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One of the most fundamental parts of a Monte Carlo code is its geometry kernel.  This kernel not only affects 

particle tracking (i.e., run-time performance), but also shapes how users will input models and collect results for later 

analyses.  A new framework based on geometric templates is proposed that optimizes performance (in terms of 

tracking speed and memory usage) and simplifies user input for large scale models.  While some aspects of this 

approach currently exist in different Monte Carlo codes, the optimization aspect has not been investigated or applied.  

If Monte Carlo codes are to be realistically used for full core analysis and design, this type of optimization will be 

necessary.  This paper describes the new approach and the implementation of two template types in MC21: a 

repeated ellipse template and a box template.  Several different models are tested to highlight the performance gains 

that can be achieved using these templates.  Though the exact gains are naturally problem dependent, results show 

that runtime and memory usage can be significantly reduced when using templates, even as problems reach realistic 

model sizes. 
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I. Introduction 

Geometric tracking typically accounts for one third to one 

half of the run time for large-scale Monte Carlo transport 

calculations.  Many production-level Monte Carlo codes 

use constructive solid geometry (CSG), where each 

geometric object is defined by the union, intersection, and/or 

complement of either 1) the boundary defined by a set of 

quadratic surface equations or 2) other solid body 

objects.
(1),(2),(3)

  CSG is very flexible and allows for accurate 

representation of most realistic geometries, which is one of 

the strongest selling points of the Monte Carlo method.  

Typically, developers will invest significant time in the early 

stages of the code optimizing the tracking algorithms for 

memory usage and speed.  However, even with 

optimization, this type of geometric representation is more 

expensive than a dedicated system that handles only one 

specific type of geometry (e.g., tracking over a structured 

mesh). 

 

In this paper, a new geometric framework is developed, 

which is based on dedicated tracking systems called 

templates.  These templates are specifically developed and 

tailored to known design applications, allowing the code to 

take advantage of simple, commonly repeated, geometric 

shapes.  As a consequence, templates can greatly improve 

tracking speed and memory usage, even as model sizes 

increase. 

 

II. Overview of Templates and Overlays 

Most reactor core models use regularly repeated geometric 

shapes, such as the cylindrical pins in PWR / BWR fuel 

assemblies.  While a model could be constructed with each 

of these pins represented using CSG, this is not necessarily 

efficient.  This is because the representation cannot take 

advantage of known geometric characteristics, such as the 

cylindrical shape of each pin, the regular spacing between 

pins, the hierarchical relationship between the coolant, 

cladding, fuel, etc. 

 

Many codes recognize the inherent problems with 

representing every object explicitly and have implemented 

various ways to improve efficiency.  For instance, MCNP 

allows users to define universes, lattices, and repeated 

structures.
(3)

   Lattices allow for a hexagonal prism or 

hexahedra subdivision of a CSG objects.  Universes allow 

geometric hierarchy by defining a collection of objects in 

one coordinate system and then placing those objects inside 

another.  Repeated structures allow users to geometrically 

replicate a collection of objects but assign them different 

properties.  While these features improve memory usage 

and simplify user input, they do not improve tracking 

speed.
(3)

 

 

Previous versions of the MC21 code also had options to 

improve tracking efficiency.  In 2006, Donovan and 

Tyburski reported on the use of a dedicated system for 

tracking over collections of elliptical cylinders.
(4)

  Their 

results demonstrated that the use of a dedicated system could 

significantly improve tracking speed.  However, their 

original implementation was limited and could only be used 

to model a 2D lattice of repeated ellipses.  Other geometries 

could not be modeled without significantly restructuring the 

code.  Also, the original implementation did not allow for 



 

 

the reuse of the underlying ellipse definition.  Every 

definition (even those that were geometrically identical) had 

to be repeated on input and in memory, making it 

cumbersome and memory intensive. 

 

In this paper, a new framework is introduced based on 

templates and overlays.  Though this framework can be 

modified to work in most Monte Carlo codes, this paper will 

focus on its implementation in MC21.  In MC21, there are 

three levels of representation: components, grids, and 

overlays.  A component is a 3D solid-geometry object 

constructed from the unions and intersections of primitives.  

Every model must contain at least one component, which 

defines the maximum extent of the solution space.  

Additional geometric detail can be added by assigning the 

component a grid, which subdivides the interior of the 

component into a collection of grid cells.  Any part of a 

grid that extends beyond the bounds of its component is 

truncated.  Additional detail can be added by assigning an 

overlay to a grid cell.  An overlay is a collection of cells 

(referred to as overlay cells) that represent simple geometric 

objects.  In practice, the shapes and relative arrangements 

of these overlay cells are often repeated throughout the 

model.  However, the overlay cells are usually assigned 

different properties (such as material or temperature) and 

have a different overall placement within the model.  For 

this reason, an overlay is used to define the properties and 

placements of the overlay cells, and a template is used to 

define the shapes and relative arrangements of the overlay 

cells.  For convenience, the geometric objects defined by a 

template are referred to as template cells.  An overlay 

assigns the template cells properties and places them within 

the model, making them overlay cells.  Any part of an 

overlay cell that extends beyond the bounds of its grid cell is 

truncated.  Multiple overlays can use the same template, 

allowing for a given arrangement of geometric objects to be 

defined once and reused.  This results in improved memory 

usage, since multiple copies of the same geometry do not 

need to be stored.  When a template is first created, the 

template cells are defined on a tile, which is a unique 

coordinate frame that can be either finite or infinite in 

dimension.  If a tile is finite, then the entire tile (and all of 

the template cells contained within it) is repeated infinitely 

in all directions.   

 

An example of this geometry system is illustrated in Figure 1.  

At the top of the figure is each of the individual objects: a 

component, grid, template, and two overlays.  The template 

is defined on a finite tile, so it repeats in each direction.  

Both overlays use the same template, but each has a different 

rotation.  The bottom of the figure shows the result of 

combining these objects into a complete geometry.  The 

grid is assigned to the component, and the component 

boundaries truncate the grid boundaries.  Overlay 1 is 

assigned to grid cell 5.  The overlay is placed such that the 

tile is repeated within the grid cell, and the grid cell 

boundaries truncate overlay cell boundaries on each tile.  

Overlay 2 is assigned to both grid cells 7 and 8.  By 

assigning overlay 2 in this way, the entire overlay cell can be 

represented (instead of it being truncated by the grid cell 

boundaries).  However, even though the same overlay is 

applied to two different grid cells, there is only one set of 

properties, since both grid cells were assigned overlay 2.  

Thus, if this model were depleted, the overlays assigned to 

grid cells 7 and 8 (colored in yellow) would deplete together, 

while the overlay assigned to grid cell 5 (colored in red) 

would deplete separately. 

 

The shapes and arrangements of template cells are limited by 

design.  This allows for tracking routines to be specifically 

tailored to each type of template.  Developers can easily 

create new templates based on the specific needs of their 

users.  Such an approach is highly amenable to 

object-oriented programming.  The next section of this 

paper will discuss the implementation of this framework into 

the MC21 code, which is written using Fortran 2008 

standards. 
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Figure 1: The top is an illustration of the individual  

geometric objects, including a component, grid, template,  

and overlay assignments. The bottom is an illustration of  

those objects combined into a complete geometry. The  

grid is assigned to the component. Overlay 1 is assigned to  

grid cell 5, and overlay 2 is assigned to grid cells 7 and 8.  

Color indicates material assignment. 

 

 



 

 

III. Template/Overlay Methods and Data Structures 

In the MC21 code, each instance of the overlay data 

structure has data members that include an overlay identifier, 

an assigned template identifier, a translation vector, a 

rotation matrix, and properties for every overlay cell.  The 

overlay has a single method: 

transform(p): Given a particle p in the grid coordinate 

frame, return the coordinates of p in the template coordinate 

frame. 

The shared data and methods of templates are represented 

with an abstract base class.  All data and methods that are 

unique to a specific template type are represented as 

extensions of that base class.  The shared template data 

consists of a template identifier.  It has a single method that 

is shared by all templates: 

handleScatter(p,d):  Given a particle p, handle a 

scatter event at a distance d along the trajectory of p. 

The base class also has four virtual functions, which must be 

overwritten by all specific templates: 

inside(T,p):  Given a particle p located in template T, 

return the template cell containing p. 

distance(p,c):  Given a particle p that is inside 

template cell c, at coordinate q, and moving in direction d, 

return the distance from q to the boundary of c along d. 

moveToBoundary(p,c):  Given a particle p inside 

template cell c, move particle along its direction vector to 

the boundary of c. 

crossBoundary(p,c):  Given a particle p inside of 

template cell c, cross the boundary from c into the 

neighboring cell. 

To make these functions as efficient as possible, it is 

important to identify what information can be reused among 

operations.  For instance, during particle transport, much of 

the information computed in the inside routine can be 

reused in calls to the distance routine (calls to the 

inside routine are almost always followed by calls to the 

distance routine).  In order to reduce the overall number 

of operations performed (and thereby increase tracking 

speed), the templates are designed to take advantage of a 

generic geometry caching scheme.  Each template type 

maintains its own cache that cannot be modified by other 

template types.  These caches are designed to store any 

information that is useful for repetitive calculations.  Some 

examples include the last template cell found in an inside 

call, local coordinate and direction vector, etc.  Template 

caches also store information that indicates whether or not 

the cache is stale, in which case it must be recomputed.  It 

should be emphasized that there only needs to be one cache 

per template type (not per template or per overlay), since a 

particle can only be in one template at a time.  Thus, 

templates can store any useful information, without creating 

excessive memory requirements. 

 

The template framework also works naturally with delta 

scattering.
 (5)

 At a minimum, each template must have an 

inside routine.  The distance, moveToBoundary, 

and crossBoundary routines are only necessary for 

performing full particle tracking.  This aspect makes the 

template framework very appealing because new template 

types can be quickly prototyped by only developing the 

inside routine.  If it is determined that a given template 

is particularly useful, then developers can later write the 

other routines to offer more robust tracking and tally options.   

 

Currently, MC21 offers three types of templates: a repeated 

ellipse, a repeated ellipsoid, and a box.  The repeated 

ellipse and box templates will be discussed in detail in the 

following sections.  The repeated ellipsoid template is a 

generalization of the repeated ellipse template into three 

dimensions. Since the algorithm and data structures are 

nearly identical for the two templates, the repeated ellipsoid 

template will not be discussed. 

 

IV. Repeated Ellipse Template 
 

The repeated ellipse template is a two-dimensional template 

used to model an infinitely repeating pattern of parallel, 

extruded elliptical cylinders.  This is especially useful for 

modeling structures such as bundles of fuel pins.     

 

The repeated ellipse template allows for one or more ellipses 

located partially or wholly within the tile.  The tile is finite 

in the x- and y-dimensions, but has infinite extent in the 

z-dimension.  Any portion of an elliptical cylinder that 

extends beyond the tile boundary is truncated.  An arbitrary 

number of ellipses can be defined in the interior of a tile.  

Transforming these 2D ellipses to the 3D space of the 

geometric cell is equivalent to extruding the ellipses 

infinitely along the z-axis.  The ellipses may have arbitrary 

positions, rotations, and lengths along the semi-major and 

semi-minor axes.  The bounds of any two ellipses cannot 

intersect within the tile, though they can be nested within 

one another.  Figure 2 shows an example of an ellipse 

template. 
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Figure 2: Example of a repeated ellipse template where  

c0 corresponds to the background (i.e. grid cell) and  

c1-c3 correspond to ellipses 

 



 

 

Each ellipse is stored internally with a matrix representation 

of a general conic polynomial to support inside and 

distance calculations in the template coordinate frame 

(without having to transform to individual ellipse coordinate 

frames).    

 

The template stores the template cells in a cell tree data 

structure to accelerate tracking and point location.  A cell 

tree is a limited form of the hierarchical CSG model that was 

described by Millman, et al.
(6)

  Each cell c is represented by 

a node n.  Each node has parent b and children k1 through 

km, and stores a bounded region of space  R n .  Recall the 

following relevant properties:  

1.    R n R b  

2.    \ ii
c R n R k  

3.    i jR k R k   for i j  

An example of a cell tree corresponding to the model 

illustrated in Figure 2 is given in Figure 3.  In MC21, the 

cell tree is created during initialization by using a predicate 

that takes two ellipses, c1 and c2, and a unit cell U and 

returns true if the intersection of  1R c and U is a subset of 

the intersection of  2R c and U. 

Recall that the inside routine takes in two arguments: a 

particle p and a template T.  If p is contained in T, the 

routine returns the cell c that contains p.  For the repeated 

ellipse template, the inside routine traverses the cell tree 

to find cell c, such that p is in c but p is not in any of the 

children of c.   

 

The distance routine for the repeated ellipse template is 

broken down into several steps.  Again, recall that this 

routine takes in two arguments: a particle p and the cell c of 

template T that the particle is inside.  First, the distance is 

computed to the ellipse c, each child k1 – km, and the 

boundary of the template.  If the minimal distance is to 

ellipse c, the particle leaves c and enters the parent b.  If the 

minimal distance is to a child ki, the particle enters ki.  If the 

minimal distance is to the boundary of the template, then the 

particle moves to the next tile.  Moving to the next tile is 

handled by applying a periodic boundary condition to the 

edges of the tile such that when a particle leaves the left 

boundary, it enters the right boundary, when it leaves the top 

boundary, it enters the bottom boundary, etc.  Thus, the 

representation of the ellipses does not need to be 

transformed as the particle moves between lattice cells. 

V. Box Template 
 

The box template is a three-dimensional template used to 

model a collection of similarly-aligned boxes.  The tile, on 

which the boxes are defined, is infinite in all directions. 

 

An arbitrary number of boxes can be defined within the tile.  

The bounds of any two boxes cannot intersect, though boxes 

can be nested within one another and they can share 

boundaries.  Each box can be assigned a non-uniform 

Cartesian grid consisting of lines parallel to the x-, y-, and 

z-axes.  This grid provides additional geometric detail 

within the box, without extending past its bounds.  An 

example of this concept can be seen in Figure 4. 

 

Allowing each box to be individually gridded prevents 

geometric objects from being over-defined (i.e., represented 

by many more cells than are necessary).  For example, if 

the model in Figure 4 was represented using only grid lines 

(which extend throughout the component), the equivalent 

representation would be greatly over-defined as shown in 

Figure 5.  This representation has 100 cells instead of only 

26, as shown in Figure 4.  This can drastically increase 

memory usage, as well as lower tracking performance since 

particles must track to additional grid planes and score tallies 

in the extra grid cells. 

 

Similar to the repeated ellipse template, the box template 

uses a cell tree data structure to represent the arrangement of 

the boxes.   
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Figure 3: Example of a cell tree corresponding to the  

example illustrated in Figure 2 

 

 

 
 

Figure 4: Example of a box template consisting of an  

outer box containing two disjoint boxes, which each  

have a different internal grid 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Illustration of what the problem shown in  

Figure 4 would look like if it were instead defined as a  

component with a grid. 

 

 

 

 

 

 

 

 

 

 

 



 

 

The inside routine for the box template follows the same 

procedure as the inside routine for the repeated ellipse 

template, since both templates use the cell tree data structure. 

 

The distance routine computes the distance to the box c, 

each child k1 – km, and the internal grid of c.  If the minimal 

distance is to box c, then the particle leaves the box.  Since 

boxes can share boundaries, the code then walks up the cell 

tree until it finds the first ancestor that contains it.  Then it 

walks down the cell tree starting from that ancestor until it 

finds the lowest node that contains it.  If the minimal 

distance is to child ki, then the code walks down the tree 

until it reaches the lowest node that contains it.  If the 

minimal distance is to the internal grid of c, then the particle 

simply moves to the next internal grid cell. 

 

VI. Testing and Results 
 

Test problems were developed to emphasize the benefits of 

the repeated ellipse template and box template.  To 

specifically focus on the tracking efficiency, all cases were 

run as a fixed source calculation in vacuum with 100,000 

total particles.  Particle starting locations were sampled 

uniformly throughout the model and their starting directions 

were sampled isotropically.  All tests were run on a single 

Intel Xeon 2.6 GHz processor that had 48 GB of memory. 

 

1. Test Problem - Repeated Ellipse Template 

 

The test problem for the repeated ellipse template consisted 

of a single square component with an edge length of 10 cm.  

This component was equally subdivided into N×N subcells, 

each with edge length 10 / N   cm.  Each subcell 

contained two nested cylinders, representing the cladding 

and fuel.  The diameter of the outer cylinder was 0.8  , 

and the diameter of the inner cylinder was 0.666  .  The 

number of pins was scaled to show how the tracking speed 

and memory usage was varied for different representations.  

Figure 6 shows an illustration of the model for a 20×20 

lattice.   

Runtime performance was tested using different lattice sizes 

after constructing the model in three different ways.  In the 

first way, each pin was represented by two components.  

This was considered the reference case, since it did not use 

templates at all.  In the second way, a Cartesian grid was 

applied to the problem.  Each grid cell was assigned an 

overlay consisting of two nested ellipses.  The repeat 

capability of the template was not used in this case.  In the 

third way, the box was not gridded.  Instead, a single 

overlay was applied to the box and the template repeat 

capability was allowed to fill the entire space.  Table 1 

shows the results of the runtime comparisons for four 

different lattice sizes: 10×10, 20×20, 30×30, and 40×40.  

Memory usage was also tested using a very large pin 

arrangement of 1000×1000.  The results of the memory 

usage test are shown in Table 2. 

 

As can be seen from Table 1, the ellipse template 

significantly reduced the runtime when compared to a 

component-only model.  This was especially true as the 

number of pins increased.  There was also a noticeable 

decrease in runtime between the non-repeating template and 

the repeating template cases.  The repeating template case 

tracked approximately 50% faster than the non-repeating 

case in these tests.   

The runtime results in Table 1 were expected based on the 

tracking algorithm in each case.  In the component-only 

case, every time a particle left a fuel pin and entered the 

background material, it had to check all other fuel pins to 

determine which it would intersect next.  Thus, for a 

particle that intersected k pins in an N×N pin configuration, 

there were  2O k N intersection tests performed.  The 

repeating and non-repeating template versions of the 

problem used the underlying regularity of the problem to 

avoid extra intersection tests.  Since every grid or lattice 

cell had only one pin to check for intersections (due to the 

nesting), there were only  O k intersection tests performed 

for the same configuration.   

 

 
Figure 6: Test problem - 20×20 pin arrangement 

 

 

 

 

 

 

 

 

 

 Runtime (in seconds) 

Problem 

Size 

Case 1 

Component 

Case 2 

No Repeat 

Case 3 

Repeat 

10×10 3.33 1.03 0.77 

20×20 13.83 1.70 1.18 

30×30 40.63 2.37 1.57 

40×40 92.59 2.99 2.01 

Table 1: Runtime for component case, non-repeating  

template case, and repeating ellipse template case 

 

 Memory Usage (in MB) 

Problem 

Size 

Case 1 

Component 

Case 2 

No Repeat 

Case 3 

Repeat 

1000×1000 3959 71 0.26 

Table 2: Memory usage for component case, non-repeating  

template case, and repeating ellipse template 



 

 

The differences in runtime were also expected between the 

repeating and non-repeating template cases.  In the 

non-repeating case, each grid cell contained a separate 

overlay.  When a particle left a pin and entered the 

background material, it still had to check distances to the 

grid cell’s boundaries to determine which it would intersect 

next.  This extra event processing did not occur in the 

repeating template case, which is why it had the shortest 

runtime.  However, the only a single set of properties was 

assigned to all pins in the model.  This means that if the 

model were to be depleted, then all of the pins would deplete 

together. 

 

Use of templates also significantly reduced memory usage, 

as shown in Table 2.  In the component-only case, every 

cylinder was stored as an individual component, which was 

quite expensive.  In the template cases, the geometric 

structure was only stored once.  The non-repeating template 

case was more expensive than the repeating template case 

because separate overlays were stored for every pin in the 

non-repeating case. 

 

2. Test Problem - Box Template 

 

The test problem for the box template consisted of an 

arrangement of boxes.  The outer component contained 

N×N cubes, each of which had an edge length of 2.5 cm.  

Each cube was separated from the other cubes by 1 cm on 

each side.  Cubes near the boundary of the outer component 

were a distance of 0.5 cm from the boundary.  Each of the 

cubes also had an interior evenly spaced 5×5 grid, where 

each grid cell had an edge length of 0.1 cm.  Figure 7 

illustrates how a 4×4 arrangement of boxes would appear. 

The number of boxes was scaled to show how the template 

becomes more efficient as the problem size increases.  

Three cases were examined for different arrangements of 

boxes.  In the first case, each box was represented as two 

nested components with a Cartesian grid assigned to the 

inner component.  In the second case, the boxes were not 

represented using components.  Instead, a single grid was 

applied to the outer component.  While this case had the 

benefit of not using the slower component tracking, it was 

considerably over-defined, which was expected to increase 

the memory usage.  In the third case, the outer component 

was gridded such that each box was contained in its own 

grid cell.  The boxes themselves were represented using the 

box template, and the inner box was gridded.  The runtime 

results are shown in Table 3 and the memory usage results 

are shown in Table 4. 

 

The runtime for the component case was similar to the 

runtime for the component case from the repeated ellipse test 

(Table 1).  This was expected because of arrangement of 

boxes was similar to the arrangement of cylinders from that 

test. The memory usage for the component case was 

considerably more than both the grid and template cases, due 

to the expense of representing each component and its 

surfaces.  The grid case had a smaller runtime and memory 

usage, though not to the extent of the template case.  The 

grid case tracked slower than the template case because of 

the additional event processing that occurred as particles 

travelled through the extra grid cells.  If this test had 

included other event processing, such as tallies, it is 

expected that the difference between the grid case and the 

template case would be even greater.  The memory usage in 

the grid case was also much higher than in the template case 

because of the properties that were stored for the extra grid 

cells. 

 

VI. Conclusion 
 

A new geometry framework has been proposed for Monte 

Carlo codes that can simplify user input, improve tracking 

speed, and reduce memory usage.  While most Monte Carlo 

codes have ways to address each of these aspects, none of 

those codes use a general framework based on templates.  

The templates framework allows for routines to be 

 

 Memory Usage (in MB) 

Problem 

Size 

Case 1 

Component 

Case 2 

Grid 

Case 3 

Template 

10×10 1.11 0.61 0.41 

20×20 4.13 2.00 1.01 

30×30 9.54 4.23 2.01 

40×40 17.72 7.42 3.41 

Table 4: Memory usage for component case, grid case, and  

box template case 

 
Figure 7: Test problem - 4×4 box arrangement 

 

 

 

 

 

 

 

 

 

 

 

 

 Runtime (in seconds) 

Problem 

Size 

Case 1 

Component 

Case 2 

Grid 

Case 3 

Template 

10×10 3.92 0.65 0.55 

20×20 16.38 0.82 0.65 

30×30 40.04 0.94 0.72 

40×40 75.32 1.04 0.77 

Table 3: Runtime for component case, grid case, and box  

template case 



 

 

individually tailored to model simple, commonly repeated 

geometric shapes.  This approach is highly amenable to 

object oriented programming since each template has its 

methods associated with it.  In this paper, the MC21 

implementation of the repeated ellipse template and box 

template were discussed.  Results showed that for a 

problem with N components, the use of these templates 

could reduce the runtime from  O N  to  1O .  However, 

the exact performance gains are dependent on how well a 

code developer can tailor each template to a given design 

application. 
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