
An Effective Synchronization Approach for Fast and  
Accurate Multi-core Instruction-set Simulation 

 
Meng-Huan Wu, Cheng-Yang Fu, Peng-Chih Wang, and Ren-Song Tsay 

Department of Computer Science 
National Tsing Hua University, HsinChu, Taiwan 

{mhwu, chengyangfu, pengchih_wang, rstsay}@cs.nthu.edu.tw 
 
 

ABSTRACT 
This paper proposes a synchronization approach for fast and accu-
rate Multi-Core Instruction-Set Simulation (MCISS). An ideal 
MCISS should run accurately in a real-time fashion. In order to 
achieve accurate simulation results of MCISS, a lock-step ap-
proach, which synchronizes every cycle, is commonly used. How-
ever, this approach introduces immense overhead and lowers the 
simulation speed. Instead of synchronizing every cycle, our ap-
proach synchronizes the MCISS based on the data dependency 
among the simulated programs. Therefore, the synchronization 
overheads can be highly reduced while the accurate simulation 
results are ensured. With the proposed approach applied, the si-
mulation speed of MCISS is up to 40 ~ 1,000 million instructions 
per second (MIPS) in general. 

Categories and Subject Descriptors 
I.6.7 [Simulation and Modeling]: Simulation Support Systems 

General Terms 
Performance, Verification 

Keywords 
Instruction-set simulator, binary translation, multi-core, synchro-
nization 

1. INTRODUCTION 
An Instruction-Set Simulator (ISS) has become an essential sys-
tem-level design tool. With ISSs, software developers can validate 
their programs without the need of real target machines and thus 
significantly shorten design turnaround time. Also, the transpa-
rency and debuggability of the ISS can help developers quickly 
converge on design problems. After years of development, the 
single-core ISS is close to be ideal, i.e. accurate and fast. However, 
multi-core architecture gradually replaces single-core architecture 
due to the advance in semiconductor manufacturing process. As a 
result, in order to maximize the benefit of multi-core architecture, 
more and more software is now written in parallel programming 
models. Thus, it is crucial to accurately simulate the interactions 
among the parallel programs. Unfortunately, due to lack of an 

effective synchronization approach, the current solution for Multi-
core ISS (MCISS) is insufficient for the need of both simulation 
speed and accuracy. 

In a multi-core system, programs are executed concurrently. Intui-
tively, each core of the target multi-core system can be simulated 
by an individual ISS. Therefore, the parallel simulation should 
yield better performance if the host machine is also a multi-core 
system. However, without proper synchronization, the ISSs can-
not guarantee the concurrency. Figure 1(a) shows an example of 
four ISSs running on two host cores, where the host OS randomly 
schedules ISSs to the underlying host cores. Note that simulation 
time indicates the time to execute ISSs on the host. Assume these 
simulated programs are launched at the same time. Their target 
time will become non-synchronized as depicted in Figure 1(b). 
Here, target time indicates the time that simulated programs ex-
ecute on the target. The non-synchronized target time may result 
in incorrect execution order of simulated programs and hence the 
simulation results are incorrect thereby. 

The traditional lock-step approach solves this issue by forcing 
each ISS to synchronize every cycle as shown in Figure 1(c), so 
the simulated programs can execute in synchronized target time as 
shown in Figure 1(d). Each cycle tick is sync point (the point to 
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Figure 1: (a) Simulation of four ISSs running on two host cores, 
(b) Non-synchronized target time of the four simulated programs, 
(c) Synchronization in a lock-step manner, (d) Synchronized 
target time affected by the lock-step synchronization. 
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synchronize). At each sync point, the ISS has to stop and syn-
chronize. The major drawback of this approach is the immense 
synchronization overhead.  

Motivated by the needs of a fast and accurate MCISS, this paper 
proposes an effective synchronization approach. From our obser-
vation, the data dependency among simulated programs is deter-
mined by some essential points. As long as the execution order of 
these essential points is maintained, the accurate simulation re-
sults will be guaranteed. Therefore, we devise a mechanism that 
can ensure the in-order execution of these points. Meanwhile, 
since only the essential points need to be regarded as sync points, 
our sync point number is considerably smaller compared with the 
lock-step approach. As a result, the synchronization overhead can 
be significantly reduced. 

To match with the performance of the new low-overhead syn-
chronization approach, we adopt high speed binary translation 
technique [9] for instruction-set simulation and hence achieve 
real-time performance for MCISS. The experimental results show 
that the overall simulation speed is up to 40 ~ 1,000 MIPS (mil-
lion instructions per second) in general. This proves that our ap-
proach is capable of fast and accurate multi-core simulation. 

The remainder of this paper is organized as follows. Section 2 
describes related work. Section 3 explains the synchronization 
issues of multi-core simulation and the proposed approach. The 
employment of our synchronization approach on multi-core ISSs 
is described in section 4. Sections 5 and 6 discuss performance 
analysis and experimental results, respectively. Finally section 7 
gives the conclusion and summarizes future work. 

2. RELATED WORK 
Before discussing synchronization issues, we first introduce the 
state-of-art ISSs for single processor systems. In general, ISSs can 
be classified into two types: interpretation-based and compilation-
based. The interpretation-based ISS is implemented with a main 
loop which repeatedly processes fetching, decoding, and execut-
ing. The implementation is simple, but the simulation speed is 
slow (few MIPS) [1]. In contrast, the compilation-based ISS per-
forms fetching/decoding at compile time and executing at run time 
[2-8]. This technique greatly saves fetching/decoding time, so it 
can speed up to dozens of MIPS. Furthermore, some compilation-
based ISSs using binary translation directly translate target in-
structions into host instructions [2][3][4][7], which can achieve 
simulation speed of hundreds of MIPS. Though the ISSs for single 
processor simulation above have achieved extreme simulation 
speed, when it comes to multi-core simulation, the synchroniza-
tion problem emerges as a major road block. 

The synchronization problem for multi-processor simulation has 
been widely discussed. WWT-II [11] simulates a parallel shared-
memory (physically distributed, logically shared) program on a 
parallel computer. In order to guarantee the correct simulation 
results, target execution is divided into quanta, lock-step intervals, 
and it is synchronized at the end of each quantum. For a lock-step 
approach, the quantum length is critical to simulation performance. 
Since target processors of WWT-II interact through network and 
therefore have a long quantum, the performance degradation is 
acceptable. Nevertheless, when the same approach is applied to a 
multi-core system where interactions are through an on-board 
memory, the quantum length becomes as short as the latency of 

memory access. The resulting excessive synchronization over-
heads will greatly damage simulation performance. 

In contrast, Embra [4] simulates a multi-processor system in a 
round-robin fashion. Each processor is simulated in turns for a 
configurable time-slice. When the time-slice is chosen to be the 
execution time of a single instruction, the simulation result is 
nearly instruction-accurate, but the simulation performance is 
considerably poor.  

Jung et al. [12] apply software analysis to improve performance 
for multi-processor systems. In a memory-mapped I/O architec-
ture (i.e. same address bus for both memory and I/O devices), 
interrupts are triggered if particular memory addresses are ac-
cessed, so the authors statically analyze simulated programs to 
make pessimistic predictions of those accesses in advance. During 
simulation, a central server periodically delivers the information 
of the next access to each individual ISS. ISSs enter lock-step 
mode only when interrupts may possibly occur. Hence, its syn-
chronization overhead is lower than that of the lock-step approach. 
Although the approach can be applied to resolve memory syn-
chronization issue, the huge amount of memory accesses will 
force the ISSs to enter the lock-step mode frequently. Then the 
simulation will become as slow as the lock-step approach. 

Kim et al. [13] propose a virtual synchronization technique to 
reduce the synchronization overhead in co-simulation. First, ex-
ecution traces are generated by simulating each component sepa-
rately. Then with the traces, the global time information is recon-
structed to perform co-simulation. However, since interactions 
among components are not considered, the virtual synchronization 
technique cannot guarantee accurate multi-core system simulation. 

In summary, the above mentioned approaches apparently are ei-
ther incapable of managing synchronizations correctly or are un-
acceptable for its poor performance. The following section will 
introduce our proposed approach to solve this issue by first ana-
lyzing the mechanism of synchronization. 

3. SYNCHRONIZATION 
To efficiently solve the synchronization issue of multi-core simu-
lation, the key of our approach is to identify the data dependency 
among simulated programs. Then the ISS of each core is indivi-
dually synchronized according to this dependency, which can 
result in accurate simulation. The target architecture we simulate 
in this paper is a multi-core system with a shared-memory. 

3.1 Data Dependency 
In order to guarantee correct simulation results, the data depen-
dency must be maintained. In a shared memory model, programs 
on different cores interact with each other through their data in-
put/output. The data input/output are via memory accesses, so any 
two memory accesses with data dependency must be executed in 
order. Such dependency exists when two accesses to the same 
data (i.e., the same address) have any one of following relation-
ships: (1) WAW (write after write), (2) WAR (write after read), and 
(3) RAW (read after write) [14]. To ease later discussion, we name 
synchronization the process of maintaining such data dependency 
relationship and the corresponding memory access point a sync 
point. 
In nature, an ISS simulates a program sequentially so that the 
memory accesses within the same program are always in order. 
Hence, our synchronization approach only needs to check and 



keep proper execution order for memory accesses across different 
programs. Theoretically, only memory accesses to the same ad-
dress have to be checked for data dependency issue, but in prac-
tice, large memory space makes tracking each different address 
infeasible. Moreover, the exact accessing address is not always 
known in advance because indirect addressing mode (i.e. memory 
address indicated by a register instead of an immediate) is com-
monly used. A simple minded way is to treat every memory 
access a sync point, but the excessive number of memory accesses 
will result in poor simulation performance. Hence, we tend to 
reduce the number of sync points for better performance. 

3.2 Sync Point Reduction 
From our observation, data can be further categorized into shared 
variables and local variables. Only the memory accesses to shared 
variables actually have data dependency. The sync point number 
can be greatly reduced by taking these accesses as the only candi-
dates. To identify shared variable accesses for sync points, the 
following strategy is applied. From the aspect of a program, 
memory space is partitioned into different segments as shown in 
Figure 2. Conventionally, a compiler allocates shared variables 
only at the shared data segment. Although the exact address of a 
memory access is unavailable, the indicating register may provide 
the hint of the pointing segment. For instance, a frame pointer 
register or a stack pointer register always points to the stack seg-
ment, where local variables are stored. Therefore, the memory 
accesses for these local variables can be easily identified and 
eliminated from sync points. Likewise, though in advance we 
cannot exclude the private data segment and the text segment 
from sync points, the address ranges of these segments can be 
obtained from the target program. Hence, we check and skip the 
memory accesses to these segments at run time. Consequently, the 
number of sync points executed is greatly reduced so that the si-
mulation performance is significantly improved.  

3.3 Avoiding Data Dependency Violations 
Data dependency can be violated if the sync points are executed 
out-of-order, which will lead to incorrect data access and hence 
inaccurate simulation results. To avoid dependency violations, the 
sync points should always execute in order. As a result, we devise 
a synchronization mechanism for each individual ISS to maintain 
data dependency with others. 
Without sacrificing generality, assume that at a simulation time 
point of interest, one ISS of the MCISS, say ISS1 simulating P1, 

encounters a sync point s1. Meanwhile, other ISSs are either ex-
ecuting non-sync point instructions or waiting for wake up. Now 
we just pick any other ISS, say ISS2 simulating P2, and assume its 
earliest next sync point is s2. If the estimated earliest target time t2 
of s2 is later than the target time t1 of s1, there will be no data de-
pendency violation. Then ISS1 may proceed without conflict with  
ISS2. If t1 is later than t2, and s1 and s2 have data dependency, a 
potential dependency violation may occur. For similar cases, ISS1 
has to wait until ISS2 reaches the sync point s2 in order to avoid 
the possible violation. 
The concept of synchronization can be illustrated by the example 
shown in Figure 3, where the MCISS simulates programs P1 and 
P2 to the points indicated by the corresponding program counters 
(Figure 3(a)). Now assume P1 is encountering a read sync point r 
at target time t1, and P2’s next sync point, w, is a write access in a 
succeeding basic block. Though we do not know which branch 
will be taken, the earliest possible target time t2 of w (when the 
branch outcome is for basic block bq+1) can still be estimated. 
Then if t1 < t2, w’s possible target time t2’ must be later than t1 as 
in Figure 3(b). Hence, the ISS of P1 is safe to proceed. On the 
contrary, if t2 < t1, w’s possible target time t2’ may be either earlier 
or later than t1 as shown in Figure 3(c). Then if t2’ > t1, P1 can 
safely proceed before P2 executes w, whereas if t1 > t2’, P1 cannot 
proceed until after P2 finishes w. Therefore, to avoid the potential 
dependency violation, for such a case, the ISS of P1 should wait 
until the dependency between t1 and t2’ is certain. Consequently, 
by repeating the synchronization process on each of other ISSs, 
the data dependency can be maintained, and the simulation result 
is hence guaranteed to be correct.  

4. MULTI-CORE SIMULATION 
In this section, we will demonstrate how to incorporate of our 
synchronization approach on the MCISS. For simplicity, assume 
that the target multi-core executes one program on one assigned 
core, and cores interact with each other through an external mem-
ory. Our simulation flow is as shown in Figure 4. Each core is 

Figure 3: (a) The partial CFGs (Control Flow Graph) of Pro-
grams, P1 and P2, (b) The possible dependency when t1 < t2, (c) 
The possible dependency when t2 < t1. 
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simulated by a binary translation ISS. At compile time, the target 
executables are translated into native codes. Then ISSs can simu-
late the behaviors of the corresponding target executables at run 
time. Besides, each ISS will perform synchronization to maintain 
the data dependency. The processes of compile time and run time 
are explained in detail.  

4.1 Compile Time 
The conventional binary translation has to be modified for syn-
chronization purposes. Figure 5 illustrates the modified binary 
translation flow, where the shaded steps are specifically designed 
for synchronization.  
For each target executable, we can disassemble it into data and 
text. The data part will be allocated and initialized on the host 
memory. We then identify the range of the shared data segment 
for checking potential sync points during run time. The translation 
procedure of the text part is further divided into several steps. 
First, target instructions are translated into intermediate codes for 
further manipulation. Then, sync points are identified and inserted 
accordingly. Additionally, in order to determine data dependency, 
target time information for each sync point is required. This can 
be obtained by timing annotation techniques, such as those pro-
posed in several prior studies [10][15]. Subsequently, register 
allocation (i.e., mapping target registers onto host registers) is 
performed. Finally, all the functionalities are translated into 
equivalent host instructions for simulation. 

 

4.2 Run Time 
Here we will focus our discussion on synchronization only, since 
the rest parts of simulation is similar to a conventional binary 
translation ISS. The proposed synchronization mechanism is illu-
strated in Figure 6. When encountering a sync point, an ISS will 
first check if the memory access is for the shared segment. If it is, 
a sync function will be called for maintaining data dependency; 
otherwise the sync point will be skipped. The sync function 
checks the sync table, which contains the information about all the 
earliest next sync points of ISSs. The function waits until all the 
others earliest next sync points are later than the current sync 
point. With this mechanism, the data dependency among ISSs can 
be ensured. The detailed implementation is as below.  

1

2

3

4

5

6

7

void sync_function( unsigned int current_point )  { 

for ( int i = 0; i < total_iss_num; i++ )  { 

       while( sync_table[ i ].earliest_next_point < current_point ) {

           wait();  /* wait for other ISSs */ 

}  /* end of while */ 

      }  /* end of for */ 

}  /* end of sync_function */ 
 
To keep the sync table up-to-date, each ISS has to update when-
ever the earliest next sync point changes. This change takes place 
at the end of a basic block or at a sync point. Since each update 
consumes only one extra assignment instruction in our implemen-
tation, the overhead is considerably small. More importantly, our 
approach allows each ISS independently synchronizes with each 
other, without the need of a centralized scheduler. The synchroni-
zation approach leverages the parallelism of MCISS and hence 
greatly minimizes synchronization efforts. 

 

4.3 Interrupt Supported 
Besides memory accesses, interrupts can affect the program ex-
ecution. The proposed synchronization approach is not limited to 
synchronizing the interactions through memory.  It can be ex-
tended to support interrupts.  
An interrupt can preempt a program, but it cannot directly affect 
the execution result of the program. Instead, an interrupt triggers 
an ISR (interrupt service routine), and the ISR influences the 
preempted program through memory interactions as well. There-
fore, the same synchronization mechanism can be used for main-
taining the data dependency between the preempted program and 
the ISR, and the shared accesses are also treated as sync points. 
Besides, the execution results of other instructions between sync 
points will not be affected by interrupts. Consequently, we can 
handle interrupts when encountering a sync point. In practice, at 
each sync point an ISS will check whether any interrupt has been 
triggered. If there was any interrupt, a new ISS will be spawned 

Figure 6: Synchronization during run time. 
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for each interrupt to simulate the corresponding ISR. Then based 
on the triggering time, the ISS of the ISR can be scheduled for 
synchronization. On the other hand, the ISS of the preempted 
program re-adjusts its schedule by incorporating the suspending 
time. Then the ISS waits at the encountered sync point until no 
dependency violation with the ISS of the ISR can happen. As a 
result, the effect of interrupts can be correctly simulated. 

5. PERFORMANCE ANALYSIS 
The effect of a synchronization approach on the simulation per-
formance is analyzed in this section. Assume tsim,i is the time to 
simulate a target instruction i, then the simulation performance 
without synchronization is given by 

 
where n is the total simulated instruction number. Moreover, sup-
pose there are m executed sync points, and the synchronization 
time at a sync point j is tsync,j. The performance with synchroniza-
tion is given by 

 
Obviously, the number of sync points is the key factor to the syn-
chronization overhead. In our approach, the sync point number 
varies depending on simulated applications, but it should be much 
smaller than that of the lock-step approach. The length of syn-
chronization time at sync points also influences the simulation 
performance. At a sync point, an ISS is required to wait until the 
slower ISSs catch up, so the length of synchronization time de-
pends on the gap between the given ISS and the slowest ISS. 
Therefore, the best performance is achieved when all ISSs are 
executed at nearly the same rate. To help evaluate the impact of 
synchronization overhead to simulation performance, we further 
define the synchronization efficiency as 

 
With this index, it is obvious that a faster simulator, given shorter 
simulation time, is more sensitive to synchronization overhead 
than a slower one. Since the binary translation ISS can perform 
two orders faster than the conventional ISS, it is crucial to employ 
an effective synchronization approach. Otherwise the synchroni-
zation overheads will dominate simulation performance. 

6. EXPERIMENTAL RESULTS 
The experimental results of the MCISS with our synchronization 
approach implemented will be demonstrated in this section. The 
host machine is equipped with Intel Xeon 3.4 GHz quad-core and 
2GB ram, which runs Linux OS. The target machine is Andes 
16/32-bit mixed length RISC ISA [16].  
Figure 7 shows the simulation performance of different bench-
marks. In this experiment, two target cores are simulated. The two 
benchmarks, Micro-benchmark and Fibonacci, do not have shared 
memory access. The experimental results show insignificant per-
formance differences before and after the employment of our syn-
chronization approach. The slight performance degradation is 

mainly due to timing annotation overhead. The synchronization 
efficiency is around 90%. This in fact demonstrates that our ap-
proach has small overhead to those programs without interactions. 
The other benchmarks, LU, Radix, and FFT, are parallel programs 
from SPLASH-2 benchmarks [17]. The overhead for synchroniz-
ing through the shared memory reduces the efficiency to 70%. 
Meanwhile, the overall simulation speed can still be up to hun-
dreds of MIPS. Moreover, to test the effect of heavy shared ac-
cesses, we modify FFT to FFT-M by increasing the number of 
shared accesses to once every 12 instructions in average. As a 
result, the efficiency drops to 10%, but the overall speed remains 
about 40 MIPS. 

 
In addition, we evaluate the simulation performance in terms of 
different number of target cores. Figure 8 illustrates the overall 
simulation speed from two to eight target cores. Only the test 
results of FFT are showcased because the results from LU and 
Radix are similar. For those MCISSs that employ synchronization 
approach to test cases with less than five target cores, the syn-
chronization efficiency decreases as the number of cores increases. 
It is because more simulated (target) cores yield more sync points 
for simulation. Besides, each additional target core implies one 
more dependency checking at each sync point, and thus more 
overheads are created. Beyond four cores, the efficiency decre-
ment appears flattened since the incremental overhead caused by 
additional core becomes minor. After all, the overall simulation 
speed maintains at 150 ~ 200 MIPS.  

 

 

Figure 7: Simulation performance of different benchmarks.

Figure 8: Simulation performance of FFT in different number 
of target cores.



In contrast, even without synchronization, the overall simulation 
speed does not improve as the number of target cores increases. 
This is due to the fact that the simulation itself is a memory-bound 
application, so the increased ISSs raise the possibility of memory 
bus contentions and hence limit the simulation speed. 
To perform the stress test, we create a special test program and 
systemically adjust the share ratio, the ratio of the number of total 
executed shared accesses to the number of total executed basic 
blocks. Here each basic block contains 5.4 instructions in average. 
The special test program is designed to always make the worst 
case prediction in our synchronization mechanism, i.e. the earliest 
next sync point is located in the next one basic block. Figure 9 
shows the synchronization efficiency under this worst case impact 
with different number of simulated cores. The results indicate that 
the synchronization efficiency improves as the share ratio de-
creases. It is because lower share ratio implies less synchroniza-
tion efforts. Similar to the previous experimental result, the syn-
chronization efficiency deteriorates as the number of simulated 
cores increases. As a result, for the case of 4-core and share ratio 
1/1, the efficiency is as low as 4.5%, while the simulation speed 
still maintains at 34 MIPS. 

 

 
Once beyond four simulated cores, the worst case prediction dra-
matically degrades the simulation speed to less than one MIPS. In 
this situation, the host cores are less than the simulated cores, so 
there will be at least one idle ISS at any time. Moreover, the worst 
case prediction keeps those executing ISS waiting for the idle one. 
Thus, most of the execution time is wasted on waiting and context 
switching. 
Table 1 shows the simulation speed comparison with other ap-
proaches. For all cases, when the lock-step approach is employed, 
the simulation speed of a binary translation MCISS is less than 
one MIPS due to the immense synchronization overhead. In con-
trast, our approach can achieve 40 ~ 1,000 MIPS for regular ap-
plications. Instead of parallel simulation, another approach coope-
ratively simulates each simulated program in a round-robin 
fashion. However, this approach is only suitable for conventional 
compilation-based ISSs, since binary translation ISSs are unable 
to be serialized. In addition, this cooperative approach cannot 
benefit from the performance of a host multi-core machine. Con-
sequently, the simulation performance is limited, around 1 ~ 30 
MIPS. Only if the application always makes the worst case pre-
diction and the number of simulated cores is over that of the target 
cores, our approach can be less efficient than the sequential ap-
proach. Fortunately, normal applications rarely fall into the worst 
case type, so generally our approach is more effective than others. 

Table 1. Simulation speed comparison with other approaches  

Proposed Lock-step  Cooperative 

Normal 40 ~ 1,000 MIPS 
< 1 MIPS 1 ~ 30 MIPS 

Worst Case < 1 MIPS 

 
The accuracy of our approach is verified by comparing the trace 
of shared memory accesses from our approach with that from the 
lock-step approach. Identical results and access order prove the 
accuracy of our approach. 

7. CONCLUSION 
We have presented and demonstrated an efficient synchronization 
approach for MCISS. Our major contribution is on clarifying the 
data dependency issue of a shared-memory multi-core system. 
The approach can effectively maintain data dependency. The ex-
perimental results show that the MCISS using our simulation ap-
proach can perform fast and accurate simulation. Although in this 
paper we only apply the approach to a binary translation MCISS, 
it can be incorporated by any compilation-based MCISS. 

A future research topic could be the target system with multi-
tasking. In our current work, we assume each program is fixed on 
one core. Yet for multi-tasking cases, a program can be dynami-
cally assigned to different cores. The corresponding synchroniza-
tion mechanism is more sophisticated and needs further investiga-
tion. 
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