

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

DAC'11, June 5-10, 2011, San Diego, California, USA
Copyright © 2011 ACM 978-1-4503-0636-2/11/06...$10.00

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

A High-Parallelism Distributed Scheduling Mechanism for
Multi-Core Instruction-Set Simulation

Meng-Huan Wu, Peng-Chih Wang, Cheng-Yang Fu, and Ren-Song Tsay

National Tsing Hua University
HsinChu, Taiwan

{mhwu, pengchih_wang, chengyangfu, rstsay}@cs.nthu.edu.tw

ABSTRACT
Ideally, multi-core instruction-set simulation should run in parallel
to improve simulation performance. However, the conventional
low-parallelism centralized scheduler greatly constrains simula-
tion performance. To resolve this issue, we propose a high-
parallelism distributed scheduling mechanism. The experimental
results show that our proposed approach accelerates simulation by
6 to 20 times, depending on the number of cores.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support Systems

General Terms
Performance, Verification

Keywords
Instruction-set simulator, Multi-core simulation, Parallel
simulation, Timing synchronization

1. INTRODUCTION
The Instruction-Set Simulator (ISS) is already an essential design
tool for system development. As multi-core systems are gradually
replacing single-core systems, the corresponding Multi-Core In-
struction-Set Simulator (MCISS) is also becoming more crucial.
Intuitively, to attain a MCISS, we can use a single-core ISS to
simulate each target core and perform the co-simulation that runs
all the ISSs in parallel to gain simulation performance.

Nevertheless, conventional co-simulation approaches such as
SystemC [19] usually adopts a centralized scheduler to handle
timing synchronization between each ISS, as illustrated in Figure
1(a). In order to maintain timing consistency, centralized schedul-
ing always selects the slowest ISS for execution. Even if it allows
parallel simulation, only one ISS can actually be executed for
most of the time. Therefore, this approach highly limits the degree
of parallelism of a MCISS. Considering the fact that the number
of cores to simulate continues to increase, it is necessary to leve-
rage parallelism to gain better simulation performance from the

computing power of a host multi-core machine.

For better MCISS parallelization, this paper proposes a new dis-
tributed scheduling mechanism. By allowing each ISS to schedule
with others autonomously, as illustrated in Figure 1(b), more ISSs
can run at the same time. Furthermore, according to the characte-
ristics of a MCISS, the proposed technique predicts the possible
timing of future sync points (i.e., the time point for synchroniza-
tion). Based on this prediction, the time spent on synchronization
decisions can be effectively shortened so that our approach
enables high simulation performance for a MCISS.

The experimental results show that as the number of cores in-
creases, our distributed mechanism improves the parallel simula-
tion performance by 6 to 20 times over the conventional centra-
lized approach and attains the high simulation speed at 150 to 600
MIPS (million instructions per second). Hence, it can demonstrate
our effectiveness on a parallel MCISS.

The remainder of this paper is organized as follows. Section 2
discusses related work. The simulation performance under differ-
ent scheduling mechanisms is analyzed in section 3. Section 4
describes the proposed distributed scheduling mechanism. The
experimental results and a brief conclusion are given in section 5
and section 6, respectively.

2. RELATED WORK
In this section, we first introduce ISS technique background and
then discuss how previous co-simulation studies dealt with the
timing synchronization issue.

ISS1

ISS3 ISS4

ISS2

(a)

Centralized
Scheduler

(b)

ISS1

ISS3 ISS4

ISS2

Figure 1. (a) An illustration of centralized scheduling; (b)
An illustration of distributed scheduling.

339

21.1

2.1 Instruction-Set Simulation
In general, there are two major ISS types: interpretive ISS and
compiled ISS.

Like a real processor, an interpretive ISS [1, 2] performs fetching,
decoding, and execution for every instruction. Although the im-
plementation of an interpretive ISS is straightforward, the simula-
tion performance is poor, usually only of a few MIPS.

In order to speed up the simulation, a compiled ISS approach is
proposed [3, 4]. As opposed to an interpretive ISS, a compiled ISS
fetches and decodes all instructions at compile-time. Then, during
simulation (i.e., run-time), only the execution part of instructions
is performed. The advantage of the compiled approach is clear for
cases with loops of repeatedly executed instructions or functions.
In other words, the interpretive ISS performs fetching/decoding
for each instruction regardless of repeated executions, while a
compiled ISS does not. Hence, a compiled ISS performs much
faster than an interpretive ISS, usually by dozens to hundreds of
MIPS.

Nonetheless, for software applications that are not run-time static,
the exact binary codes cannot be specified in advance. To resolve
this issue, a dynamic compiled ISS [5-9] translates only the piece
of codes about to be executed on-the-fly rather than the whole
program at the beginning. For better performance, translated
codes of possible repeated executions can be cached to reduce
translation time. Therefore, a dynamic compiled ISS has both the
advantages of the flexibility of an interpretive ISS and the perfor-
mance of a compiled ISS.

However, when it comes to multi-core simulation, timing syn-
chronization emerges as a critical challenge, as discussed below.

2.2 Timing Synchronization
Timing synchronization is used to keep timing consistency for
ensuring accurate concurrent behaviors of multiple simulated
components. An intuitive approach is to synchronize all compo-
nents at every cycle. This approach is usually named the cycle-
based or lock-step approach [2, 6]. Though it offers accurate si-
mulation, however, the heavy synchronization overheads would
significantly slow down the simulation. Enlarging synchronization
intervals could certainly improve performance, but it would also
result in inaccurate simulation.

In some cases, properly extending synchronization intervals is
helpful. For instance, since the messages communicated through a
bus actually determine the interactions between processors,
WWT-II [11] argues that instead of one cycle, the message deli-
very time to target, or bus communication latency, can be set as
the basis of the synchronization interval. In this way, the target
receiver is guaranteed to be able to process all related arrival mes-
sages before responding in action. Then, accurate simulation re-
sults can be ensured.

If an architecture has a large intercommunication latency, such as
that of the distributed multiple processors system, this enlarged
synchronization interval approach will be efficient. Nevertheless,
the latency of on-chip communication is considerably smaller for
the multi-core processor. Correspondingly, the synchronization
interval becomes too short to be acceptable for a high-speed
MCISS.

In order to attain a fast and accurate co-simulation, partial order
synchronization approaches are proposed [14-16]. The idea is to
maintain correct data flow, i.e., data dependency. In reality, pro-

grams can only influence each other via their shared memory
accesses. As long as the temporal order of all the shared memory
accesses is maintained, consistent data dependencies between
programs will be obtained. To do so, timing synchronization is
only required to perform at each shared memory access. Since the
number of shared memory accesses is considerably smaller than
the number of total execution cycles, light-weight synchronization
efforts allow this shared memory based approach to be more effi-
cient than the lock-step approach. Meanwhile, this approach can
guarantee accurate MCISS simulation results.

Following the discussions above, we know that the compiled ISS
technique plus the shared memory based synchronization ap-
proach can construct a fast and accurate MCISS.

Accordingly, the distributed scheduling mechanism proposed in
this paper is designed for this type of MCISS solutions. For a
better understanding of the performance impact from different
scheduling mechanisms, a comprehensive analysis is provided in
the next section.

3. PERFORMANCE ANALYSIS OF CO-
SIMULATION
Here we discuss the effect of centralized scheduling and distri-
buted scheduling on the performance of co-simulation. Typically,
co-simulation adopts the centralized scheduling mechanism for
timing synchronization [12, 19]. A centralized scheduler is used to
control the execution order of simulated tasks. Although it is easi-
er to implement, the parallelism of simulated tasks becomes high-
ly limited. Conversely, a distributed scheduling mechanism allows
better parallelism by enabling each task to autonomously syn-
chronize with other tasks without using a centralized scheduler.
Details of the two mechanisms are respectively explained and
analyzed below.

3.1 Centralized Scheduling
The centralized scheduling mechanism can be either sequential or
parallel. The difference is that the sequential version cooperative-
ly executes the tasks, so only one task is executed at one time. On
the contrary, in the parallel version, more than one task can ex-
ecute in parallel.

Figure 2(a) shows the timing diagram of a sequential MCISS ex-
ample with centralized scheduling. Here, a sync point is annotated
in front of each shared memory access, as mentioned previously.
When an ISS encounters a sync point, a centralized scheduler will
be invoked to determine the next active ISS. To ensure the tem-
poral order of sync points, it always selects the slowest ISS to run.

To do so, the scheduler keeps a global time using a global clock
while each ISS has a local clock to record its own local time. At
the beginning, both the local clock and the global clock are initia-
lized to zero. An ISS is ready only if its local time is of same val-
ue as the global time.

For sequential simulation, the scheduler cooperatively selects one
of the ready ISSs for execution at a time. For the selected ISS, the
corresponding local time advances along with the progress of
execution. Then, at the next sync point, the executed ISS is
pushed back to a waiting queue and the scheduler selects the next
ready ISS to execute. Once there are no more ready ISSs, the
scheduler will advance the global clock until an ISS becomes
ready.

Note that both the local clock and the global clock represent the
simulated time from the perspective of the target, i.e., target time.

340

21.1

In contrast, the simulation time stands for the time for the simula-
tion to run on the host, i.e., host time. Since the efforts to simulate
various types of instructions may be different, a period of task
execution with longer simulated time does not necessarily con-
sume longer simulation time.
Ideally, we can shorten the whole simulation time by running the
ISSs in parallel. Nevertheless, as illustrated in Figure 2(b), the
major problem with the centralized scheduling mechanism is that
only the ready ISSs can be actually executed at the same time.
This implies that ISSs must have the same local clock time at a
sync point, or they cannot be executed simultaneously. Unfortu-
nately, this case rarely occurs in a MCISS with shared memory
based synchronization, since programs seldom access shared
memory at exactly the same time.

In other words, when the scheduler is invoked, typically only one
ISS is ready. For example, in Figure 2(b), both ISS1 and ISS2 are
ready at the very beginning. Other than that, only one of them is
ready at other synchronization point, thereby leading to low paral-
lelism. As a result, the parallel simulation of a MCISS with cen-
tralized scheduling barely improves simulation performance in
practice.

Next, we will investigate how a distributed scheduling approach
can enhance parallelism.

3.2 Distributed Scheduling
The high parallelism of distributed scheduling is achieved by al-
lowing each task to do scheduling autonomously. Each task will
track the local clocks of others at its own sync points.

Figure 2(c) depicts the simulation timing diagram of the same
example under distributed scheduling. Similar to centralized sche-
duling, when encountering a sync point, an ISS can safely contin-
ue its execution if it has the slowest local clock. The advantage of
distributed scheduling is that as long as an ISS has the slowest
local clock, it can immediately continue the execution without
further waiting for the scheduler.

For instance, when ISS1 is suspended at the given sync point, i.e.,
20, it will resume right after it finds that ISS2 also advances its
local clock to 20.

In contrast, for centralized scheduling, the decision for an ISS to
continue execution must be made by the centralized scheduler.
Since the centralized scheduler is invoked only when an ISS en-

Figure 2. (a) The sequential simulation timing diagram with centralized scheduling; (b) The parallel simulation
timing diagram with centralized scheduling; (c) The parallel simulation timing diagram with distributed scheduling.

Simulation Time

(a)

ISS2

ISS1 20

15

15

10

Scheduler

Global Clock

(0, 0, 0)

Local Clock1
Local Clock2

(0, 20, 0) (15, 20, 15) (0, 20, 15) (20, 20, 25) (15, 20, 25) (20, 35, 25) (25, 35, 25)

Ready: ISS1, ISS2 Ready: ISS2 Ready: ISS2 Ready: ISS1 Ready: ISS2 F
in

ish
 T

im
e

10

(25, 35, 35) (35, 35, 35)

Ready: none

Simulation Time
Low parallelism

ISS2

ISS1 20 15

10

Scheduler

(0, 0, 0)

(0, 20, 15)

(15, 20, 15) (20, 20, 25) (15, 20, 25) (20, 35, 25) (25, 35, 25)

Ready: ISS1, ISS2 Ready: ISS1 Ready: ISS2

(b)

(0, 20, 0)

1015

Ready: ISS2 F
in

ish
 T

im
e

(25, 35, 35) (35, 35, 35)

Ready: none

Simulation Time

ISS2

ISS1 20

(0, 0) (20, 12) (20, 15)

15

(27, 25) (20, 20)

(c)

Local Clock2 Local Clock1

1015

(35, 32)

10

(35, 35)

F
in

ish
 T

im
e

Note: both the local clock and the global clock represent the simulated time from the perspective of the target,
i.e., target time. In contrast, the simulation time is the time for the simulation to run on the host, i.e., host time.

Sync point Scheduling ISS simulation

341

21.1

counters a sync point, a waiting ISS still has to wait until the next
invocation of the scheduler, even if it is indeed the slowest one.

Obviously, distributed scheduling allows the ISSs to attain a high-
er parallelism degree than centralized scheduling does.

The following section will describe how to further optimize dis-
tributed scheduling based on the characteristics of the compiled
MCISS using shared memory based synchronization.

4. THE PROPOSED DISTRIBUTED
SCHEDULING MECHANISM
Our research shows that we can gain further performance im-
provement by relaxing the requirement that an active ISS at a sync
point can advance its execution only when it is the slowest ISS
under the distributed scheduling approach.

Following the same scheduling idea of the shared memory based
synchronization approach, the simulation result is still correct if
the temporal order of all shared memory accesses (i.e., sync points)
is maintained. In other words, an active ISS can safely proceed as
long as others’ next sync points are timed later than that of the
local active sync point, even though it may not be the slowest ISS.
This observation provides a performance enhancement opportuni-
ty for the distributed scheduling of a MCISS.

To implement this idea, the temporal relationships of sync points
must be determined first. Unfortunately, it is impossible to identi-
fy a sync point’s exact execution time until it is actually executed,
since normally programs contain uncertain execution paths. Nev-
ertheless, a prediction to the next earliest possible sync point is
feasible and can be used to greatly improve the scheduling per-
formance.

4.1 Static Prediction of Future Sync Points
Here, we propose an approach to make the best-case prediction of
future sync points by statically analyzing the control flow graphs
(CFG) of a simulated program. The CFG of a simulated program
can be obtained at the translation phase of a compiled ISS.

With a CFG, the shortest path from one point to any other point is
determinable and the shortest path can be used to estimate the
best-case execution time. Based on this idea, the following algo-
rithm is devised to identify the best-case execution time from any
given point p to its next possible sync point.

PREDICT_NEXT_SYNC_POINT(p)

DEFINITION
p : a given point
blockx : the basic block that a particular point x belongs to
headx : the head of blockx
tailx : the tail of blockx

TIMEbcet (x) : for a particular point x, the best-case relative
execution time from headx to x.

1
2
3
4
5
6
7
8
9

if p’s next sync point s is also within blockp

then return TIMEbcet (s) - TIMEbcet (p)
bcet := infinite
for each succeeding basic block blocki of blockp do
 bcet’ := PREDICT_NEXT_SYNC_POINT(headi)
 if bcet > bcet’
 then bcet := bcet’
end for
return bcet + TIMEbcet (tailp) - TIMEbcet (p)

For illustration purposes, assume we are examining the head of
basic block b1 in Figure 3. To predict its next possible sync point,
we first check whether the next sync point belongs to the same
block. If it does, the relative execution time to the sync point can
be calculated directly; otherwise, we traverse its succeeding
blocks to make a best-case prediction following the shortest path.

For this case, we have to check b1’s succeeding blocks, b2 and b3,
in which b2 has sync point s1, but b3 has no sync point. Hence, we
will recursively check succeeding blocks until reaching a sync
point. In this case, a sync point s2 in the block b4, a succeeding
block of b3 is identified. Then, the two paths, b1 (3) b2 (5) s1
of total delay 8 and b1 (3) b3 (2) b4 (2) s2 of total delay 7,
are compared to find the best-case relative execution time, i.e., 7.

4.2 Dynamic Update of Next Sync Points
In order to allow synchronization, it is necessary to obtain infor-
mation about the execution timing of each ISS’s next sync point.
Ideally, we can make a prediction for each instruction and update
the information after executing one instruction, but this will intro-
duce heavy overheads.

A practical approach is to pre-calculate the best-case delay to next
sync point only at two types of points:

 The tail of each sync point;
 The head of each basic block.

As illustrated in Figure 3, the best-case predictions of the tails of
sync point s1, s2, and s3 to their next possible sync point are 4, 3,
and 9, respectively. In addition, the best-case predictions of the
heads of basic block b1, b2, b3, and b4 are 7, 5, 4, and 2, respec-
tively.

After encountering these update points during simulation, the
predicted execution timing of the ISS’s next sync point can be
promptly determined summing up its current local time and the
best-case prediction. In this way, every ISS can dynamically up-

Update point

b2
b3

b1

b4

Local time + 7

Local time + 4

Local time + 2

Local time + 5

Local time + 3

the best-case prediction

sync point s2

5

2

3

3

2

Local time + 4

sync point s1

2

Local time + 9

sync point s3

2

Figure 3. The best-case prediction for the next sync
point.

342

21.1

date the latest information about its predicted next sync point.
Based on this information, one can decide whether to wait or con-
tinue execution when encountering a sync point.

4.3 Run-Time Scheduling based on Prediction
To illustrate how to do prediction-based scheduling, Figure 4(a)
shows an example in which ISS2 is encountering a sync point at
the time of interest, 25. Following the original distributed schedul-
ing mechanism mentioned in section 3.2, ISS2 is supposed to wait
for ISS1, since it is ahead of ISS1, which is still at time point 20.
Assume that the best-case prediction to the next sync point of ISS1
is 15. In other words, the actual execution timing is at least 35, so
ISS2’s current sync point (i.e., 25) must be earlier. According to
this temporal relationship, ISS2 can continue its execution safely
without stopping.

Nevertheless, sometimes the best-case prediction may be too early,
as shown in Figure 4(b). For this case, ISS1’s predicted next sync
point is earlier than the actual one, so ISS2 has to wait because of
the false-predicted temporal relationship. Fortunately, as ISS1
keeps progressing, the prediction will be updated to approach the
actual sync point. As long as ISS1’s predicted next sync point
becomes later than the current sync point of ISS2, their temporal
relationship will be correct, and ISS2 can resume its execution
immediately. In contrast, the original distributed scheduling me-
chanism must keep ISS2 waiting until the local time of ISS1 is later

than that of ISS2.

As a result, the proposed distributed scheduling mechanism would
effectively shorten synchronization time in both cases and hence
allow higher parallelism for a MCISS.

In practice, each ISS is implemented in the form of a thread or
process on a host machine. Our synchronization is done by com-
paring an ISS’s local time with the predicted time of the other
ISSs’ next sync points, so the prediction will be stored as global
data or shared data for inter-communication purposes. Since every
ISS can only modify its own prediction and the predicted time is
monotonically increased, there is no need to use a semaphore to
protect their inter-communication. Hence, the cost of checking the
prediction of the other each time is considerably smaller (i.e., a
single memory read access), making the scheduling process effi-
cient.

5. EXPERIMENTAL RESULTS
This section summarizes our experimental results. In the experi-
ment, we combine different scheduling mechanisms into an in-
house developed compiled MCISS.

The setup is as follows. The target architecture for simulation is
AndeStar 16/32-bit mixed length RISC ISA [17]. The parallel
programs Radix, FMM, FFT, Ocean, LU, and Barnes from
SPLASH-2 [18] are used as benchmark test cases. Our host ma-
chine is equipped with an Intel Xeon 2.6 GHz quad-core.

In order to test simulation performance under the maximum paral-
lelism allowed by the host, we evaluate the cases of two and four
simulated cores, respectively. Table 1 shows the performance
speedup against the other three approaches previously mentioned.
Note the shared memory ratio is the number of shared memory
accesses over all the memory accesses.

The first experiment makes a comparison with the lock-step ap-
proach. With the advantage of considerably fewer sync points, the
proposed mechanism outperforms it by a factor of 36 to 54 times.
In general, the benchmark with a lower shared memory ratio leads
to greater performance improvement, since our approach requires
fewer synchronization efforts when the number of shared memory
accesses is lower.

Compared to the same shared memory based synchronization but
under parallel centralized scheduling, our distributed scheduling
mechanism still achieves notable improvements of 6 to 20 times.
Due to our prediction of future sync points, the speedup is even
greater than the maximum parallelism allowed by the number of
simulated cores. Hence, it can demonstrate the high parallelism
achieved by the proposed mechanism.

Table 1. The performance speedup factors of the proposed distributed scheduling against the other three approaches

 Lock-Step Centralized Scheduling
Distributed Scheduling

w/o Prediction

Benchmarks Shared Mem. Ratio 2 Cores 4 Cores 2 Cores 4 Cores 2 Cores 4 Cores

Radix 0.19% 56.1 79.8 4.6 9.9 1.0 3.6
FMM 0.73% 46.9 80.5 3.7 11.2 1.0 2.5
FFT 1.70% 36.2 47.0 3.2 11.1 1.2 4.1

Ocean 1.82% 31.7 44.4 6.3 8.6 1.3 4.4
LU 3.19% 29.4 40.3 4.6 21.3 1.5 8.2

Barnes 14.21% 19.7 33.9 18.5 57.9 6.3 8.6

Average 3.64% 36.7 54.3 6.8 20.0 2.1 5.2

2

falsely-predicted temporal relationship

ISS1

Simulated Clock

ISS2
25

actual next
sync point (b)

Temporal relationship based on the prediction

ISS1

Simulated Clock

ISS2
25

15

the best-case prediction to the next sync point

(a)

20

20

Figure 4. (a) No waiting required if the predicted next
sync point of ISS1 occurs in future time; (b) A falsely-
predicted temporal relationship due to prediction.

343

21.1

Furthermore, in contrast to distributed scheduling without sync
point prediction, as mentioned in section 3.2, the proposed me-
chanism still has 2 to 5 times performance speedup. The en-
hancement becomes significant as the shared memory ratio grows
in general. This is because our prediction method effectively
shortens the waiting time on a sync point. Correspondingly, the
speedup becomes significant if there are more sync points, i.e.,
more shared memory accesses.

Overall, the proposed distributed scheduling mechanism attains
better improvement as the number of simulated cores increases,
indicating that our mechanism enables greater scalability than a
conventional centralized scheduling mechanism.

Figure 5 shows our absolute simulation speed at two and four
simulated cores respectively, which is also sensitive to the shared
memory ratio. The test cases with lower shared memory ratios
tend to reach higher speeds. Given different benchmarks, we can
perform 150 to 600 MIPS, which means that the proposed ap-
proach is feasible for a high-speed MCISS.

In our experiments, the prediction method takes 12.4% extra
translation time. Nevertheless, the total translation time is less
than 10% of the total simulation time for a compiled ISS in gener-
al. Consequently, the overhead due to our mechanism is minor in
terms of the whole simulation.

6. CONCLUSION
In this paper, we have proposed a new distributed scheduling me-
chanism for a parallel compiled MCISS. Our key contribution is
to enhance the parallelism of the MCISS so that the computing
power of a multi-core host machine can be effectively utilized.
Timing synchronization is the bottleneck of parallelism, and the
distributed scheduling with our prediction method significantly
shortens the waiting time an ISS spends on synchronization.
Hence, the proposed mechanism performs 6 to 20 times faster
than conventional centralized scheduling approach. The simula-
tion speed of our approach achieves 150 to 600 MIPS given the
different ratios of shared memory access.

REFERENCES
[1] D. Burger and T. Austin, "The SimpleScalar tool set, version

2.0," in SIGARCH Comput. Archit. News, vol. 25, no 3, pp
13-25, 1997.

[2] P. Magnusson et al., "Simics: a full system simulation plat-
form", in Computer, vol. 35, no 2, pp. 50-58, 2002.

[3] J. Zhu and D. Gajski, "A retargetable, ultra-fast instruction
set simulator," in Proc. of Conference on Design, Automation
and Test in Europe (DATE). pp. 62-69, 1999.

[4] M. Burtscher and I. Ganusov, "Automatic synthesis of high-
speed processor simulators," in Proc. of International Sym-
posium on Microarchitecture (MICRO), pp. 55-66, 2004.

[5] B. Cmelik and D. Keppel, "Shade: a fast instruction-set si-
mulator for execution profiling," in ACM SIGMETRICS, pp.
128-137, 1994.

[6] E. Witchel and M. Rosenblum, "Embra: fast and flexible
machine simulation," in ACM SIGMETRICS, pp. 68-79, 1996.

[7] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and
A. Hoffmann, "A universal technique for fast and flexible in-
struction-set architecture simulation," in Proc. of Conference
on Design Automation (DAC), pp. 22-27, 2002.

[8] M. Reshadi, P. Mishra, and N. Dutt, "Instruction set com-
piled simulation: a technique for fast and flexible instruction
set simulation," in Proc. of Conference on Design Automa-
tion (DAC), pp. 758-763, 2003.

[9] F. Bellard, "QEMU, a fast and portable dynamic translator,"
in Proc. of the USENIX Annual Technical Conference
(USENIX), pp. 41-46, 2005.

[10] J. Schnerr, O. Bringmann, and W. Rosenstiel, "Cycle accu-
rate binary translation for simulation acceleration in rapid
prototyping of SoCs," in Proc. of Conference on Design, Au-
tomation and Test in Europe (DATE), pp. 792-797, 2005.

[11] S. Mukherjee et al., "Wisconsin Wind Tunnel II: a fast, port-
able parallel architecture simulator," in Concurrency, IEEE,
vol. 8, pp. 12-20, 2000.

[12] J. Jung, S. Yoo, and K. Choi, "Performance improvement of
multi-processor systems cosimulation based on sw analysis,"
in Proc. of Conference on Design, Automation and Test in
Europe (DATE), pp. 749-753, 2001.

[13] J. Chen, M. Annavaram, and M. Dubois, "Exploiting simula-
tion slack to improve parallel simulation speed," in Proc. of
international Conference on Parallel Processing (ICPP), pp.
371-378, 2009.

[14] D. Kim, Y. Yi, and S. Ha, "Trace-driven hw/sw cosimulation
using virtual synchronization technique," in Proc. of Confe-
rence on Design Automation (DAC). pp. 345-348, 2005.

[15] M. Wu, C. Fu, P. Wang, and R. Tsay, "An effective synchro-
nization approach for fast and accurate multi-core instruc-
tion-set simulation," in Proc. of international Conference on
Embedded Software (EMSOFT), pp. 197-204, 2009.

[16] M. Wu, W. Lee, C. Chuang, and R. Tsay, “Automatic Gener-
ation of Software TLM in Multiple Abstraction Layers for
Efficient HW/SW Co-simulation,” in Proc. of Conference on
Design, Automation and Test in Europe (DATE). pp. 1177-
1182, 2010.

[17] AndeStar™ ISA, available at www.andestech.com/p2-2.htm.

[18] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, "The
splash-2 programs: characterization and methodological con-
siderations," in Proc. of international Symposium on Com-
puter Architecture (ISCA), pp. 24-36, 1995.

[19] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design
with SystemC, Kluwer Academic Publishers, 2002.

0%

5%

10%

15%

20%

25%

30%

0

100

200

300

400

500

600

700

Radix FMM FFT Ocean LU Barnes

Si
m
u
la
ti
o
n
 S
p
e
e
d
 (
M
IP
S)

Benchmarks

2 Cores 4 Cores Shared Mem. Ratio

Figure 5. The simulation speed of the proposed approach.

344

21.1

