests.

Testing is well-suited for checking election-specific behavior, such
as that the machine is properly configured for this election with
the correct set of contests and candidates. However, a limitation of
conventional testing is that exhaustive testing takes too long (e.g.
exponential time), so in practice testing can only find bugs; it can-
not guarantee their absence. Perhaps surprisingly, we show that™
this limitation of testing can be eliminated if testing is combined
with a limited amount of formal verification and if the machine is ) . . :
designed appropriately. In particular, we show that for an election record votes in a way consistent with what a typical human voter
with N contests in which each contest involves selecting one out would expect.

of k candidates, we can verify correctness with j0§kN) tests, The first three are properties of the voting machine’s design alone
instead of the2 (k™) tests exhaustive testing would require. and thus can be verified once and for all, without any election-
The kind of voting machine that we focus on in this paper is known SpeCiﬁC information. The fourth is eleCtion'SpecifiC and, in our
as a direct-recording electronic (DRE) voting machine. A DRE approach, must be verified separately for each election.

Voting machine is one where voters interact with the machine to To enable verification of the first three goals above, our SpeCiﬁca-
make their selections and then the votes are recorded electroni-tion includes the following three parts:

cally. The most familiar example is a touchscreen voting machine, e for each component of the voting machine, a formal specifica-
where the voter interacts with a graphical user interface displayed  tion of the desired behavior of that component;

on the screen by software running on the voting machine. The voter o hehavioral properties of the voting machine, specified as state-
presses at various locations on the screen to register her selections, ments in some formal logic; and,

and the voting software records the voter's selections once she is o stryctural properties, specified as constraints on which input vari-
ready to cast her ballot. DREs are widely deployed throughoutthe  gpjes and state-variables each state-variable can depend upon.
US: for instance, in 2008 DREs were used by approximately 33%
of registered voters [2].

DRE’s are commonly thought to be large, complex machines, but
we demonstrate that a small finite-state machine is sufficient to
build a functional DRE. Our design is a finite-state machine that
implements a bare-bones, stripped-down DRE. We implement the
machine directly in hardware, in custom Verilog code, so that there
is no operating system or runtime to verify. At present, one limi-
tation of our implementation is that it supports only the minimum
functionality needed to conduct an election, and does not support
many features typically found in today’s deployed DREs. How-
ever, using this stripped-down version helps to enable verification
and has the added benefit that the complete state machine can b
“held in your head”, allowing for better design decisions than can
be commonly achieved in commodity software.

In order to deem an electronic voting system secure, one must con-
sider everything from the machine on which users make their se-
lections and the tabulator that counts votes to the poll workers on
election day and the layout of the polling place [16]. Our goal in
this work is to provide a provably correct electronic voting machine
that can provide a foundation for secure elections. We do not claim
that a provably correct voting machine is sufficient for a secure vot-
ing system, but it is certainly necessary.

The paper is structured as follows. We mathematically specify the
intended behavior of the machine in Section 2. We describe the
design principles and architecture of our voting machine in Sec-

2. When these components are composed, the resulting machine
must satisfy certain behavioral properties that we would expect
a correct voting machine to satisfy;

3. The voting machine must be structured in a way that makes our

use of systematic testing sound; and,

When configured with a particular election definition file, the

voting machine must display and allow selection of candidates

in accordance with the election definition, and must behave and

Sections 3.2, 3.3, and 3.4 formalize these parts of the specifica-
tion. In our approach, these are verified using formal verification
techniques, namely, model checking [7] and satisfiability check-
ing [31].
This leaves the question of how to formalize our fourth verifica-
tion goal: that the voting machine must behave consistently with
human expectations. This is much more difficult to cleanly specify
in a precise, mathematical manner. For instance, if there is a rect-
angular region on the screen that displays “Thomas Jefferson” in
some readable font, a human might expect that pressing that por-
tion of the screen would select Jefferson, causing Jefferson’s nam
0 be highlighted and eventually causing a vote to be recorded for
efferson if no other selection is subsequently made in this con-
test. However, because it involves semantic interpretation of the
contents of a particular screen image by a human it is not clear
how to specify this expected behavior in a precise, mathematical
fashion. For instance, given a bitmap image, mechanically rec-
ognizing which portions of the screen a human would expect to
correspond to a touchable region might require non-trivial image
processing; moreover, mechanically determining that the touchable
region should be associated with Thomas Jefferson might require
OCR and other complex computation. Formalizing these kinds of
human expectations in a formal logic would be horribly messy, and
probably error-prone as well.
We take a different approach: we involve humans in the validation
process. In particular, we ask human voters to cast test votes on the

tion 3 and then discuss in Sections 5 and 6 how we formally veri- i hine duri lection testing. We ask them to check
fied that the components of the implementation meet their specifi- voting machin€ during pre-election testing. e ask them 1o check
that the machine seems to be working correctly and recording their

cations. Section 7 explains how we use systematic testing to check otes accurately. We assume that if the machine behaves in a wa
that the whole machine behaves as desired, when these component\é u Y. . ! : Ves in a way

are put together. Finally, we conclude the paper with a discussion Inconsistent W't.h their expectations, they will notice and complain.
of lessons learned. Consequently, if the voting machine passes all of these tests, then

at least we know that the voting machine has behaved in a way
consistent with human expectations during those tests. We assume

2. SPECIFICATION



the voting machine will be used in the election only if it passes all we assume that all humans will interpret any given screen image in
of these tests. the same way, and thus a single function suffices; usability issues
In addition, we formally verify that the voting machine behaves are outside the scope of this paper. In particular, we assume that
deterministically. This ensures that the voting machine will behave testers will interpret screen images in the same way as voters. We
the same way on election day as it did in pre-election testing. So, make no attempt to speciff/formally. Instead, we devise a set of

if a real voter interacts with the machine on election day in exactly tests that suffice to check that the screen images produced by the
the same way as some tester did during pre-election testing, thenvoting machine will be interpreted by humans in a way that accu-
we can be confident that the machine will behave correctly and will rately represents the internal state of the machine, no matter what
record the voter’s vote in accordance with the voter’s intentions. I may be. The assumptions mentioned above cannot be mathe-
However, this alone is not enough to provide useful guarantees in matically proven; rather, they serve as a way to make precise what
practice, because the number of tests needed to exhaustively test alissumptions we do and do not make about the nature of human
possible machine behaviors is astronomically large. For instance,expectations.

in an election withN contests an@ choices in each contest, the  Accordingly, the fourth part of our specification is:

number of different ways to vote (assuming voters are only allowed o 3 formal model of a human’s view of how the voting machine

to vote for a single candidate in each contest)ls an exponential should operate, which we call tispecification voting machine
function of V. Taking into account the possibility to change one’s

selections in a contest as many times as one likes, the number o
ways to interact with the voting machine becomes infinitely large.
Clearly, we cannot exhaustively try all of these possibilities in pre-
election testing: we need something more selective.

fThe fourth verification goal listed above then becomes to verify that
the actual voting machine’s behavior is consistent with the specifi-
cation machine: i.e., that a human will interpret the screen images
produced by the actual voting machine in a way consistent with
Our approach involves conducting many fewer tests: something hoyvt_he sp_e_mflcat!on machine r_nanda_ltes thatits stgte should evolve.
This is verified using systematic testing. As mentioned above, we

like O(kN) tests. We prove that, if the machine behaves as ex- . o .
pected in each of these tests, then it will behave as expected for_prowde formal verification of structural properties of the actual vot-

ovrypossi meracton. O carse, s doss ot ollwingen- 191561 MLER, W1 e it g v s o e
eral: for any fixed set of tests, one can devise a machine that works f iqation b t?/v tests. | g fficient t tee t

correctly on those tests but behaves incorrectly on some other in-Of Navigation between contests, is sufficient to guarantee trace cor-
teraction. We are able to show that if the voting machine has a respondence between the voting machine and the specification vot-

particular structure, then a limited number of tests suffice. ing machine. . . . e .
Very roughly speaking, if the state and behavior for each contest is _In the FeSt of this sectlon,_ we _descrlbe the specification mac_hlne
independent of the state of all other contests, it suffices to choose” detal_l. The formal speC|f|cat|or_1 of each compon_ent, behaworal
a test suite that attains 100% transition coverage in each individ- properties, and structural properties are presented in Section 3.
ual contest and of navigatipn betwefen contests, rather than 100%2 1 Notation and definitions

coverage of the whole voting machine’s statespace. This can be
achieved withO (k) tests per contest, since the state space in a sin-
gle contest is only of siz&(k) (whereas the statespace for the
entire voting machine has sizg(k"Y) and thus would require ex-
ponentially many tests to fully cover).

Therefore, we must verify that our voting machine has the appro-
priate structure needed in order to apply these results, e.g., that it
behaves deterministically and that its state and behavior in each
contest is independent of the state of all other contests. The struc-
tural properties, mentioned earlier and described in more detail in
Section 3.4, are intended to capture these requirements and ensur
that our use of systematic testing is sound.

It is also necessary to formalize what it means for the voting ma-
chine to behave as a human would expect. We model this in two
pieces: a model of human expectations for how the voting machine
should respond to inputs; and human interpretation of the meaning
of each screen image produced by the voting machine. We for-
malize the former by defining specification voting machin&ec-

tion 2.2), which captures our assumptions about how voters will

expect the voting machine to update its internal state in response . .
P 9 P P Button: A (usually rectangular) region on the screen. Touching

to inputs from the voter. The specification machine specifies, for anywhere within this region activates a particular functionality of
instance, how the set of candidates currently selected should be Up-theymachine The corregs onding part ofpthe screen image isyoften
dated when the voter presses a button. However, the specificationd ioned ) ide th P gp f a physical b 9
machine does not specify what kinds of screen images should be esigned to provide the appearance of a physical button.
produced by the voting machine: it is solely concerned with the Next we provide definitions for the transducers that make up the
evolution of the internal state of the machine. specification voting machine.

Reasoning about the interface provided by the voting machine to

human voters requires us to reason about how humans will interpret  DErFINITION 1. A deterministic finite-state transducer is a

any particular screen image. Therefore, we assume the existence OS-tupIe(I, 0,8, 6, p, sinit) Where

aninterpretation function/ that maps screen images to their hu-

man interpretation (Section 2.3). For the purposes of this paper,

We begin by briefly defining some voting-related terms that are
used throughout the discussion.

Contest A single race, such as President, that a voter will vote on.
Ballot: The physical or electronic representation of all contests that
a voter will be deciding on election day.

Candidate: A choice in a particular contest. The voter will typi-
cally choose from among two or more candidates for each contest
on the ballot.

Voting Session A voter’s interaction with the machine from the
gme they are given a new ballot until the time their entire ballot
IS stored in non-volatile memory, i.e., until the time they cast the
ballot.

Cast Casting a vote refers to the action taken at the end of a voting
session that causes the selections made in all contests to be irre-
vocably written to non-volatile memory. Making a selection in a
particular contest and moving on to the next contesbisconsid-

ered casting a vote.

Selection State The state representing the set of all candidates
currently selected in a particular contest.

e 7 isthe set of input events,
e O s the set of outputs,



2. If the voter presses a button to navigate among contests, the vot-
ing machine will do so appropriately.

3. When the voter casts their ballot, the state of each contest equals
the state of that contest the last time the voter saw that contest’s
screen.

From these expectations we develop a specification voting machine.

Instead of outputting screen images (like the actual voting ma-

(@) Controlled composition (b) Sequential composition chine), it outputs only an abstract representation of what should be
Figure 1: Composition displayed upon the screen. Similarly, instead of receiving as input
. (z,y)-locations where the voter touched the screen (like the actual
e Sisthe setof states off, _ voting machine), the specification voting machine receives only an
® 0:S8 x 1 — Sisthe transition function, abstract representation of the button pressed. This abstract button
e p: S — Qs the output function, and number not distinguish between different locations corresponding
e sint € S is the initial state of\/. to the same button.

We introduce the notion of controlled composition, where we com- The spepification 'machin@ s a de.termilnist!c finite-state trans-

4 Py W and a controller” \;vhose outout ducer with a special struct_ure, <_jep|_cted in Fl_gur_e 2. Conc_eptually,
ggéstiasj}fltrans ]I\JrierThle: -o'L.1t7putA(r)fC determines which trandeL)Jcer 77 operates in two modes in which its operation is respectively de-
; Lot b fined by two transducer8/main and Mcas: Mmain represents the
is _actlve. Inactive transducers produce no output and do not tran-mairl modeof operation, in whichP begins and processes voter
sition between states. We assume thatiés share a common selections, and/castis the cast moden which the voter casts her

!npu'; ?etIA%, anq”trt;at thetlr:jptut Seht.(d: IS dl?omtgromw - Any " ballot and the machine records the vote and resets itself for the next
Input from £y will be routed to whichever transducer IS currently o Mmain is itself the composition ofV + 1 state machines,
active, and any other input will be provided € The output of Muaw My, Ma, ..., My, where Myay controls navigation across

ithe Cr?“:ﬁfs'“?ic Is ;akegifrorm ihe (:u:pu\tliof v%gc:;e\ée::tr?nqsﬂulcer contests, andV/; is the state machine responsible for processing
s currently active. See Figure 1(a) for a visualization. Formally: | o ¢/ contest.
cast

DEFINITION 2. LetC, M, ..., My be deterministic finite-state  Formally, P is the sequential compositidR = Mumain — Meast
transducers, given by Mmainis the controlled compositio®main = (Mnav; M1, . . ., Mn|).

o O = (e, {1 N}, Sc,dc, pe, s and Meastis a transducer with only a single state and a self-loop on ev-
o M, = (L’M 0 S; 5; ,Pi Si’nn)_’ ' ery input.
Supposé€cNZa = 0. Then their controlled composition, denoted DEFINITION 3. P is a 6-tuple(Z, O, Sp, o, p, sinit) Where

(C; M, ..., Mn), is the transducer e 7 is the set of input events from the voter, corresponding to but-
%« init i ini hat the voter can press

To Unr, 0,80 x S1 % -+ x Sn, 6%, p, (s, s sy), tonst '
e O is the set of outputs from the specification machine,

(ZcUZm c 1. N, 07,07, (sC s 81 N)) Ois th f outputs he specificati hi

whered* and p* are defined as o Sp is the set of states of the specification machine,

§*((i,81,...,5n5),b) e ip : Sp x T — Sp is the transition function,

, ) e p: Sp — Oisthe output function, and
_ (0c(i,b), 51, 5N) !f be e, e sint € Sp is the initial state ofP for each voter.
(i,S1,‘..,Si_1,6i(si,b),si+1,H.,SN) ifbe Zy; . . . L

Note that this formulation requireB to be adeterministicfinite-

p(iys1,. .., 8N8) = pi(si). state transducer. It also requires the output to depend only upon the
current state, not upon the input.

The output setD of the specification machine is partitioned into
two kinds of outputs® = OmainUOcast Each element aDmain has

the form(z, s;), where: indicates the current contest andis the

We also use the notion of sequential composition of transducers.
If My, M, are two transducers with common input and output sets
Z, O, andb is another input not ifT, then the sequential composi-

tion My, 2 M, is a transducer that initially begi ti
'Or? 1 — Mz IS a lransducer d"." Inll ally ?glns exeCllJ IRy . set of candidates selected in that contest. This is an abstraction of
When it recew_es_mpub, it immediately transfers control 8/, the information that should be displayed on the screen at that point,
starting at the initial state /2. Equivalently, letC’ be atwo-state 5 js output when the machine is in main mode. Each element of
transducer that begins executing in state 1 and transitions to State(’)casthas the form(s1, . .., sx), representing a record of the votes
2 upon receiving inpuk, and whose output function is the identity  caqt in a1l contests, and is output when the machine is in cast
function. ThenM; LN My = (C; M1, Ma)). mode.

. . . . The input sefZ of the specification machine is partitioned into two
2.2 Specmcatlon VOtmg Machine sets:Z = In UZs. The setZy corresponds to buttons that a

The specification voting machine formalizes how voters will ex- voter can press to navigate between contests, ilzileorresponds
pect the voting machine to respond to inputs from the voter, and to buttons that a voter can press to select or deselect the options
how voters will expect the final votes recorded by the machine to within a contest. We uséy = {next,prev, cast}; next moves
correspond to these actions. Therefore, we start with a list of prob- from contest to contest +1, prev moves from contestto contest
able voter expectations: i — 1, andcast irrevocably casts the voter’s ballot and moves to
1. If the voter presses a button for a candidate who is not already & final screen informing the voter that her vote has been recorded.
selected, then the effect will be to add that candidate to the list of Also we assum&s = {0,1,...,k — 1}, wherek is an upper
selected candidates if this is legal (and nothing else will change). bound on the number of choices in any contest. The events
If the voter presses a button for a candidate who is already se- Corresponds to pressing a button to select/deseleét'tbandidate
lected, the effect will be to remove that selection. in the contest that is currently active.
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Figure 2: Structure of specification voting machineP.

Specification 0fZna. The controllerMyq can be specified for-
mally as follows. Its state set i§l, 2, ..., N}, corresponding to
the set of N contests, withl as its initial state, corresponding to

sees its output on the screen. Furthermore, the transitidd.ta
can cause no transitions in any of thg.

2.3 Interpretation Functions

The touch-screen input-output interface of the voting machine plays
a very important role since it is through this interface that a human
voter perceives the execution of the voting machine.

Consider the output screen images. It is difficult to predict a priori
how a human might interpret any particular screen image. Instead,
we assume that everyone will interpret any screen image output by
the voting machine in the same way, and introduce a fundign
that maps screen images to their abstract content.idfa screen
image, ther/x (z) is defined by the following thought experiment:

the fact that the specification machine starts at the first contest. Itswe imagine showing to a prototypical human; we ask the human

input set is{next, prev}. Its transition function is given by

i+1 ifi< Nandb=next
Onav(t,b) =< i—1 if i >1andb= prev
i otherwise.

Its output function is the identity functiomiay(i) = 1.

Specification ofi7;, the machine for contest we specify
the transducet\/; for an arbitrary contest (for 1 < ¢ < N).
This transducer is implicitly parametrized by two election-specific
parametersk;, the number of candidates in contésand/;, the

which contest this screen is associated with, andde{1, ..., N}
denote the contest they identified; we ask the human which candi-
dates are currently selected in this contest, ang;ldenote the set

of candidates they identify; thefv (2) = (1, s5).

Similarly, we introduce an interpretation functidn that maps a
screen image and an(zx, y)-location on that screen to an input

in Z. I formalizes how a prototypical human would map screen
locations to buttons.

The crucial assumption we make is that everyone—all voters and
testers alike—will use the same input/output interpretation func-
tions. Testing procedures can partially validate this assumption:
we can ask testers to check that each screen image output by the

maximum number of candidates who can be selected at a time invoting machine appears unambiguous, and if the voting machine
contesti. For instance, in a contest where the candidate is entitled ever outputs a screen image whose interpretation is ambiguous, we

to vote for up to 2 candidates, out of a list of 10, we héye= 2
andk; = 10.

A states; of M; is a set of candidates who are currently selected in
contesti: namely,s; C {0,...,k; — 1} where|s;| < ¢;; j € s;
indicates that thg™ candidate in contestis currently selected.
The initial state ig), indicating that no selection has been made in
this contest. The input setTs;. The transition function is given by

si U{b} ifb¢ s, b< ki and|s;| <¥;
57;(87;, b) = Sq \ {b} |f b € S;
Si otherwise.

The output functiorp; is given byp;(s;) = (4, s:).

States ofP. Given the structure o defined above, the overall
set of statesSp of P can be written asp» = S x { Main, Cast}.
The setS is in turn partitioned into states @fnay, M1, Ma, ..., My:
S={1,...,N} xS1x---xSy. The overall initial state isint =
(so, Main) whereso = (1,0, ...,0). The transition function oP

is constructed fromnay andd; as described in Section 2.1. The out-
put function in cast mode igcas((?, $1,...,Sn) = (S1,...,8N),
and the output function in main mode is constructed fronas
defined in Section 2.1.

Meeting voter expectationghe specification machine mod-

can declare the tests a failure. Nonetheless, we still must assume
that, if all tests pass, then every voter will interpret each such screen
image the same way. Consequently, this assumption cannot be fully
rigorously verified and serves to formalize one of the assumptions
underlying our approach.

Note that the interpretation functiord® and Iz are not known a
priori. We make no attempt to formally specify or explicitly recon-
struct these functions. Instead, we show that if some interpretation
functions exist that describes how all humans will interpret each
screen image (an unverified assumption), then our testing process
suffices.

Formal model.we now define our notion of correctness for the
actual voting machine. Arace of the specification machir® is a
sequencézo, b1, 21, b, . . ., z¢) Of outputs and inputs, wherg €

O andb; € Z. A complete tracef P is a sequencézo, .. ., z¢)
wherezo, ..., zi—1 € Omanandzy € Ocast
Atrace of the actual voting machingis a sequencéo, b1, . . ., 2¢)

of outputs and inputs, where eachis a screen image or cast vote
record and eachy is an(x, y)-location where the voter pressed the
screen; a complete trace is one wheredhe .., z,_; are screen
images and, is a cast vote record.

If 7 = (20,b1,21,...,2¢) is a trace ofA, we definel(r) =
(Io(Zo), II(Z(), bl), Io(zl), 11(21, b2)7 ey Io(Oe)). For a given

I, we say that a traces = (2o, b1, 21, . . ., z¢) Of the actual voting

els the expected behavior of the voting machine for a single voter. machineA is correctif the tracer» of P on the input sequence
Above, we listed several voter expectations on which we based this I'z(zo, b1), Iz(z1,b2), Iz(22,b3) ..., satisfies the relatiorpr =
specification. P was designed so that each of these expectations I(7.4). Equivalently,74 is correct if and only if/(7.4) is a valid
holds by construction. For instance, when the voter casts their bal-trace of P. Let Tr(P) denote the set of traces &f, andTr(.A)
lot they expect the votes cast in each contest to match the voter'sthe set of traces of the actual voting machite We consider the

last view of that contest. This expectation follows from the sepa- actual voting machineorrectif Tr(P) = {I(7) :

ration between thé/;s and by the sequential composition/df,a,
andMcas: The specification states that eakh can only transition

T € Tr(A)}.
Equivalently,A is correct if and only if every feasible trace 4fis
correct. Our testing procedure (Section 7) is designed to prove that

between states when it is active, which is exactly when the voter the actual voting machine is correct.



3. DESIGN

We designed and implemented a prototype voting mackine

this section we describe the details of that design. We start with an
explanation of the organization of the voting machine followed by a

full specification of each module in the machine. We then describe
the behavioral and structural properties of the composition of those
modules. These properties help us verify tHat equivalent tdP.

3.1 Component Level Design

We use a LCD touch screen as the user interface to the voting ma-

chine. The(z,y) coordinates corresponding to a user’s touch on
the screen are the input to the voting machine. The output is the
image displayed on the screen. In addition to the voter interface,
the machine interfaces with non-volatile memory: it reads an elec-
tion definition file (EDF) from read-only memory and writes the
cast ballot to a separate memory bank at the end of each session.
There is an additional inputeset, which clears all register values

to logic 0. Itis intended thateset will be tied to a keyed mech-
anism that only a poll worker has access to. This allows the poll
worker to prepare the voting machine for the next voter, after the

module iscontest_num, the index of the currently active contest.
This value changes accordingly as the voter navigates from contest
to contestss_enable is set when (and only when) the voter presses

a button that is valid for selecting or deselecting a candidate in the
current contestcast is set when the voter presses thest button

and remains set thereafter, until the machine is reset.

Selection_StateThere is oneselection State module for each
possible contest on the ball@lection_State 0. . . Selection_State 7.
These correspond to the; state machines @?. If an election con-
tains fewer than 8 contests, the remainfegction_State modules

will simply go unused. The state of each moduldection_state,
reflects the selections that have been made in that contest and is im-
plemented as a 12-bit bitmap. The bit at indés set if and only if
thes*" candidate in that contest is currently selected.

The EDF includes a parameter indicating the maximum number
of candidates a voter is allowed to select for that particular con-
test. If the voter tries to select more than the maximum allowed,
selection_state will not change until one of the current choices is
deselected.

Cast. The Cast module is responsible for writing the final values

previous voter has finished. Thus every voting session begins andof the selection state for each contest to non-volatile memory. It
ends with a reset. Resetting the state in this way guarantees thatloes not maintain any state as the voter proceeds through the vot-
one voter’s session can not affect any other session and that everyng session, but onceast is set, the module freezes a snapshot

voter will have the same experience [25].

In our design, a single ballot can have up to 8 contests, labeled 0-7,

of all the selection_state and writes these values to non-volatile
memory. TheCast module corresponds ttlcastin P; the transition

and each contest can have up to 12 candidates. To make the discugdo Cast is triggered when the voter presses thgt button on their
sion more concrete, we will use these parameters, but an implemen-screen.

tation could easily increase them if needed. The full architecture is
shown in Figure 3.

Election Definition File.The EDF contains all the parameters
for a particular election, for example, the list of contests and the

Display. Pvote showed that pre-rendering of screen images could
greatly reduce the complexity of a voting machine [29]. We use
this idea and include in our definition of the EDF a series of bitmap
images for each contest. The base bitmap for a contest shows the

candidates in each contest. The contents of the EDF are used bybuttons for each candidate as well as the navigation buttons. There

three modulesMap, Selection_State, andDisplay. The particulars
of the EDF’s content will be explained in the discussion of those
three modules.

Map. The Map module converts théz, y) coordinate pair of the
voter’s touch on the screen to a sigrial{ton_num, representing

one of 15 logical buttons. For each candidate in a particular contest
there will be a selectable region on the screen. The user touche
somewhere in that region to select the candidate. That region is
called a button. In addition to the buttons for each candidate, every
screen also has the navigation butt@rev andnext, which let

the voter move from contest to contest, andaat button which
allows the user to cast their entire ballot as it currently stands.

In order to know the set dfr, y) coordinates covered by each but-
ton, Map reads a button map from the EDF that provides this infor-
mation for each contest. The input sigahtest_num identifies
which contest is currently active so thetap can apply the cor-
rect mapping. In order foxap to work correctly, the button map
has to be well-formatted; we formulated a precise mathematical ex-
pression defining a valid button map in our work, but intuitively it

corresponds to saying each button is defined by two coordinates,”:

lower left and upper right, and no two buttons may overlap.

By separating out the functionality required to convert(any)
signal to its associated logical button, we are able to more closely
match the structure dP in the remainder of our design. This in
turn makes the verification of our implementation simpler.

Controller. TheController module controls which contest is cur-
rently active. It is analogous t@/na in P. The inputs to the
module aréutton_num, touch, andreset; the outputs areast,
contest_num, andss_enable. The only state maintained by the

is an additional overlay bitmap for each candidate in the contest.
Each of these candidate overlays contains only highlighting in the
region corresponding to that candidate’s button. The screen out-
put is produced by displaying one overlay for each candidate that
has been selected in that contest, on top of the base bitmap image.
When the user presses the cast button a final screen is displayed
indicating that the ballot has been cast.

sTheDisplay module acts as the interface between the electronic vot-

ing machine and the LCD controller. A multiplexor provides the
selection state of the active contest to thieplay module, which
then generates the correct output signals to display on the screen.

3.2 Component-Level Specifications

As part of the design process we fully specified each core com-
ponent so that its behavior under all possible input combinations
was well defined. Once implementation was complete, we were
able to verify it against these specifications (see Section 5). The
one exception was theisplay module; its behavior was well speci-
fied, but we did not formally verify the implementation against the
specification, in part because our prototype’s display module is so
simplified. We briefly summarize the specification for each com-
ponent here.

Map. The touch is set if and only if a touch event occurs (the
voter presses somewhere on the touchscraeaithe touch is within

the boundaries of a touchable button for the current screen as de-
fined by the EDF. if a touch event occurs which causegdheh

to be set then the value éfitton_num will be the logical button
number corresponding to the touchable region pressed by the voter.

Controller. The three output signals should behave as follows:
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Figure 3: Design of the voting machine.

e cast should be set whenever a valid touch fattton_num =
13 occurs. Once set, cast remains unchangedtuaiil is set.

e ss_enable should be low wheneveteset or cast is high. When
neither of those are set thes_cnable should be set when a
valid touch for a candidate selection button is touched.

e contest_num should be low wheneveteset is triggered. The
value of the signal should increment whenever a viadigit but-
ton is touched and decrements if a valickv button is touched.
Otherwise the value efontest_num should remain unchanged.
In addition, thenext andprev buttons must not cause the value
of contest_num to overflow or underflow.

Selection_Statelf ss_selector is high for an instance of the
Selection_State module and the buttonhas been touched, then the
it bit of selection_state will be toggled as long as this does not
cause the total number of bits setsilection_state to exceed the

(o]

. Settingreset clears the selection state for all contests.
. On reset, the current contest number and cast are reset and se-
lection mode is disabled.
8. Once the voting machine entewsst mode,cast is not cleared
until the next cycle of the voting machine beginning withset.
9. Once the voting machine entexsst mode, the selection states
of all the contests become frozen and do not change until the
next cycle beginning witheset.

~

Cast 10. Selection of a candidate and casting of votes can not take place

at the same time.

3.4 Structural Properties

The voting machine is structured to provide several properties, cho-
sen so that testing will suffice to establish the equivalence of the im-
plemented voting machine with the specification voting machine.

Section 6 discusses how we verified all of these properties.

1. The voting machine should be a deterministic finite state ma-
chine.

2. Contests should be independent of each other, i.e., the selection
state of one contest should not have any influence on the evolu-
tion of the selection state of any other contest.

3. Acontest’s selection state after a single transition should depend
only on that contest’s previous selection state, the active contest
number, and whether any selection button was pressed and if so
which one.

4. If a navigation button is pressed, the next active contest number
should depend only on the previous active contest number and
which button was pressed. Otherwise, the active contest number
should not change.

5. For any fixed EDF, when in main mode (i.e., before the ballot
is cast), the output screen should be a deterministic function of
the active contest number and the selection state of the current
contest; moreover, this function should be bijective.

6. The final memory storing the selection state should be com-
pletely determined by the selection states of the contests before
cast.

maximum number of candidates that can be selected in this contest.

Cast. In our prototype we usenemory to model the cast vote
record that is stored in non-volatile memory. Whest is initially
triggered, we writeselection_state[i] into memory,, for eachi;
thereaftermemory remains unchanged.

3.3 System-Level Behavioral Properties

4. IMPLEMENTATION

We implemented the above design in Verilog, a hardware descrip-
tion language which describes a circuit. We synthesized our imple-
mentation onto actual hardware, namely, the Altera FPGA, Nios Il

Embedded Evaluation Kit, Cyclone Il Edition.

Our implementation differs from the design in one respect: our

We identify a number of properties pertaining to the behavior of ¢\rent prototype does not include an interface to non-volatile stor-
the voting machine as a whole. These properties are necessary buége. In particular, while we would expect the EDF and cast vote

not sufficient for correct behavior. See Appendix A for the for-
mal specification of these properties in linear temporal logic (LTL).

records to be stored on flash memory in a finished implementation,
our prototype uses volatile memory (e.qg., registers) to simulate this

Section 5 discusses how we verified these properties against oufinctionality. This represents a limitation of our current engineer-

implementation.
1. Atany given time, no more than one contest can be active.

2. A contest is active if and only if the current contest number is
i

more than the maximum allowed as given by the election defi-
nition file.

4. The selection state of a contest can not change if neitheelector
norreset are set.

ing and is not a fundamental shortcoming of our approach.
This limitation has several implications:

1. In our prototype, the EDF is hard-coded into register arrays.
Map has a register array containing a button map for a partic-

3. The total number of candidates selected for any contest is not  ular election andelection_State has a register array storing the

maximum number of candidates a voter can choose in each con-
test. In a finished implementation, this data might be read in
from removable flash memory.

2. In our prototype Cast writes the cast vote record to a regis-

5. The selection state of a contest can not change if the pressed ter array callednemory instead of to external storage. When

button is not within the set of valid selection buttons. Thus, the
next, prev, andcast buttons cannot affect the selection state
of any contest.

we verify properties about the cast ballot, we verify them on
memory. A finished implementation might write the cast vote
record to external storage, such as a removable SD flash card;



then we’'d also need to verify the interface to the SD card.

. In our prototypeDisplay outputs an extremely simplified screen
image indicating the candidates chosen for the current contest.
As a result, the current screen images would not be usable by
anyone other than the system developers. This limitation exists
because our FPGA has only a limited amount of on-chip mem-
ory available for storage of the bitmap images. In a finished
implementation, the EDF would be read from external storage,
making it possible to store and use high-resolution images.

5. FORMAL VERIFICATION

Using formal verification techniques we show that our implemen-
tation follows our design specifications and satisfies the desired be-
havioral properties. We used Cadence SMV [17], a symbolic model
checker, for verification. The tool includes a Verilog-to-SMV trans-
lator so that we were able to run the verification directly on our
Verilog implementation.

5.1 Component-Level Specifications

As mentioned in Section 3.2, with the exception of thglay mod-

ule, we fully specified the behavior of each component in the ma-
chine under all possible inputs. For all but thiep module, we
used Cadence SMYV to verify that the implementation conforms to
these specifications. Specifically, we used the SMV notion of a
layer, a formal specification written in the SMV language. The
model checker verifies that the implementation refines the layer,
that is, that all possible behaviors of the implementation are consis-
tent with the component-level specification.

We were unable to verify the component-level specifications for
Map using Cadence SMYV, since the large register holding the EDF’s
button map made the state space too large to model check at th
bit level. Instead, we constructed a SMT instance encoding (in
the combination of the theories of uninterpreted functions and bit-
vectors) the assertion that the module’s behavior matches its spec
ification. The memory irMap was modeled as an uninterpreted
function, and the Yices [30] SMT solver was used to complete the
verification. Under the assumption that the EDF is valid, we were
able to verify that théviap module meets its component-level spec-
ification.

5.2 System-Level Behavioral Properties

We formulated each behavioral property from Section 3.3 as an
LTL formula and then ran the SMV model checker to verify the
property holds true for our implementation. The LTL formulation
of each property is given in Appendix A. Deriving the correct LTL
formula for a given property was not always straightforward and
we did not always get it right on the first try. However, the Verilog
code, the SMV layers, and the LTL properties represent three inde-
pendent means of describing our voting machine. Once mutually
consistent, each one provides a crosscheck on the other two an
gives us increased confidence that they are each correct.

6. VERIFYING STRUCTURAL PROPERTIES

Next, we describe how we verified that the implementation of our
voting machine meets the structural properties articulated earlier
(Section 3.4). These properties all involve checking that a vari-
ablewv depends only on some specified $8t = {w1,...,wn}

of variables, and nothing else. In other words, we must verify that

x ¢ W, v is conditionally independent of given W. We verify
this kind of property by formulating it as a Boolean satisfiability
(SAT) problem.

6.1 Approach

The first step is to express the transducer as a Boolean system.
Let’s introduce some notation. We assume there is & sdtstate
variables, so that each valuation of values to these variables corre-
sponds to a state of the system. Similarly, ldte a set of input
variables, and) a set of output variables. For each state variable
s, let the variables’ denote the previous value ef let S’ denote

the set of these variables. Then we can write the transition rela-
tion as a functiory, which expresses the state as a function of the
previous state and the input via the relati§n= §(S’, I). (This

is shorthand fos; = 6;(sh,..., sk, 41,...,4¢) fori = 1,... k,
assumingS = {si1,..., s} andl = {i1,...,4,}.) Similarly, we
assume the output function is modelled as a fungtiona the rela-

tion O = p(S). Thus, we can model the transducer by the formula

#(S,8", I,0)= S=4§(S",I)ANO = p(S).

Now suppose we wish to check that state or output varialiea
deterministic function of a sét” of state or input variables. Let
S1, S2 be two copies of the state variablds, 1> be two copies of
1, andO1, O be two copies 0O. Consider the formula

w(sh517[1701732755712702) =
¢(5175£711,Ol)/\¢(S275’§»I2702)/\
v15£v2/\Vw€W.w1:w2.

Effectively, we make two copies of our model of the system. We

éhen check whether it is possible foito take on two different val-

ues in the two copies, while all variables i take on the same
value in both copies; the answer reveals whethdepends deter-
ministically uponW. In particular,u can be expressed as a deter-
ministic function of W (v = f(W)) if and only if ¢ is unsatisfi-
able. Figure 4(a) illustrates this idea. This approach to checking
dependence is similar to the technique of using self-composition
for checking information flow [26]. The key idea is to formulate
non-interference as a 2-safety property.

6.2 Application

We verify the structural properties from Section 3.4 by checking
deterministic dependence properties. For instance, to help verify
structural property 4, we verify that the active contest number de-
pends deterministically upon the previous contest number and the
button pressed.

We applied the approach sketched above to the Verilog implemen-
tation of our voting machine, using the Beaver SMT solver [4, 13]
to check satisfiability.

JVe illustrate some of the results of our dependency analysis in Fig-

ure 4(b). We draw an edge from state/input variable state vari-
ables if the value ofs after a single transition depends on the value
of r before the transition. If there is no edge fronto s, then
the new value o does not depend upon the prior valuerofWe
excluded themap andDisplay modules from this figure for clarity,
and so the relevant input variables aeeich and button_num,
and the state variables are thdection_state[i] andmemoryli]

for each contest as well ascontest_num. We include the se-
lection state for two examplar contests:lection_state[i] and

v can be expressed as a deterministic function of the other vari- selection_state[j] (wherei # j7), to help demonstrate the inde-
ables:v = f(wi,...,wy), for some functionf, or in shorthand, pendence between contests.

v = f(W). Put another way, we want to check thatletermin- We applied dependency analysis to the entire machine and to every
istically depends o/, and onlyWW, i.e., for every other variable module. For instance, we verified that theection_state for a
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Figure 4: Checking independence and deterministic dependence

contesti is independent ofelection_state for any other contest. may depend upon the previous valuesefection_state[i] but not
Also, memory for contesti depends only on theclection_state upon the previous value of any othetlection_state[j], as as-

for the same contest and is independent of any other contest.serted in structural property 3. The structural properties plays a
Thus, we were able to verify the independence of contests from very important role in testing the voting machine, as discussed in
each other. For the display module we verified that the current the next section.

display is abijective function of contest_num and the current

selection_state when in main mode. This bijectivity will be im- 7. TESTABILITY

portant when we discuss testing in section 7. In addition, we veri-
fied Map is dependent only on its explicit input signals and contains
no non-deterministic behavior. In this way, we were able to verify
all the structural properties specified in Section 3.4.

We describe how systematic testing is used in conjunction with the
formal verification performed earlier to ensure that the input-output
behavior exhibited by the actual voting machine is identical to that
exhibited by the specification voting machine.

6.3 Structural Decomposition Specifically, our goal is to give a testing protocol such that if all

We also verify that the Verilog implementation takes the form of :ﬁ)sr:sngasisé V:ﬁaﬁgnc(?;cgﬁgfr;ﬁtfz Cuci)\;';g:‘lta;ftsz;ne?iClzr;tiiﬁco-f
a controlled composition of finite-state transducers, as defined in T q PP

Section 2.1. In particular, we show that it can be expressed in thethe interpretation functiod to traces ofA.

form (Mpay; M1, . .., Mn) =5 Mcas, augmented with a transition 7.1 Preliminaries

onreset back to its initial state. We are concerned with testing finite-length behaviors of the voting

. > " . ,
We do this by showing that the transition relatisr= §(5’, I) can machine. Atest input(or justtes) is a sequence of inputs to the
be partitioned into four disjoint cases, representing the four types of specification voting machin@ of the formb:, b, .. . , by Where

transitions that can occur in this controlled composition: navigation by € T\ {cast} for 1 < j < £andb, € Z. A complete test input

(which corresponds to transitions if/na), contest; (transitions (or complete tedtis a test input whose last eleméntcorresponds
M;, for somei with 1 < 4 g _N), cast (the trans_ltlon tM_caston to casting the vote; i.eb, = cast.
cast), and reset (the transition areset). Associated with each  paca|l from Section 2.3 the definitions ifterpretation functions

casex there is a guard,,, which identifies the condition under ;"7 “anq oftracesof the actual and specification voting ma-
which the case is active, a sg} of state variables updated in this  hines We make the following assumption abbgt
case, and an update rule= f(D;,) for each state variable € V.

The state variables not i, remain unchanged := v’ for each AOQ: For a given election definition file (EDF), for every
state variables ¢ V,. We verified that the transition relation can screenz and every(z,y) location on the touch screen,
be written as I7(z, (z,y)) = Map(z, (z,v)).

Onavigatd S, I)  if gnavigard S”, I) In the above statementjap denotes the Map module of. Note

, 8:(S', 1) if g:(S', 1) that we have considered the rangel/gfandMap to be the same;
5(5 ) I) = / : ’ i i i i
Scasl S, 1) if geas(S’, I) strictly speaking, although the ranges are isomorphic to each other,
Sresel ', T) if grosel S, ). they_ ;ould be different sets. N
’ ' Intuitively, a human tester would administer a t€st (b, . . ., bs)

The guards are disjoint: only one of the four guard predicates can by “inverting” the input interpretation functiofr on eactb; to find
be true at any one time. See Table 1. a correspondingz, y)-positiona; to press on. To formalize it a bit

Also, each state variable can be updated by only one of the four more, if the initial screen is, and the first button press in the test
cases:Vnavigate Vi, Veass andVieserare pairwise disjoint. In other sequence %, then we assume that the tester computesuch
words, at each time step, each state variable is controlled by exactlythat Iz(z0, a1) = b1, and then presses the screefuaty)-position
one component. For instaneentest_num can change only dur- a1. The tester then observes the next screen imagez;sdinds
ing navigation,selection_state[i] can change only when contest  a, such that/z(z1,a2) = bs, and presses the screen(at y)-
numberi is active and a selection button is pressed, anahory positionaz. This process continues, yielding a sequefice =
can not change except in cast mode. ai,as,...,a; Of inputs to the actual voting maching

This decomposition helps us to verify the structural properties. For Let 7.4 be the trace exhibited byl on inputT4, and letrp be
instance, we can conclude that the next valugediction_state[i] the trace exhibited by on input7’. As noted earlier, we ensure



by design and formal verification that andP are deterministic, (a) (Selection transitiorjsFor every contest, every selec-

meaning that for an§’, there exists exactly oneq and exactly one tion states; within contesti, and every inpub € Zs,
p. If I(T4) = 7p, we say thatd is correct on tes” or that test there is some trace whefe receives in a state(s, s)
T passes where theith component of is s;.

Intuitively, at each step, the tester will check the output screen to (b) (Navigation transitiony For every contest, and every
make sure that the voting machine appears to have responded cor- inputb € Zy, there is some trace whefe receivesh
rectly, according to their expectations about correct behavior (e.g., in a state of the fornfz, s).

after selecting a candidate, the candidate should be highlighted or
otherwise appear to be selected). After casting their ballot, the
tester will inspect the cast vote record produced by the voting ma-
chine and check that it appears to be correct (i.e., it is consistent
with the selections the tester has made during this test, according

to their interpretation of the test inputs). If any of these checks ¢ jerjon co specifies that a human tester must verify thandP
fail, the human tester will fail the machine; otherwise, the human start with the same selection state.

tester will pass Fhe machine. Baseq upon our assumptions abowCriterion C1 specifies that we must cover all transitions of e&ch
human expectations, as formalized in Section 2.3, we assume tha\/vithin P (for everyi), and all transitions oMpa, within P

the behavior of human testers can be modelled as follows: Criterion C2 ensures that for evety; s;), the tester gets an oppor-

Al: We assume that there exists a single interpretation function tunity to view the output screen for thatas the last step in contest
I = (Iz, Io) such that, for every human tester, the human - This in turn ensures (through properties P2 and P3) that this se-
tester passes the voting machine on #®étand only if it is Iectllon state ofA for pontf_ssti_appears on the cast vote record. TI_1e
correct on test. main purpose of this criterion is to check that the interpretation

function I» is consistent with4’s output function, call itp.4, as

A test suite7 is a set of complete tests. We say tfiapasses if defined by.A’s Display module. Formally,/» must be the inverse

everyT € T passes. of A’s output functionp 4. We know from Property PO thats is

We assume that if any test fails, the voting system will not be used invertible, and that in contestit is only a function of(s, s;), not of

in an election. Therefore, we wish to identify a condition Bn anys; fori # j. Thus, effectively, C2 ensures that for evérys;)

so that if every test iy~ passes, then we can be assured #hag pair, the human tester comput@s s;) = Io(pa(i, s;)). The test

correct in the sense defined in Section 2.3: i.e., itis trace-equivalentpasses only if = i’ ands; = s; i.e., only if I» is the inverse of

to P after application of the interpretation function. We identify 4. We formalize this result in Appendix C.

such a sufficient condition i in Section 7.2.

Such a result is only possible if we know that the voting machine 7.3 Main Theorem

has a certain structure. We rely upon the following properties of \we now state our main theorem that shows how our test coverage
the actual and specification voting machines: criteria and results of formal verification combine to ensure trace-
PO: The output function of the voting machine is a bijective func- €duivalence o and’ (up to an application of). .
tion of the contest number and selection state of the current R&call from Section 3.2 that is correctiff Tr(P) = {1(7) : 7 &
contest. Tr(A)}.

P1: The voting machine is a deterministic transducer. ) ) o
P2: The state of a contest is updated independently of the state of THEOREM 1. Consider a test suitd” that satisfies coverage

C2: (Output Screen Coveragé&or every contest and every se-
lection states; of P within contest;, there is some trace of
P wherethe last transitionwithin contesti ended ats; and
then at some point thereaft®rreceives theast input.

other contests. criteria CO—C2. Then7 passes if and only il is correct.
P3: If a navigation button is pressed, the selection state remains
unchanged. The “if” part of the above theorem follows trivially. For brevity, we
P4: If a selection button is pressed, the current contest number only sketch out the proof of the “only if” part here, and include the
stays unchanged. full proof in Appendix C.

PROOF (sketch) Briefly, the proof works by induction on the
length of the input sequence to the voting machine.
The idea is as follows. Consider an arbitrary input sequénte
A. Due to determinism, we know that there is a single trag®f
AonT. Correspondingly, we can extract the sequeheey ), the
P5: The electronic cast vote record that is produced when we cast sequence of button presses forandP’s tracerp.
the ballot is an accurate copy of the selection state for each Due to coverage criterion C1, we know that each transitiorsin
contest. for each(i, s;) pair, have been covered by some test. We case-split
on the input supplied on this transition and show that in each case,

Property P5 has been formally verified under the assumption that e \erified properties PO-P5 ensure that the contest numbers and
the machine’s record of the cast vote is correctly output on persis- g jaction states ifi(7.4) are identical to those inp. [

tent storage (e.g., paper) for the human to check.
7.2 Coverage Criteria 7.4 A Sample Testing Protocol

We present one way to meet the coverage criteria CO-C2 stated

above. We assume that it is possible to provideat input from

any screen of the voting machine. This is clearly possibleFfor

CO: (Initial State CoverageThere is a test in which, from the ini- by definition. It is also possible in the voting machine we have
tial output screeny, P receives theast input. designed.

C1: (Transition Coveragge The testing protocol builds upon the following ideas:

These five properties have been formally verified for as de-
scribed in Sections 3, 5 and 6. F#&, properties PO-P4 follow
from the specification given in Section 2.2.

In addition, we require another property.df

We say that a test suitg satisfies our coverage criteria if the re-
sulting set of traces dP satisfies the following conditions:



1. Due to properties P2—P4, we can cover transition&/gf, and independence of voter sessions [25]. We borrow the idea of using
eachM; by separate tests. Note that transitions can be parti- resets for independence. Also, Yee et al. proposed pre-rendering
tioned into two sets depending on the inputs labeling those tran- of the user interface as a technique to reduce the size of the TCB,
sitions (inZs or Zy). and showed that this makes it possible to build a voting machine

2. Each trace makes selections in at most one contest. For eactwith a rich Ul in only 300-500 lines of Python code [27-29]. We
i and for each transition af/;, there is a trace that makes no adopt the pre-rendering approach to simplify interpretation of user

selections in any contest other thaigsimply following next inputs and generation of screen images. These systems were built
button presses to reach contésand at some point follows this  in a general-purpose programming language and thus rely upon the
transition inM;. correctness of an OS, language runtime/interpreter, and language
3. Similarly, for each transition oM.y, we explore the shortest !lbrarlgs; in contrast, because our system is implemented directly
trace that ends in that transition and thetrat. in Verilog, we eliminate the need for these elements (although we

trust the tools that synthesize a circuit from Verilog) and thus fur-
) ther reduce the size of the TCB. More recently, others have built a
1. Supply the input sequencesrév), (next), (next,prev), voting machine on a FPGA platform [22]. However, none of these
(next,next), (next,next, prev), etc., each followed by a  systems were subjected to formal verification.
cast, and then check that the correct output is received. Each gy yse of determinism to help verify complex, application-specific
of these tests contains 0 f + 1 nexts, followed possibly by properties was inspired by other work on verification of functional
aprev, followed by acast. These tests cover the transitions of ity [10].

Mhav, @nd in particular, note that they satisfy coverage criterion \Many authors have explored the use of independent, orthogonal

Operationally, human testers would do the following:

CO. ForN contests, there ax@(NV) tests of this form. mechanisms to verify the vote totals. Today, one widely deployed
2. Recall that in contest, the selection stats; is a sets; C example is the use of a voter-verified paper audit trail (VVPAT)
{0,1,...,k; — 1}, subject to the constraing;| < ¢;, where printer attached to a DRE, combined with post-election audits of
contesti involves selecting at mogt out of k; possible candi- the VVPAT records [3, 12, 14, 18, 19, 21]. However, one recent
dates. For each conteisand for each valid selection statgin study showed that about two-thirds of voters failed to notice er-
this contest, perform the test rors on the summary screen [9], raising questions about the effec-

i tiveness of VVPAT records. Many researchers have studied cryp-
(next’,cr,...,¢;,0,0,1,1,2,2,...,k — 1,k — 1, cast), tographic mechanisms for end-to-end verification that the voter's
wheres; = {c1,...,c;}. Intuitively, we navigate to contest vote has been recorded and counted accurately [1, 6, 8, 20, 23, 24]
usingi nexts; we select the candidates specifiedsywe try These techniques provide a way to detect problems after the fact,
de-selecting and subsequently re-selecting each selected candiPut may not provide any way to recover from some failures and

date; we try selecting and subsequently de-selecting each unsed0 not proactively prevent election-day failures. For instance, if
lected candidate; and finally we cast the ballot. If the machine the voting machine displays the set of options inaccurately—e.g.,
is working properly, de-selecting and immediately re-selecting Inverting the explanation of a bond measure—the voter might be
a candidate (or vice versa) should leave the selection state un-tficked into voting contrary to her intentions (previously dubbed
changed, and thus return one to the same output screen as bed presentatu_)n attack [11_]). Preventmg these_ kinds of failures re-
fore. In the special case of selecting exactlcandidates, i.e., quires verifying the user interface logic to a high degree of assur-
where|s;| = ¢;, selecting an unselected candidate should have @nce, as our work does. On the other hand, our approach provides
no effect, so doing that twice should also have no effect. no way for an ordinary voter to verify, for herself, without trust in
Note that these tests satisfy coverage criteria C1 and C2. If Complex technology, that her vote was recorded and counted accu-
every contest involves selecting at most one candidate (i.e. rately; that requires some form of independent verification. Conse-
6y ==y = 1), there are)(N - k) tests of this form. quently, we believe that our techniques are complementary to end-

. . L . .. . to-end verification measures: it would make sense to use both.
Thus, if the voting machine is correct, this protocol certifies its

correctness witlo(\V - k) tests (assuming, = --- = £y = 1). Analysis of LimitationsOur general philosophy is to pare a

voting machine down to the simplest possible core, and as a re-
8. DISCUSSION sult our design provides only a bare minimum of functionality. We

Related Work There has been considerable prior work on using 40 Support contests, ballot measures, propositions, and any contest
formal verification to build high-assurance systems. In many cases, Nt can be expressed in terms of selecting at masit of a list

the designers manually constructed a model of the system and therP! ¥ Options. We do not support write-ins, straight-party voting,
formally verified that the model satisfies desirable properties. In controlled contests, or cross-endorsement. Some of these are ob-
comparison, we directly verify the source code itself, which pro- SCUre or arguably unnecessary features, but the lack of sugport f
vides higher assurance. Like much prior work on high-assurance Write-ins is a significant limitation. ,

systems, we too have carefully chosen our design to be modularAIso, our system is not as flexible, in terms of the kinds of user

and to reduce the size of the correctness-critical portion of the code INt€rface designs that can be supported, as a system written in a
(the TCB) [15]. general-purpose programming language. We require that contests

We are not the first to propose a new architecture for voting ma- be presented one per screen: contests cannot be split across two
chines, with the goal of greater assurance. The “frog” architec- Pad€s, and one page cannot contain more than one contest. We
ture is based upon separating vote-selection (which is performedcUrrently do not support alternative languages, audio output, some
on one device) from vote-confirmation (which is performed on an- Kinds of accessible input mechanisms (e.g., sip-and-puff devices)

other device), to reduce the trust that is needed in the vote-selectionz00mable display, or high-contrast or reverse-color modes. Many
device [5]. Later, Sastry et al. showed how to provide this func- of these would be needed before our system could be considered

tional separation with a single device, and also introduced the idea@ccessible to voters with disabilities. We do not provide a summary
of forcibly resetting the system after each voter finishes, to ensure screen that voters can use to confirm their selections before casting
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APPENDIX
A. BEHAVIORAL PROPERTIES

We formalize the behavioral properties from Section 3.3 in LTL.

1. At any given time, no more than one contest can be active.
G(ss_selector[0] + - - - + ss_selector|contest number —
1]<1)

2. A contesti is active if and only if the current contest number
is .

G((contest_num = i A ss_enable) <= ss_selector|i])

7. On reset, the current contest number and cast are reset and
selection mode is disabled.
G((reset — X (—cast \ ~ss_enable \ —contest_num))

8. Once the voting machine enterast mode, cast is not
cleared until the next cycle of the voting machine beginning
with reset.

G(reset — (XG(cast — cast U reset)))

9. Once the voting machine entetgast mode, the selection
states of all the contests become frozen and do not change
until the next cycle beginning witheset.

G(reset — (XG(cast — —ss_enable U reset)))

Selection of a candidate and casting of votes can not take
place at the same time.
reset — X G(—(cast \ ss_enable))

10.

B. THE TRANSITION RELATION

In Table 1, we show how each of the component of the transition
relation can be expressed as a set of guarded update rules. Further,
these components are disjoint in their guards. If none of the guards
are true, there is no change in the state of the voting machine. Also,
in one voting cycle between resets, any state variable is updated
only by one component of the transition relation.

C. PROOF OF THEOREM 1

We prove Theorem 1 (from Section 7.3) using induction on the
length of the input sequence.
Our proof makes use of the following lemma.

LEMMA 1. Suppose that a test suite satisfying coverage crite-
rion C2 passes. If there exists a traceAfs.t. its state at an arbi-
trary stepj has contest numberand selection state; in contest
1, and the output screen of at stepj is z, thenlo(z) = (1, s;).

PROOF Denote the output function od by p 4. From Property
PO, we know thap_4 is a function only ofi ands;. Thus,z =

pA(Z7 Si)-

3. The total number of candidates selected for any contest is notBy Coverage Criterion C2, there exists some f€sh which the
more than the maximum allowed as given by the election def- last screen in contestis »z and then some time later the vote is

inition file.

G(reset — XG(total_selections < max_selections))
wheretotal_selections = selection_state[0] + - - - +
selection_state[number of candidates — 1].

4. The selection state of a contest can not change elector
and reset are not set.
selection_state[i] starts low, it suffices to check that it re-
mains low if ss_selector is not set regardless of the value of
reset.

Vi G((—reset \ —ss_selector )\ selection_statel[i])
— X (selection_stateli]))

Vi G((—ss_selector \ —selection_stateli])
— X (—selection_stateli]))

Note that in the case where

cast. By Property P2 and P38, should appear on the cast vote
record as the selection state of tile contest. IfA is correct on
testT', it implies that the selection state Bfin contest at stepj is
alsos;, matching the cast vote record. Moreover, sificpassed,
it must also hold thafo (z) matchesP’s output at steg. Thus,
Io(2) = (i,8:). O

Since we have proved the above lemma for arbitiary;, andz,
the following corollary is also obtained:

COROLLARY 1. If a test suite satisfying coverage criterion C2
passes, thefio is the inverse op.4.

We now return to the proof of the main theorem.

5. The selection state of a contest can not change if the pressed  PROOF (Theorem 1)

button is not within the set of valid selection buttons. Thus,

thenext, prev, andcast buttons cannot affect the selection
state of any contest.
Vi G(—reset \ button_num & Bser )\ selection_stateli]
— X (selection_stateli]))
Vi G((button_num & Bse /\ —selection_stateli])
— X (—selection_stateli]))

6. Settingreset clears the selection state for all contests.
Vi G(reset — X (—selection_stateli]))

Consider an input sequenge= (a1, as, . . ., ar) to A of finite but
arbitrary length. Each; is an(z, y)-location on the touch screen.
Let7a = (20, a1, 21, a2, 22, . . ., z¢) be the trace ofd on this input
sequence. By determinism gf (Property P1), we know that4 is
unique. Also, we have

I(ta) = (Io(20), Iz(20, a1), lo(21), Iz(21,a2), ..., 1o(2¢)).
The sequence of button presses correspondinagito

(Iz(z0,a1), Iz(z1,a2), ..., Iz(z0—1, ar)).



type of guard @) update rule

transition ()

navigation (—reset A touch A —cast

contest_num := fi(contest_num,navigation_buttons)

cast (—reset A touch A cast_button)

cast := f2(cast_button)

final_memoryli] := fs(selection_state(i]) for all ¢

contesti (—reset A touch A —cast

selection_stateli] := fa(selection_stateli], selection_buttons, max_selections)

reset reset

clearcontest_num, cast, selection_state, and final_memory

Table 1: Structural decomposition of the prototype voting machire’s transition function (see Section 6.3)

Let b; = Iz(zi—1,a;). Suppose thatp is the trace ofP on

T = (bl,bz, c. ,bg). Letp = (Zé),bhzi,bz, Ca ,Zé) By de-
terminism of P (Property P1), we know thats is unique.

We wish to prove thatp = I(7.4). In other words, we want to
prove thatlo (z2;) = z; forall i s.t.0 < i < 4.

In fact, we will prove that, in addition to the above equality, the
sequences of selection states.#fand P corresponding to the
above input sequence are the same.
quences are unique due to determinismdoindP.) Specifically,

if (s°,s',5%,...,5s%) is the sequence of selection states.foand
(s*,s",s% ..., s"") is the sequence fdP, thens’ = s7’ for all

j. This result will be used as an “auxiliary invariant” in proving the
statement of the theorem.

Base case:

Consider the empty input sequende= (). Thus,74 = (zo0).
From coverage criterion CO, we know that the t#&st= (cast)
passed. The tracess, 7p are a prefix of that passing test, so it
follows that Io (z0) = z5. Also, sinceT passed, we know that
afterT, the selection state of was(, 0, . . ., 0). Sincecast does

not change any selection state, this was also the initial selection o

state. Therefores = (0, ...,0) = s*".
Inductive step:

Suppose thafo(z;) = zj forall j s.t.0 < j < m. We show that

Io(zm) = z,. For convenience, we abbreviate the selection state

at them — 1th step,s™ !, simply ass.

Let z,,_1 = (i,s;) wherei is the contest number and is the
state of thath contest. The full selection statesis= (s1,...,s~)
where theith entry iss;. From the induction hypothesis we know
that, at then — 1th step,i is the contest number ands the selec-
tion state of bothP and.A.

Recall that,, is the button pressed on theth step. We will case-
split on the form ofb,,,.

e Case lib,, € Zy \ {cast}.
Sinceb,, € {next,prev}, by Property P3 and Assumption
A0, we know that the selection stateremains unchanged on
this transition inl” for both A andP. Thus,s™ = s’ = s.
Suppose thafP transitions onb,, from (i,s) to some state
(', s), as per its definition in Section 2.2. Thus, = (i', s:/).
By coverage criterion C1(b), there exists some passingltest
that covers the transition dP on b,, from some statds, 3)
where theith component o8 is s;. Note thatP’s contest num-
ber would also change t on this transition.
Consider any input,, to A corresponding td,,. Consider
the transition oru,, in A from a state corresponding to contest
numberi and selection staté. Since7’ passed, we know that
the contest number component & (z,,) is i’, matching the
contest number oP.
Thus, by Lemma 1, and sincé’s selection state for contest
iS sy, To(zm) = (i, 841) = 21,.

e Case 2:b,, € Is.
Sinceb,, € Zs, by Property P4 and Assumption A0, we know

that this transition irf” leaves the contest number unchanged at

i for both A andP. Also, by Property P2, we know that this

(We know that these se-

transition can only modify the selection stat€® ands™’ in
theirith components.

Suppose thaf transitions onb,, from (i,s) to some state
(z,8"), as per its definiton in Section 2.2. Lef =
(81,82,--.,85,...,8N). Then,z,,, = (i, s}).

By coverage criterion C1(a), there exists some passinglitest
that covers the transition dP on b,, from some statds, 3)
where theith component of is s,. Note thatP’s selection state
in theith contest would also change ¢pon this transition.
Consider any input,, to A corresponding td,,. Consider
the transition oru,, in A from a state corresponding to contest
numberi and selection stateé. SinceT’ passed, we know that
theith entry in the selection state component/ef(z., ) is s;,
matching the corresponding entry fBx. Since the value of;,
does not depend on the state of any contest other thtmis
implies that thed'’s selection state at step in 74, s™, is s’.
Thus,s™ = s™' = s'.

By Lemma 1, sinced’s selection state is’ and contest number
iS4, Io(zm) = (i, 8;) = 21,

Case 3:b,, = cast.

Consider the finatast input. From the formal verification of
the properties in Sections 3.2 and 3.3, and Assumption AO (that
the tester presses a button thainterprets agast), we know
that the contest numberand selection state of .4 remain un-
changed orcast. Similarly, from Section 2.2, we also know
that (¢, s) remains unchanged otest by P. Moreover, we
know that the final output oP is s, while by design of4 and
Property P5, the cast vote record .df generates an accurate
copy ofs. Thus,Io(zm) = 25, = s.

In all cases, we have shown th&$ (z,,) = z,, and thats™ =
(s™)’. Thus, by induction we have shown that(z;) = z; for all
18.1.0 <14 < ¢ Inotherwordsyp = I(74). [



