
An Effective Synchronization Approach for Fast and
Accurate Multi-core Instruction-set Simulation

Meng-Huan Wu, Cheng-Yang Fu, Peng-Chih Wang, and Ren-Song Tsay

Department of Computer Science
National Tsing Hua University, HsinChu, Taiwan

{mhwu, chengyangfu, pengchih_wang, rstsay}@cs.nthu.edu.tw

ABSTRACT
This paper proposes a synchronization approach for fast and accu-
rate Multi-Core Instruction-Set Simulation (MCISS). An ideal
MCISS should run accurately in a real-time fashion. In order to
achieve accurate simulation results of MCISS, a lock-step ap-
proach, which synchronizes every cycle, is commonly used. How-
ever, this approach introduces immense overhead and lowers the
simulation speed. Instead of synchronizing every cycle, our ap-
proach synchronizes the MCISS based on the data dependency
among the simulated programs. Therefore, the synchronization
overheads can be highly reduced while the accurate simulation
results are ensured. With the proposed approach applied, the si-
mulation speed of MCISS is up to 40 ~ 1,000 million instructions
per second (MIPS) in general.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support Systems

General Terms
Performance, Verification

Keywords
Instruction-set simulator, binary translation, multi-core, synchro-
nization

1. INTRODUCTION
An Instruction-Set Simulator (ISS) has become an essential sys-
tem-level design tool. With ISSs, software developers can validate
their programs without the need of real target machines and thus
significantly shorten design turnaround time. Also, the transpa-
rency and debuggability of the ISS can help developers quickly
converge on design problems. After years of development, the
single-core ISS is close to be ideal, i.e. accurate and fast. However,
multi-core architecture gradually replaces single-core architecture
due to the advance in semiconductor manufacturing process. As a
result, in order to maximize the benefit of multi-core architecture,
more and more software is now written in parallel programming
models. Thus, it is crucial to accurately simulate the interactions
among the parallel programs. Unfortunately, due to lack of an

effective synchronization approach, the current solution for Multi-
core ISS (MCISS) is insufficient for the need of both simulation
speed and accuracy.

In a multi-core system, programs are executed concurrently. Intui-
tively, each core of the target multi-core system can be simulated
by an individual ISS. Therefore, the parallel simulation should
yield better performance if the host machine is also a multi-core
system. However, without proper synchronization, the ISSs can-
not guarantee the concurrency. Figure 1(a) shows an example of
four ISSs running on two host cores, where the host OS randomly
schedules ISSs to the underlying host cores. Note that simulation
time indicates the time to execute ISSs on the host. Assume these
simulated programs are launched at the same time. Their target
time will become non-synchronized as depicted in Figure 1(b).
Here, target time indicates the time that simulated programs ex-
ecute on the target. The non-synchronized target time may result
in incorrect execution order of simulated programs and hence the
simulation results are incorrect thereby.

The traditional lock-step approach solves this issue by forcing
each ISS to synchronize every cycle as shown in Figure 1(c), so
the simulated programs can execute in synchronized target time as
shown in Figure 1(d). Each cycle tick is sync point (the point to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EMSOFT’09, October 12–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-627-4/09/10...$10.00.

Figure 1: (a) Simulation of four ISSs running on two host cores,
(b) Non-synchronized target time of the four simulated programs,
(c) Synchronization in a lock-step manner, (d) Synchronized
target time affected by the lock-step synchronization.

Host Core 2
Host Core 1

(a)

ISS2
ISS1

ISS4
ISS3

Simulation Time

context switch

(b)
Target Time

P2
P1

P4
P3

Non-synchronized

Target Time

sync at each cycle tick

(d)

… P2
P1

P4
P3

Synchronized

(c)

ISS2
ISS1

ISS4
ISS3

Simulation Time

synchronize). At each sync point, the ISS has to stop and syn-
chronize. The major drawback of this approach is the immense
synchronization overhead.

Motivated by the needs of a fast and accurate MCISS, this paper
proposes an effective synchronization approach. From our obser-
vation, the data dependency among simulated programs is deter-
mined by some essential points. As long as the execution order of
these essential points is maintained, the accurate simulation re-
sults will be guaranteed. Therefore, we devise a mechanism that
can ensure the in-order execution of these points. Meanwhile,
since only the essential points need to be regarded as sync points,
our sync point number is considerably smaller compared with the
lock-step approach. As a result, the synchronization overhead can
be significantly reduced.

To match with the performance of the new low-overhead syn-
chronization approach, we adopt high speed binary translation
technique [9] for instruction-set simulation and hence achieve
real-time performance for MCISS. The experimental results show
that the overall simulation speed is up to 40 ~ 1,000 MIPS (mil-
lion instructions per second) in general. This proves that our ap-
proach is capable of fast and accurate multi-core simulation.

The remainder of this paper is organized as follows. Section 2
describes related work. Section 3 explains the synchronization
issues of multi-core simulation and the proposed approach. The
employment of our synchronization approach on multi-core ISSs
is described in section 4. Sections 5 and 6 discuss performance
analysis and experimental results, respectively. Finally section 7
gives the conclusion and summarizes future work.

2. RELATED WORK
Before discussing synchronization issues, we first introduce the
state-of-art ISSs for single processor systems. In general, ISSs can
be classified into two types: interpretation-based and compilation-
based. The interpretation-based ISS is implemented with a main
loop which repeatedly processes fetching, decoding, and execut-
ing. The implementation is simple, but the simulation speed is
slow (few MIPS) [1]. In contrast, the compilation-based ISS per-
forms fetching/decoding at compile time and executing at run time
[2-8]. This technique greatly saves fetching/decoding time, so it
can speed up to dozens of MIPS. Furthermore, some compilation-
based ISSs using binary translation directly translate target in-
structions into host instructions [2][3][4][7], which can achieve
simulation speed of hundreds of MIPS. Though the ISSs for single
processor simulation above have achieved extreme simulation
speed, when it comes to multi-core simulation, the synchroniza-
tion problem emerges as a major road block.

The synchronization problem for multi-processor simulation has
been widely discussed. WWT-II [11] simulates a parallel shared-
memory (physically distributed, logically shared) program on a
parallel computer. In order to guarantee the correct simulation
results, target execution is divided into quanta, lock-step intervals,
and it is synchronized at the end of each quantum. For a lock-step
approach, the quantum length is critical to simulation performance.
Since target processors of WWT-II interact through network and
therefore have a long quantum, the performance degradation is
acceptable. Nevertheless, when the same approach is applied to a
multi-core system where interactions are through an on-board
memory, the quantum length becomes as short as the latency of

memory access. The resulting excessive synchronization over-
heads will greatly damage simulation performance.

In contrast, Embra [4] simulates a multi-processor system in a
round-robin fashion. Each processor is simulated in turns for a
configurable time-slice. When the time-slice is chosen to be the
execution time of a single instruction, the simulation result is
nearly instruction-accurate, but the simulation performance is
considerably poor.

Jung et al. [12] apply software analysis to improve performance
for multi-processor systems. In a memory-mapped I/O architec-
ture (i.e. same address bus for both memory and I/O devices),
interrupts are triggered if particular memory addresses are ac-
cessed, so the authors statically analyze simulated programs to
make pessimistic predictions of those accesses in advance. During
simulation, a central server periodically delivers the information
of the next access to each individual ISS. ISSs enter lock-step
mode only when interrupts may possibly occur. Hence, its syn-
chronization overhead is lower than that of the lock-step approach.
Although the approach can be applied to resolve memory syn-
chronization issue, the huge amount of memory accesses will
force the ISSs to enter the lock-step mode frequently. Then the
simulation will become as slow as the lock-step approach.

Kim et al. [13] propose a virtual synchronization technique to
reduce the synchronization overhead in co-simulation. First, ex-
ecution traces are generated by simulating each component sepa-
rately. Then with the traces, the global time information is recon-
structed to perform co-simulation. However, since interactions
among components are not considered, the virtual synchronization
technique cannot guarantee accurate multi-core system simulation.

In summary, the above mentioned approaches apparently are ei-
ther incapable of managing synchronizations correctly or are un-
acceptable for its poor performance. The following section will
introduce our proposed approach to solve this issue by first ana-
lyzing the mechanism of synchronization.

3. SYNCHRONIZATION
To efficiently solve the synchronization issue of multi-core simu-
lation, the key of our approach is to identify the data dependency
among simulated programs. Then the ISS of each core is indivi-
dually synchronized according to this dependency, which can
result in accurate simulation. The target architecture we simulate
in this paper is a multi-core system with a shared-memory.

3.1 Data Dependency
In order to guarantee correct simulation results, the data depen-
dency must be maintained. In a shared memory model, programs
on different cores interact with each other through their data in-
put/output. The data input/output are via memory accesses, so any
two memory accesses with data dependency must be executed in
order. Such dependency exists when two accesses to the same
data (i.e., the same address) have any one of following relation-
ships: (1) WAW (write after write), (2) WAR (write after read), and
(3) RAW (read after write) [14]. To ease later discussion, we name
synchronization the process of maintaining such data dependency
relationship and the corresponding memory access point a sync
point.
In nature, an ISS simulates a program sequentially so that the
memory accesses within the same program are always in order.
Hence, our synchronization approach only needs to check and

keep proper execution order for memory accesses across different
programs. Theoretically, only memory accesses to the same ad-
dress have to be checked for data dependency issue, but in prac-
tice, large memory space makes tracking each different address
infeasible. Moreover, the exact accessing address is not always
known in advance because indirect addressing mode (i.e. memory
address indicated by a register instead of an immediate) is com-
monly used. A simple minded way is to treat every memory
access a sync point, but the excessive number of memory accesses
will result in poor simulation performance. Hence, we tend to
reduce the number of sync points for better performance.

3.2 Sync Point Reduction
From our observation, data can be further categorized into shared
variables and local variables. Only the memory accesses to shared
variables actually have data dependency. The sync point number
can be greatly reduced by taking these accesses as the only candi-
dates. To identify shared variable accesses for sync points, the
following strategy is applied. From the aspect of a program,
memory space is partitioned into different segments as shown in
Figure 2. Conventionally, a compiler allocates shared variables
only at the shared data segment. Although the exact address of a
memory access is unavailable, the indicating register may provide
the hint of the pointing segment. For instance, a frame pointer
register or a stack pointer register always points to the stack seg-
ment, where local variables are stored. Therefore, the memory
accesses for these local variables can be easily identified and
eliminated from sync points. Likewise, though in advance we
cannot exclude the private data segment and the text segment
from sync points, the address ranges of these segments can be
obtained from the target program. Hence, we check and skip the
memory accesses to these segments at run time. Consequently, the
number of sync points executed is greatly reduced so that the si-
mulation performance is significantly improved.

3.3 Avoiding Data Dependency Violations
Data dependency can be violated if the sync points are executed
out-of-order, which will lead to incorrect data access and hence
inaccurate simulation results. To avoid dependency violations, the
sync points should always execute in order. As a result, we devise
a synchronization mechanism for each individual ISS to maintain
data dependency with others.
Without sacrificing generality, assume that at a simulation time
point of interest, one ISS of the MCISS, say ISS1 simulating P1,

encounters a sync point s1. Meanwhile, other ISSs are either ex-
ecuting non-sync point instructions or waiting for wake up. Now
we just pick any other ISS, say ISS2 simulating P2, and assume its
earliest next sync point is s2. If the estimated earliest target time t2
of s2 is later than the target time t1 of s1, there will be no data de-
pendency violation. Then ISS1 may proceed without conflict with
ISS2. If t1 is later than t2, and s1 and s2 have data dependency, a
potential dependency violation may occur. For similar cases, ISS1
has to wait until ISS2 reaches the sync point s2 in order to avoid
the possible violation.
The concept of synchronization can be illustrated by the example
shown in Figure 3, where the MCISS simulates programs P1 and
P2 to the points indicated by the corresponding program counters
(Figure 3(a)). Now assume P1 is encountering a read sync point r
at target time t1, and P2’s next sync point, w, is a write access in a
succeeding basic block. Though we do not know which branch
will be taken, the earliest possible target time t2 of w (when the
branch outcome is for basic block bq+1) can still be estimated.
Then if t1 < t2, w’s possible target time t2’ must be later than t1 as
in Figure 3(b). Hence, the ISS of P1 is safe to proceed. On the
contrary, if t2 < t1, w’s possible target time t2’ may be either earlier
or later than t1 as shown in Figure 3(c). Then if t2’ > t1, P1 can
safely proceed before P2 executes w, whereas if t1 > t2’, P1 cannot
proceed until after P2 finishes w. Therefore, to avoid the potential
dependency violation, for such a case, the ISS of P1 should wait
until the dependency between t1 and t2’ is certain. Consequently,
by repeating the synchronization process on each of other ISSs,
the data dependency can be maintained, and the simulation result
is hence guaranteed to be correct.

4. MULTI-CORE SIMULATION
In this section, we will demonstrate how to incorporate of our
synchronization approach on the MCISS. For simplicity, assume
that the target multi-core executes one program on one assigned
core, and cores interact with each other through an external mem-
ory. Our simulation flow is as shown in Figure 4. Each core is

Figure 3: (a) The partial CFGs (Control Flow Graph) of Pro-
grams, P1 and P2, (b) The possible dependency when t1 < t2, (c)
The possible dependency when t2 < t1.

(a)

Partial CFG of P1

Basic Block bp

r

Partial CFG of P2

Program
Counter 1

w
Basic Block bq+1

Basic Block bq

Program
Counter 2

(b) (c)

P2
P1

Target time

r
t1 t2

r

w P2
P1

t1

Target time

t2

t2’ t2’

… w

t2’ t2’

… w w

Figure 2: A typical memory space from the aspect of a
program.

Stack

Text

Private
Data

Shared
Data

Frame pointer

Stack pointer

simulated by a binary translation ISS. At compile time, the target
executables are translated into native codes. Then ISSs can simu-
late the behaviors of the corresponding target executables at run
time. Besides, each ISS will perform synchronization to maintain
the data dependency. The processes of compile time and run time
are explained in detail.

4.1 Compile Time
The conventional binary translation has to be modified for syn-
chronization purposes. Figure 5 illustrates the modified binary
translation flow, where the shaded steps are specifically designed
for synchronization.
For each target executable, we can disassemble it into data and
text. The data part will be allocated and initialized on the host
memory. We then identify the range of the shared data segment
for checking potential sync points during run time. The translation
procedure of the text part is further divided into several steps.
First, target instructions are translated into intermediate codes for
further manipulation. Then, sync points are identified and inserted
accordingly. Additionally, in order to determine data dependency,
target time information for each sync point is required. This can
be obtained by timing annotation techniques, such as those pro-
posed in several prior studies [10][15]. Subsequently, register
allocation (i.e., mapping target registers onto host registers) is
performed. Finally, all the functionalities are translated into
equivalent host instructions for simulation.

4.2 Run Time
Here we will focus our discussion on synchronization only, since
the rest parts of simulation is similar to a conventional binary
translation ISS. The proposed synchronization mechanism is illu-
strated in Figure 6. When encountering a sync point, an ISS will
first check if the memory access is for the shared segment. If it is,
a sync function will be called for maintaining data dependency;
otherwise the sync point will be skipped. The sync function
checks the sync table, which contains the information about all the
earliest next sync points of ISSs. The function waits until all the
others earliest next sync points are later than the current sync
point. With this mechanism, the data dependency among ISSs can
be ensured. The detailed implementation is as below.

1

2

3

4

5

6

7

void sync_function(unsigned int current_point) {

for (int i = 0; i < total_iss_num; i++) {

 while(sync_table[i].earliest_next_point < current_point) {

 wait(); /* wait for other ISSs */

} /* end of while */

 } /* end of for */

} /* end of sync_function */

To keep the sync table up-to-date, each ISS has to update when-
ever the earliest next sync point changes. This change takes place
at the end of a basic block or at a sync point. Since each update
consumes only one extra assignment instruction in our implemen-
tation, the overhead is considerably small. More importantly, our
approach allows each ISS independently synchronizes with each
other, without the need of a centralized scheduler. The synchroni-
zation approach leverages the parallelism of MCISS and hence
greatly minimizes synchronization efforts.

4.3 Interrupt Supported
Besides memory accesses, interrupts can affect the program ex-
ecution. The proposed synchronization approach is not limited to
synchronizing the interactions through memory. It can be ex-
tended to support interrupts.
An interrupt can preempt a program, but it cannot directly affect
the execution result of the program. Instead, an interrupt triggers
an ISR (interrupt service routine), and the ISR influences the
preempted program through memory interactions as well. There-
fore, the same synchronization mechanism can be used for main-
taining the data dependency between the preempted program and
the ISR, and the shared accesses are also treated as sync points.
Besides, the execution results of other instructions between sync
points will not be affected by interrupts. Consequently, we can
handle interrupts when encountering a sync point. In practice, at
each sync point an ISS will check whether any interrupt has been
triggered. If there was any interrupt, a new ISS will be spawned

Figure 6: Synchronization during run time.

sync func

maintain
dependency

simulated
program

Sync Table

...
check

ISSs
update

shared
access yes

sync point
no

Disassemble
Text Data

Simulate

Target Data

Figure 5: The flow of binary translation.

Target Executable

Annotate
Timing

Insert Sync
Point

Host Instructions Host Memory

Allocate
Register

Allocate &
Initialize

Identify
Shared Seg.

Intermediate Code

Figure 4: An overview of the multi-core simulation flow.

Compile Time

binary translate
synchronize

Target Executables ISSs

. . .
. . .

Run Time

for each interrupt to simulate the corresponding ISR. Then based
on the triggering time, the ISS of the ISR can be scheduled for
synchronization. On the other hand, the ISS of the preempted
program re-adjusts its schedule by incorporating the suspending
time. Then the ISS waits at the encountered sync point until no
dependency violation with the ISS of the ISR can happen. As a
result, the effect of interrupts can be correctly simulated.

5. PERFORMANCE ANALYSIS
The effect of a synchronization approach on the simulation per-
formance is analyzed in this section. Assume tsim,i is the time to
simulate a target instruction i, then the simulation performance
without synchronization is given by

where n is the total simulated instruction number. Moreover, sup-
pose there are m executed sync points, and the synchronization
time at a sync point j is tsync,j. The performance with synchroniza-
tion is given by

Obviously, the number of sync points is the key factor to the syn-
chronization overhead. In our approach, the sync point number
varies depending on simulated applications, but it should be much
smaller than that of the lock-step approach. The length of syn-
chronization time at sync points also influences the simulation
performance. At a sync point, an ISS is required to wait until the
slower ISSs catch up, so the length of synchronization time de-
pends on the gap between the given ISS and the slowest ISS.
Therefore, the best performance is achieved when all ISSs are
executed at nearly the same rate. To help evaluate the impact of
synchronization overhead to simulation performance, we further
define the synchronization efficiency as

With this index, it is obvious that a faster simulator, given shorter
simulation time, is more sensitive to synchronization overhead
than a slower one. Since the binary translation ISS can perform
two orders faster than the conventional ISS, it is crucial to employ
an effective synchronization approach. Otherwise the synchroni-
zation overheads will dominate simulation performance.

6. EXPERIMENTAL RESULTS
The experimental results of the MCISS with our synchronization
approach implemented will be demonstrated in this section. The
host machine is equipped with Intel Xeon 3.4 GHz quad-core and
2GB ram, which runs Linux OS. The target machine is Andes
16/32-bit mixed length RISC ISA [16].
Figure 7 shows the simulation performance of different bench-
marks. In this experiment, two target cores are simulated. The two
benchmarks, Micro-benchmark and Fibonacci, do not have shared
memory access. The experimental results show insignificant per-
formance differences before and after the employment of our syn-
chronization approach. The slight performance degradation is

mainly due to timing annotation overhead. The synchronization
efficiency is around 90%. This in fact demonstrates that our ap-
proach has small overhead to those programs without interactions.
The other benchmarks, LU, Radix, and FFT, are parallel programs
from SPLASH-2 benchmarks [17]. The overhead for synchroniz-
ing through the shared memory reduces the efficiency to 70%.
Meanwhile, the overall simulation speed can still be up to hun-
dreds of MIPS. Moreover, to test the effect of heavy shared ac-
cesses, we modify FFT to FFT-M by increasing the number of
shared accesses to once every 12 instructions in average. As a
result, the efficiency drops to 10%, but the overall speed remains
about 40 MIPS.

In addition, we evaluate the simulation performance in terms of
different number of target cores. Figure 8 illustrates the overall
simulation speed from two to eight target cores. Only the test
results of FFT are showcased because the results from LU and
Radix are similar. For those MCISSs that employ synchronization
approach to test cases with less than five target cores, the syn-
chronization efficiency decreases as the number of cores increases.
It is because more simulated (target) cores yield more sync points
for simulation. Besides, each additional target core implies one
more dependency checking at each sync point, and thus more
overheads are created. Beyond four cores, the efficiency decre-
ment appears flattened since the incremental overhead caused by
additional core becomes minor. After all, the overall simulation
speed maintains at 150 ~ 200 MIPS.

Figure 7: Simulation performance of different benchmarks.

Figure 8: Simulation performance of FFT in different number
of target cores.

In contrast, even without synchronization, the overall simulation
speed does not improve as the number of target cores increases.
This is due to the fact that the simulation itself is a memory-bound
application, so the increased ISSs raise the possibility of memory
bus contentions and hence limit the simulation speed.
To perform the stress test, we create a special test program and
systemically adjust the share ratio, the ratio of the number of total
executed shared accesses to the number of total executed basic
blocks. Here each basic block contains 5.4 instructions in average.
The special test program is designed to always make the worst
case prediction in our synchronization mechanism, i.e. the earliest
next sync point is located in the next one basic block. Figure 9
shows the synchronization efficiency under this worst case impact
with different number of simulated cores. The results indicate that
the synchronization efficiency improves as the share ratio de-
creases. It is because lower share ratio implies less synchroniza-
tion efforts. Similar to the previous experimental result, the syn-
chronization efficiency deteriorates as the number of simulated
cores increases. As a result, for the case of 4-core and share ratio
1/1, the efficiency is as low as 4.5%, while the simulation speed
still maintains at 34 MIPS.

Once beyond four simulated cores, the worst case prediction dra-
matically degrades the simulation speed to less than one MIPS. In
this situation, the host cores are less than the simulated cores, so
there will be at least one idle ISS at any time. Moreover, the worst
case prediction keeps those executing ISS waiting for the idle one.
Thus, most of the execution time is wasted on waiting and context
switching.
Table 1 shows the simulation speed comparison with other ap-
proaches. For all cases, when the lock-step approach is employed,
the simulation speed of a binary translation MCISS is less than
one MIPS due to the immense synchronization overhead. In con-
trast, our approach can achieve 40 ~ 1,000 MIPS for regular ap-
plications. Instead of parallel simulation, another approach coope-
ratively simulates each simulated program in a round-robin
fashion. However, this approach is only suitable for conventional
compilation-based ISSs, since binary translation ISSs are unable
to be serialized. In addition, this cooperative approach cannot
benefit from the performance of a host multi-core machine. Con-
sequently, the simulation performance is limited, around 1 ~ 30
MIPS. Only if the application always makes the worst case pre-
diction and the number of simulated cores is over that of the target
cores, our approach can be less efficient than the sequential ap-
proach. Fortunately, normal applications rarely fall into the worst
case type, so generally our approach is more effective than others.

Table 1. Simulation speed comparison with other approaches

Proposed Lock-step Cooperative

Normal 40 ~ 1,000 MIPS
< 1 MIPS 1 ~ 30 MIPS

Worst Case < 1 MIPS

The accuracy of our approach is verified by comparing the trace
of shared memory accesses from our approach with that from the
lock-step approach. Identical results and access order prove the
accuracy of our approach.

7. CONCLUSION
We have presented and demonstrated an efficient synchronization
approach for MCISS. Our major contribution is on clarifying the
data dependency issue of a shared-memory multi-core system.
The approach can effectively maintain data dependency. The ex-
perimental results show that the MCISS using our simulation ap-
proach can perform fast and accurate simulation. Although in this
paper we only apply the approach to a binary translation MCISS,
it can be incorporated by any compilation-based MCISS.

A future research topic could be the target system with multi-
tasking. In our current work, we assume each program is fixed on
one core. Yet for multi-tasking cases, a program can be dynami-
cally assigned to different cores. The corresponding synchroniza-
tion mechanism is more sophisticated and needs further investiga-
tion.

8. ACKNOWLEDGMENTS
This work was supported by National Science Council (Grant No.
NSC96-2628-E-007-144-MY3) and the specification of Andes
ISA was provided by Andes Technology.

9. REFERENCES
[1] Simplescalar, available at www.simplescalar.com
[2] J. Zhu and D. D. Gajski, "A retargetable, ultra-fast instruc-

tion set simulator," in DATE '99: Proceedings of the confe-
rence on Design, automation and test in Europe. pp. 62-69,
1999.

[3] B. Cmelik and D. Keppel, "Shade: a fast instruction-set si-
mulator for execution profiling," in SIGMETRICS '94: Pro-
ceedings of the 1994 ACM SIGMETRICS conference on
Measurement and modeling of computer systems. pp. 128-
137, 1994.

[4] E. Witchel and M. Rosenblum, "Embra: fast and flexible
machine simulation," in SIGMETRICS '96: Proceedings of
the 1996 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems. pp. 68-79,
1996.

[5] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and
A. Hoffmann, "A universal technique for fast and flexible in-
struction-set architecture simulation," in DAC '02: Proceed-
ings of the 39th conference on Design automation. pp. 22-27,
2002.

[6] M. Reshadi, P. Mishra, and N. Dutt, "Instruction set com-
piled simulation: a technique for fast and flexible instruction
set simulation," in DAC '03: Proceedings of the 40th confe-
rence on Design automation. pp. 758-763, 2003.

[7] F. Bellard, "QEMU, a fast and portable dynamic translator,"
in Proc. of the USENIX Annual Technical Conference, pp.
41-46, 2005.

Figure 9: Synchronization efficiency under the worst case
prediction in various numbers of simulated cores.

[8] W. Qin, J. D'Errico, and X. Zhu, "A multiprocessing ap-
proach to accelerate retargetable and portable dynamic-
compiled instruction-set simulation," in CODES+ISSS '06:
Proceedings of the 4th international conference on Hard-
ware/software codesign and system synthesis. pp. 193-198,
2006.

[9] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G.
Robinson, "Binary translation," Commun. ACM, vol. 36, no.
2, pp. 69-81, 1993.

[10] J. Schnerr, O. Bringmann, and W. Rosenstiel, "Cycle accu-
rate binary translation for simulation acceleration in rapid
prototyping of socs," in DATE '05: Proceedings of the confe-
rence on Design, Automation and Test in Europe. pp. 792-
797, 2005.

[11] S. Mukherjee et al., "Wisconsin Wind Tunnel II: a fast, port-
able parallel architecture simulator," in Concurrency, IEEE,
vol. 8, pp. 12-20, 2000.

[12] J. Jung, S. Yoo, and K. Choi, "Performance improvement of
multi-processor systems cosimulation based on sw analysis,"

in DATE '01: Proceedings of the conference on Design, au-
tomation and test in Europe. pp. 749-753, 2001.

[13] D. Kim, Y. Yi, and S. Ha, "Trace-driven hw/sw cosimulation
using virtual synchronization technique," in DAC '05: Pro-
ceedings of the 42nd annual conference on Design automa-
tion. pp. 345-348, 2005.

[14] J. Hennessy and D. Patterson, Computer Architecture: a
quantitative approach, 4th ed., 2007.

[15] Y. Hwang, S. Abdi, and D. Gajski, "Cycle-approximate re-
targetable performance estimation at the transaction level," in
DATE '08: Proceedings of the conference on Design, auto-
mation and test in Europe. pp. 3-8, 2008.

[16] Andes, available at www.andestech.com
[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,

"The splash-2 programs: characterization and methodological
considerations," in ISCA '95: Proceedings of the 22nd annual
international symposium on Computer architecture. pp. 24-
36, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

