
1

End-to-End Automated Exploit Generation
for Processor Security Validation

Rui Zhang, Calvin Deutschbein, Peng Huang, and Cynthia Sturton, Member, IEEE ,

Abstract—This paper presents Coppelia, an end-to-end tool that, given a processor design and a set of security-critical assertions,
automatically generates complete, replayable exploit programs to help designers find, contextualize, and assess the security threat of
hardware vulnerabilities. In Coppelia, we develop a hardware-oriented backward symbolic execution engine with a new cycle stitching
method and fast validation technique, along with several optimizations for exploit generation.

F

1 INTRODUCTION

IN recent years we have seen reports of exploitable vul-
nerabilities in major, commercially available chips [1],

[2]. A study of the AMD errata from 2007 to 2013 finds that
28 of the 301 processor errata are security-critical [3]. The
recent Spectre and Meltdown attacks, and their variants [4],
[5], further demonstrate the severe consequences of flaws
in hardware designs. By using software-only attacks to
exploit vulnerabilities in off-the-shelf hardware products, an
attacker can gain control of the entire system, even if the
system is running only secure software.

The current state of the art for finding errors in processor
designs is to use formal static analysis or simulation-based
testing. However, neither method is complete. We develop
here a third option: software-style symbolic execution for
hardware designs. It systematically explores paths in hard-
ware designs to uncover errors.

Uncovering a potential bug is only the first step during a
security validation process. Hardware designers must then
assess the severity and security implication of each found
bug. Our work takes an end-to-end approach by auto-
matically generating software exploits to expose potential
vulnerabilities. In particular, for each found bug, the tool
generates a sequence of instructions that will trigger the
bug plus a program stub that carries an exploit payload.
The payload stub is generated based on the violated secu-
rity properties. Together, the trigger and the payload stub
form a complete exploit program to demonstrate a possible,
concrete attack.

Generating the exploits not only allows hardware de-
signers to uncover and reproduce vulnerabilities with con-
crete test cases, but also helps them contextualize, analyze
and assess the security implications of a potential vulner-
ability. Furthermore, by using whether an exploit can be
generated as a criterion, hardware designers can validate
patches and refine assertions.

In this paper, we present Coppelia, an end-to-end exploit
generation tool for use during the security validation of
hardware designs. We evaluate Coppelia on three RISC
processors of different architectures. Coppelia is able to find
and generate exploits for 29 of 31 known vulnerabilities in
these processors, and finds 4 new vulnerabilities along with
exploits in these processors.

2 HARDWARE SECURITY VALIDATION

2.1 Validation Approaches

Current practice in hardware security validation at design-
time often leverages assertion based verification (ABV) or
information flow tracking (IFT).

ABV is the form of testing in which assertions added
to the design encode security critical properties. Once as-
sertions are added, simulation-based testing or formal static
analysis may then be used to search for violations of the
assertions. In simulation-based testing, test cases are used
to find whether the assertions will be triggered; but asser-
tion violations that exist along untested paths will not be
discovered. In formal static analysis, the design is unrolled
some number of cycles and the state space is methodically
explored; but the state space grows exponentially which
limits how far the design can be unrolled.

IFT uses dataflow tracking to track the flow of untrusted
network, file and user inputs through memory. It requires
tagging source variables with the appropriate level (e.g.,
“high” or “low”) of information, asserting the correct level
is maintained for sink variables, and deciding when to
conditionally disable the assert or under what circumstances
to allow declassification.

2.2 Security Properties

The security properties for hardware security validation are
often written for use with a particular verification method,
and each method has an associated specification language in
which the properties can be expressed. The security proper-
ties and assertions used in hardware security validation may
be manually or semi-automatically developed.

The security properties that have been developed to date
for ABV make use of existing industry standard libraries for
expressing assertions [11] and are written in a fragment of
linear temporal logic that includes the globally (G) and next
(X) operators. The properties expressible in the temporal
logic are trace properties: individual traces of execution
either satisfy or violate the given property. However, prop-
erties about how information flows through the processor
are not immediately expressible as trace properties.

2

The information flow properties can be handled at
the language level, using typed hardware description lan-
guages. An alternative approach is gate level information
flow tracking in which shadow state added to the hardware
design tracks how data flows. Standard trace properties
expressed over the shadow state can then evaluate how
information is allowed to flow through the original design.
This approach has the advantage that existing designs,
written in current industry standard hardware description
languages, can be validated.

2.3 Symbolic Execution
Software symbolic execution explores a program using sym-
bolic inputs that represent the set of possible values in the
domain of the function. The program executes symbolically
and when a branch statement is reached, execution forks
and explores both subsequent paths. The symbolic explo-
ration of a program can be represented by a tree (Figure 3).
Each path through the tree represents a path of execution
through the code; each node represents a line of code in
the program. The symbolic execution engine will determine
whether any assertions fire in the course of exploration.
The engine also generates concrete test vectors that will
drive execution down a particular path. The test vectors
come from solving the accumulated path constraints on each
path. Symbolic execution is often used for automatic exploit
generation in software by searching the code base for buffer
overflows, format string attacks, and memory corruption.

Applying symbolic execution to hardware designs for
verification and testing has also been studied. STAR [6] is a
functional input vector generation tool combining symbolic
and concrete simulation for RTL designs over multiple time
frames. It provides high range statements and branch cover-
age. PATH-SYMEX is a forward symbolic execution engine
that takes in ANSI-C interpretation of the RTL code [7].

3 COPPELIA OVERVIEW

We design a tool, Coppelia, to provide an end-to-end solu-
tion for validating the security of processor designs. In Cop-
pelia, we develop a hardware-oriented backward symbolic
execution engine with a new cycle stitching method and
fast validation technique, along with several optimizations
for exploit generation.

Coppelia takes an Hardware Description Language
(HDL) implementation of a hardware design and a set of
security-critical assertions as inputs, searches for violations
of the assertions and, if it finds any, generates complete ex-
ploit programs as output. These security-critical assertions
are developed either by manually studying the specification,
or by assertion mining techniques; and if violated, there are
vulnerabilities in the design. Figure 1 shows the workflow
of Coppelia. There are three main steps in Coppelia: pre-
processing, finding violations and building the triggers, and
adding the payloads. We describe the overview of each step
in the following sections.

With the purpose of reproducing bug exploits, Coppelia
focuses more on the sequential depth of the exploration with
backward symbolic execution scheme and Coppelia can be
easily integrated to the current industrial verification flow at
the design time by leveraging software verification methods.

Phase 1: Invariant Generation

SW

Programs

(C, C++)

Phase3: SCI Identification

Phase 4: SCI Inference

Initial

SCI
Final

SCI

Phase 2: Human Expert

Known Processor

Errata (Patches,

English Descriptions)

Security

Critical Errata

Functional

Errata

Processor

Invariants

Processor

Design

(Verilog)

Fig. 1: Workflow of Coppelia. The process labeled BSEE is
the backward symbolic execution engine.

assign a_lt_b = comp_op[3] ? ((a[width-1] & !b[width-1]) |
(!a[width-1] & !b[width-1] & result_sum[width-1]) |
(a[width-1] & b[width-1] & result_sum[width-1])) :
(a < b); // Bug Free Version
result_sum[width-1]; // Buggy Version

Listing 1: A security bug from OR1200 processor Bugzilla.

3.1 A Vulnerability Example
Before we describe an overview of each step of Coppelia,

we first give an example of a vulnerability in the OR1200
processor. Listing 1 shows a security-critical bug (b20) from
the OR1200 processor Bugzilla database (Bugzilla #51). The
code snippet is from the ALU module in the OR1200 pro-
cessor. It shows the logic to determine whether operand a is
less than operand b. The buggy implementation works fine
in most cases, but it fails for the l.sfgtu (set flag greater than
equal) instruction. According to the OpenRISC specification,
the instruction l.sfgtu rA, rB compares the contents of
general-purpose registers rA and rB as unsigned integers.
If the value of the first register is greater than the value
of the second register, the compare flag is set; otherwise
the compare flag is cleared. However, with this bug, if the
highest-order bit in register rA is 1 the compare flag will not
be set, even if rA is greater than rB. An attacker can exploit
this bug to control which branch to execute. The security
bug violates the security-critical assertion: the comparison
flag should be set correctly.

An exploit program to such vulnerabilities typically in-
clude two parts: a trigger and a payload (Figure 2). We use
the security-critical assertions to build the triggering part,
i.e. make the compare flag unset in the supervisor register;
and we append a program stub as the payload part, i.e. use
a branch instruction to redirect the program control flow.

3.2 Preprocessing
To begin, Coppelia translates the RTL hardware design from
an HDL implementation to C++. We use the Verilator tool [8]
for this step and can translate designs written in Verilog or

3

Trigger Payload

Assertion

sfgtu blt… ……

Fig. 2: Illustration of components of an exploit program.

SystemVerilog, although the basic approach would apply
to other HDLs as well. Translating the RTL design to C++
allows us to take advantage of KLEE [9], a mature symbolic
execution engine, and use it as the foundation of Cop-
pelia. After translation, Coppelia adds the security-critical
assertions to the generated testbench and compiles the
newly translated design to LLVM bytecode using the Clang
compiler. We assume that the input signals remain stable
during a single execution of one clock cycle and will only
change at clock cycle boundaries. Although this assumption
can potentially lead to missing corner cases which include
input signals change between cycle boundaries, it ensures
the circuit model converges and improves the efficiency for
the code analysis.

3.3 Building a trigger
The goal of this step is to find a vulnerability, a processor
state in which a security-critical assertion is violated, and
generate a sequence of inputs that take the system from the
initial state to the vulnerable state.

Coppelia achieves these two goals uses symbolic exe-
cution. There are two challenges with applying symbolic
execution to hardware designs. First, the symbolic execu-
tion of a hardware design represents an exploration of the
design for a single clock cycle. However, hardware executes
continously, and security vulnerabilities may only become
apparent many clock cycles after the initial state. Second,
security properties developed for hardware designs capture
the semantics of particular signals and their connecting
logic. Finding violations of these properties is akin to find-
ing a needle in a haystack.

We propose in Coppelia a strategy of backward symbolic
execution. We start from a random state and symbolically
execute the design searching for a path from the random
state to the point of an assert statement. We then sym-
bolically execute the design multiple times, cycle-by-cycle,
backwardly, searching for a path from an assertion-violating
state back to the initial state. Within each iteration, we run
the symbolic execution forwardly. Figure 3 shows our back-
ward symbolic execution strategy. The key insight of our
work is that hardware is well suited to a backward search
strategy for symbolic execution. The specificity of security
assertions in hardware designs make them amenable to
such a targeted search strategy, and the lack of dynamically
linked libraries, pointers, and complex computation makes
the backward strategy possible.

3.4 Adding the payload
To better analyze and assess the security consequences of a
found bug, Coppelia move beyond the mere triggering of

Initial State

Iteration 2

Vulnerable State Iteration 1

Iteration 3

……

……

……

…
…

Fig. 3: Backward symbolic execution strategy: We search for
a path from the last cycle to the first cycle (black arrows).
Within each cycle, we symbolically execute the hardware
design forwardly (green arrows).

Violation

N

N

Y

Y

N

Y

Go to the previous instruction

No Violation

NY

< Bound

Last? Reset?

Exit

Trigger
Instructions

Cycle
Stitching

One Instruction Generation

Fast
Validation

Generate
Feedback

Fig. 4: Workflow of Backward Symbolic Execution

the bug to the generation of complete exploit programs that
demonstrate a possible concrete attack.

We observe that although the triggers may differ, the
same payload is often used across multiple exploits. Thus,
we use similar stubs for similar exploit situations. Coppelia
generates these program stubs according to the category of
the security-critical properties being violated. We classified
the security properties into five classes as in SCIFinder [10]:
control flow related properties; exception related properties;
memory access related properties; properties to ensure ex-
ecution of the correct and specified instructions; properties
about correctly updating results.

4 BACKWARD SYMBOLIC EXECUTION

We describe the workflow of our hardware-oriented back-
ward symbolic execution engine (see Figure 4). In the fol-
lowing sections, we describe each step in detail.

4.1 One Instruction Generation
Rather than start at the processor’s initial state and search
forward, Coppelia uses backward symbolic execution to
start at an error state and search backward. In the first
iteration, the backward symbolic execution engine starts

4

the search for a security property violation from an un-
constrained processor state. It sets both the input and the
internal signals to symbolic values, and then explores the
processor design until it reaches a state that violates the
security property. If exploration completes and no assertion
violation is found, Coppelia returns with a result of no
violation found. Otherwise, the resulting exploration tree
has a leaf node that represents the vulnerable state of the
processor. Associated with that leaf node is the path con-
dition that describes the sufficient constraints on processor
state and input signals such that the processor will move
from the constrained state to the error state in a single
clock cycle. In addition to the constraints, the engine returns
a satisfying solution to the constraints over input signals.
These concrete input values will form the last instruction in
the trigger sequence.

In the next iteration, the engine again starts the search
from an unconstrained processor state. This time the engine
is looking for a state that satisfies the constraints returned in
the prior iteration. If such a state is found, the engine returns
a path condition and a satisfying solution to the constraints
over the input signals. These concrete input values will form
the penultimate instruction.

Iterations continue in this way, searching backward
through trees (searching forward within trees) until we
reach the initial processor state. In the following sections
we discuss the heuristics and optimizations we introduce to
help the search converge toward an initial state.

4.2 Stateful Signals
A naive implementation of hardware oriented symbolic
execution might make all variables of type reg symbolic
because these internal signals can store state. However, the
resulting exploration tree is too large. Using this set-up,
we ran Coppelia for one clock cycle. After 24 hours it had
generated over 1 million test cases – each is a different leaf
node in the tree – but had not triggered any assertions.

We identify those signals that can be safely left concrete
without affecting completeness of the search. First, reg
signals are used in one of two ways in a hardware design: as
part of sequential logic in which case they store state from
a previous clock cycle, or as part of combinational logic in
which case their value depends only on input signals in the
current clock cycle. Using static analysis, we identify those
signals which depend entirely (albeit, possibly indirectly) on
input signals and do not make those symbolic in each iter-
ation of exploration. Second, not all reg signals are relevant
for a particular security property. Only those signals in the
property’s cone of influence are made symbolic.

4.3 Fast Validation
At the end of each successful iteration, the backward sym-
bolic execution engine checks the following: are the con-
straints given in path condition satisfied by the initial state?
If so, Coppelia has found a successful trigger and moves on
to the next phase, appending the payload.

If not, in order to steer the search toward the initial
state, we introduce two rules to eliminate those intermediate
states that are less likely to quickly lead back to the initial
state. These rules form the fast validation step.

The first rule is to steer the search toward the reset state.
Empirically, we found that if the number of variables whose
values are different from the initial state is small, we are
more likely to be able to back track to an initial state. We
define the empirical distance between two states as a count
of stateful registers whose valuations differ in the two states.
At each interation, we set a threshold. If the empirical dis-
tance is above the threshold, we abort the current iteration.
Otherwise, we continue with our backward search.

The second rule targets loops that are preventing back-
ward progress toward the initial state. At each new iteration,
the set of processor states may include states found in
previous iterations, in which case the search may have
entered a loop. Thus, we define a set to keep track of the
states found in previous iterations. In subsequent iterations,
if the state is in this set, we continue the symbolic execution
until we find a new state. Otherwise, we update the set with
the current state.

4.4 Bound Checking
As a final heuristic, Coppelia uses bounded checking to
counter the fact that the sequence of trees may never con-
verge toward the initial state. We set a bound for the exploit
length. If the trace of inputs generated so far exceeds the
bound, Coppelia will exit with a message that it did not
find an exploit within the bound.

4.5 Stitching Cycles
If the length of the sequence is within the bound, we stitch
the current clock cycle to the previous clock cycle and
continue with the next iteration. The sequence of trees must
be stitched together appropriately, making sure a leaf node
of one tree correctly aligns with the root node of a tree
previously generated.

Ideally, in order for the results of the current cycle and
the previous cycle to align, we need to replace the values
of internal signals in node in the previous cycle with the
path constraint obtained in node in the current cycle. This
ensures completeness – we will not miss a possible test
case. However, the complexity of this method is similar to
forward symbolic execution. The more cycles we symboli-
cally execute, the longer the path constraints will be and the
more complicated the queries will be to the SMT solver. In
Coppelia, we adopt a light-weight approach. The insight
is that while each clock cycle is explored symbolically,
the individual cycles can be stitched together using only
concrete values. This sacrifices completeness for speed: after
each iteration, we find satisfying solutions to a subset of
the internal signals and use these conrete values to partially
define the state to search for in the next iteration. This will
no doubt lead us to miss some possible violating paths.
In practice, we can iterate, incrementally replacing concrete
values with constrained symbols if no assertion violations
are found.

4.6 Feedback Generation
If the engine finishes exploring all paths and no violations
are found and this is not the first iteration (Figure 4), it
means a violation was found in previous runs but the engine

5

29

18 16

2

13 15

Coppelia Cadence EBMC

Success Fail

Fig. 5: Generating exploits of collected bugs.

chose a wrong path, either because of the fast validation, the
light-weight stitching, or because it stopped exploring after
finding one violation. In this case Coppelia will go back
to the previous runs and continue the exploration. Cop-
pelia generates a feedback to the engine including which
instruction causes the violation and what test cases have
been explored. When rerunning that instruction generation,
Coppelia only explores the specific instruction and skips the
test cases already explored.

5 EVALUATION

We evaluate Coppelia across multiple CPU designs to study
its efficacy and its practicality. We collected 31 security-
critical bugs of the OR1200 processor from two prior papers,
SPECS [3] and SCIFinder [10]. We collected 35 security-
critical assertions from SPECS [3], Security Checkers [11],
and SCIFinder [10]. We translated 30 assertions for the
Mor1kx processor, and 26 assertions for the PULPino pro-
cessor. The experiments are performed on a machine with
Intel Xeon E5-2620 V3 12-core CPU (2.40GHz, a dual-socket
server) and 62GB of available RAM.

5.1 Generating Exploits for Known Bugs
To evaluate the efficacy of our tool against a ground truth,
we test whether it can find and generate exploits for the
known bugs we collected. These security-critical bugs are
implemented in the OR1200 processor and we test Coppelia
on the core of the processor. We run Coppelia by making
both input signals and internal signals symbolic and execut-
ing backward toward the reset state.

Figure 5 summarizes the results. Coppelia fails to gen-
erate exploits for two cases. For one of them, we did not
have an assertion; for the other one, it is a bug outside of
the OR1200 core. In the remaining 29 cases, Coppelia is able
to automatically generate exploits to expose the known bug
for all of them. Overall, the generated exploits are concise,
frequently only one or two instructions (excluding the size
of the stubs). We can also see that for bugs that involve
multiple cycles, Coppelia can indeed generate a series of
instructions to exercise these deep error states.

For each generated exploit, we verify its ability to expose
a vulnerability by running it on an FPGA board (DE0Nano).
Each exploit contains a generated stub according to the type
of the security assertion triggered by the bug. Listing 2
shows the generated exploit for the vulnerability described
in Session 3.1. The total CPU time required for generating
this exploit is 9m40s.

void foo() {
printf("Attack success!\n"); // Payload

}
int main() {
gotoUserMode(); // Payload
asm volatile (// Trigger
l.movhi r16 0x8000;
l.nop;
l.sfgtu r16 r0;);

jumpToFoo(); // Payload
}

Listing 2: The exploit program generated by Coppelia.

5.2 Comparison with Model Checking
A current standard for hardware verification is model
checking. In this section, we compare Coppelia against
the commercial hardware model checking tool, Cadence’s
Incisive Formal Verifier (IFV), and against a research tool,
EBMC [12]. We use each tool to look for the known bugs
from Section 5.1 and compare the results with Coppelia. We
add the same constraints in both Cadence IFV and EBMC.
The results are shown in Figure 1.

We found that Cadence fails to find or generate triggers
for 11 bugs and EBMC fails for 13 bugs. All of them are
found by Coppelia. Among these bugs, 8 of them are related
to exception handling for managing privilege levels in the
processor. Although we could not determine the exact rea-
son why Cadence and EBMC fail to find these bugs, we note
that the relevant properties for these bugs all include the
condition (wb insn == syscall). However, both Cadence
and EBMC can find bug b14, which also relies on that same
condition.

The remaining 3 bugs are related to accessing register
files. The OR1200 processor uses two dual-port RAMs for
implementing register files. These two RAMs are written
and read at the same time so that the processor can read
two registers within a single clock cycle. However, we find
that (operand b == 0) is always true when running both
model checking tools. This means data reading from ram b
is always 0, which is incorrect. We suspect that Cadence and
EBMC build an incorrect model for the two RAMs.

EBMC fails to find 2 additional bugs because it fails to
parse assertions with deep hierarchies.

As a tool designed for assertion verification rather than
exploit generation, Cadence IFV only generates interme-
diate results when a property is invalidated. By contrast,
the complete trigger is generated in Coppelia. For example,
there is one bug that allows users to assign non-zero values
to the general purpose register R0. Cadence generates the
single instruction l.addi r0, r1, 0. This instruction will
only trigger the bug if r1 already holds a non-zero value,
which is not the case for the reset state (r1 is set to 0 at
reset). In the traces Cadence generates, a number of signals
are not in the reset state. It is nontrivial for designers to
set the processor to a particular state in order to trigger
the assertion. We found that 12 exploits are not directly
replayable from the reset state. For EBMC, we have similar
results. Although EBMC returns multiple instructions, they
are not always directly replayable from the reset state.

We currently remove the memory from the processor
and only run these tools on the processor core. When adding
the memory back, it took Cadence several hours to build

6

No. Processor Security Property
b1 Espresso Calculation of memory address is incorrect
b2 RI5CY Privilege escalates incorrectly
b3 RI5CY Privilege deescalates incorrectly
b4 RI5CY Jumps update the target address incorrectly

Table 1: New security-critical bugs and exploits found in
Mor1kx-Espresso and PULPino-RI5CY Processor.

the model. It is necessary to rerun formal builds every
time the verilog is changed so this would be a significant
impediment to rapid development of bug fixes. Coppelia
does not require long model building time but it fails to
handle the memory because the queries to the solver are too
long. We have not done optimizations for memory models
but research on optimizing symbolic execution for arrays is
ongoing and could be incorporated in the future.

5.3 Performance
For the 29 bugs for which Coppelia successfully generates
exploits, 18 (62%) out of 29 of the exploits are generated
within 15 minutes, demonstrating that Coppelia can be a
practical quality control tool for hardware vendors. How-
ever, 2 (7%) of the exploits took over 2 hours to be generated.
We find two reasons for the longer time: 1) Coppelia takes
longer to reach the target instruction either because making
internal signals symbolic increases the symbolic execution
states to explore or because the instruction is near the end
of the queue of all instructions to explore. 2) The bug is
deep in the pipeline (in the 4th or 5th stage) and increasing
the pipeline stages can dramatically increase the number of
symbolic execution states. If we run Coppelia for the target
instruction (instead of all the instructions in the ISA), the
time for generating the exploits can be reduced to a few
minutes.

5.4 Finding New Bugs
In this section, we examine Coppelia’s efficacy in finding
unknown bugs on new platforms and architectures. We
run Coppelia on two new processors: Mor1kx-Espresso and
PULPino-RI5CY. The Mor1kx is the most recent implemen-
tation of the OR1k architecture. We evaluate our tool on
the Espresso core which is a 32-bit implementation with 2-
stage integer pipeline and delay slot. The PULPino is an
open-source single-core 32-bit low-power processor based
on the RISC-V architecture. We evaluate our tool on the
RI5CY core, which is an in-order, RV32-ICM implementation
with 4-stage integer pipeline and DSP extensions. Table 1
shows the new security bugs and their exploits we found in
Mor1kx-Espresso processor and PULPino-RI5CY processor.

6 FUTURE WORK

Future work will target scalability and expressiveness. Scal-
ing to larger and more complex processor designs will
require new optimization approaches. Moving beyond as-
sertions to hyperproperties, for example, would allow Cop-
pelia to find property violations related to information flow.

7 CONCLUSION

We have presented Coppelia, an end-to-end tool for ana-
lyzing and contextualizing the security threats of hardware.
Given a processor design and a set of security properties,

Coppelia generates C programs with inline assembly that
exploit bugs within the design. Coppelia is able to generate
exploits for 29 known bugs on the OR1200 processor, and
discovered and generated exploit programs for 4 unknown
bugs across two different processors and architectures.

ACKNOWLEDGMENTS

We thank the reviewers for their insightful comments and
suggestions. This material is based upon work supported
by the National Science Foundation under Grants No. CNS-
1651276 and CNS-1816637, and by a Google Faculty Re-
search Award.

REFERENCES

[1] “Amd processor microcode security update,” https://lists.debian.
org/debian-security/2016/03/msg00084.html, Mar 2016.

[2] “Intel Skylake/Kaby Lake processors: broken hyper-threading,”
https://lists.debian.org/debian-devel/2017/06/msg00308.html,
June 2017.

[3] M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “SPECS: A
Lightweight Runtime Mechanism for Protecting Software from
Security-Critical Processor Bugs,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2015.

[4] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading kernel memory from user space,” in
27th USENIX Security Symposium (USENIX Security 18), 2018.

[5] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[6] L. Liu and S. Vasudevan, “STAR: Generating input vectors for
design validation by static analysis of RTL,” in IEEE International
Workshop on High Level Design Validation and Test Workshop. IEEE,
2009, pp. 32–37.

[7] R. Mukherjee, D. Kroening, and T. Melham, “Hardware Verifica-
tion using Software Analyzers,” in Proceedings of the IEEE Computer
Society Annual Symposium on VLSI (ISVLSI). IEEE, 2015.

[8] “Verilator,” https://www.veripool.org/wiki/verilator.
[9] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex
Systems Programs,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2008. [Online]. Available:
http://klee.github.io/

[10] R. Zhang, N. Stanley, C. Griggs, A. Chi, and C. Sturton, “Iden-
tifying Security Critical Properties for the Dynamic Verification
of a Processor,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2017.

[11] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin, “Security Checkers:
Detecting processor malicious inclusions at runtime,” in Hardware-
Oriented Security and Trust (HOST), 2011 IEEE International Sympo-
sium on, June 2011, pp. 34–39.

[12] D. Kroening and M. Purandare, “EBMC: The enhanced bounded
model checker.” [Online]. Available: http://www.cprover.org/
ebmc/

Rui Zhang earned her Ph.D. from UNC Chapel Hill. Her research
focuses on developing tools and systems for security validation of hard-
ware designs.

Calvin Deutschbein is a doctoral student at UNC Chapel Hill (M.S.
Computer Science 2017) studying specification mining, hardware se-
curity, and assertion based verification.

Peng Huang is an assistant professor at Johns Hopkins University.
His research focuses on the reliability and fault tolerance of computer
systems. He earned his PhD from UC San Diego.

Cynthia Sturton is an associate professor at UNC Chapel Hill. Her re-
search interests lie at the intersection of hardware design, security, and
formal methods. She earned her M.S. and Ph.D. in computer science at
UC Berkeley. She is a member of IEEE and the ACM.

