
Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)

La Cité des Sciences et de l’Industrie, Paris, France, October 27-31, 2013

Geometric Templates for Improved Tracking Performance in Monte Carlo Codes

Brian R Nease
*
, David L. Millman, David P. Griesheimer, Daniel F. Gill

Bettis Laboratory, West Mifflin, Pennsylvania, USA

* Corresponding Author, E-mail: brian.nease.contractor@unnpp.gov

One of the most fundamental parts of a Monte Carlo code is its geometry kernel. This kernel not only affects

particle tracking (i.e., run-time performance), but also shapes how users will input models and collect results for later

analyses. A new framework based on geometric templates is proposed that optimizes performance (in terms of

tracking speed and memory usage) and simplifies user input for large scale models. While some aspects of this

approach currently exist in different Monte Carlo codes, the optimization aspect has not been investigated or applied.

If Monte Carlo codes are to be realistically used for full core analysis and design, this type of optimization will be

necessary. This paper describes the new approach and the implementation of two template types in MC21: a

repeated ellipse template and a box template. Several different models are tested to highlight the performance gains

that can be achieved using these templates. Though the exact gains are naturally problem dependent, results show

that runtime and memory usage can be significantly reduced when using templates, even as problems reach realistic

model sizes.

KEYWORDS: Monte Carlo, template, overlay, efficiency, geometry, tracking

I. Introduction

Geometric tracking typically accounts for one third to one

half of the run time for large-scale Monte Carlo transport

calculations. Many production-level Monte Carlo codes

use constructive solid geometry (CSG), where each

geometric object is defined by the union, intersection, and/or

complement of either 1) the boundary defined by a set of

quadratic surface equations or 2) other solid body

objects.
(1),(2),(3)

 CSG is very flexible and allows for accurate

representation of most realistic geometries, which is one of

the strongest selling points of the Monte Carlo method.

Typically, developers will invest significant time in the early

stages of the code optimizing the tracking algorithms for

memory usage and speed. However, even with

optimization, this type of geometric representation is more

expensive than a dedicated system that handles only one

specific type of geometry (e.g., tracking over a structured

mesh).

In this paper, a new geometric framework is developed,

which is based on dedicated tracking systems called

templates. These templates are specifically developed and

tailored to known design applications, allowing the code to

take advantage of simple, commonly repeated, geometric

shapes. As a consequence, templates can greatly improve

tracking speed and memory usage, even as model sizes

increase.

II. Overview of Templates and Overlays

Most reactor core models use regularly repeated geometric

shapes, such as the cylindrical pins in PWR / BWR fuel

assemblies. While a model could be constructed with each

of these pins represented using CSG, this is not necessarily

efficient. This is because the representation cannot take

advantage of known geometric characteristics, such as the

cylindrical shape of each pin, the regular spacing between

pins, the hierarchical relationship between the coolant,

cladding, fuel, etc.

Many codes recognize the inherent problems with

representing every object explicitly and have implemented

various ways to improve efficiency. For instance, MCNP

allows users to define universes, lattices, and repeated

structures.
(3)

 Lattices allow for a hexagonal prism or

hexahedra subdivision of a CSG objects. Universes allow

geometric hierarchy by defining a collection of objects in

one coordinate system and then placing those objects inside

another. Repeated structures allow users to geometrically

replicate a collection of objects but assign them different

properties. While these features improve memory usage

and simplify user input, they do not improve tracking

speed.
(3)

Previous versions of the MC21 code also had options to

improve tracking efficiency. In 2006, Donovan and

Tyburski reported on the use of a dedicated system for

tracking over collections of elliptical cylinders.
(4)

 Their

results demonstrated that the use of a dedicated system could

significantly improve tracking speed. However, their

original implementation was limited and could only be used

to model a 2D lattice of repeated ellipses. Other geometries

could not be modeled without significantly restructuring the

code. Also, the original implementation did not allow for

the reuse of the underlying ellipse definition. Every

definition (even those that were geometrically identical) had

to be repeated on input and in memory, making it

cumbersome and memory intensive.

In this paper, a new framework is introduced based on

templates and overlays. Though this framework can be

modified to work in most Monte Carlo codes, this paper will

focus on its implementation in MC21. In MC21, there are

three levels of representation: components, grids, and

overlays. A component is a 3D solid-geometry object

constructed from the unions and intersections of primitives.

Every model must contain at least one component, which

defines the maximum extent of the solution space.

Additional geometric detail can be added by assigning the

component a grid, which subdivides the interior of the

component into a collection of grid cells. Any part of a

grid that extends beyond the bounds of its component is

truncated. Additional detail can be added by assigning an

overlay to a grid cell. An overlay is a collection of cells

(referred to as overlay cells) that represent simple geometric

objects. In practice, the shapes and relative arrangements

of these overlay cells are often repeated throughout the

model. However, the overlay cells are usually assigned

different properties (such as material or temperature) and

have a different overall placement within the model. For

this reason, an overlay is used to define the properties and

placements of the overlay cells, and a template is used to

define the shapes and relative arrangements of the overlay

cells. For convenience, the geometric objects defined by a

template are referred to as template cells. An overlay

assigns the template cells properties and places them within

the model, making them overlay cells. Any part of an

overlay cell that extends beyond the bounds of its grid cell is

truncated. Multiple overlays can use the same template,

allowing for a given arrangement of geometric objects to be

defined once and reused. This results in improved memory

usage, since multiple copies of the same geometry do not

need to be stored. When a template is first created, the

template cells are defined on a tile, which is a unique

coordinate frame that can be either finite or infinite in

dimension. If a tile is finite, then the entire tile (and all of

the template cells contained within it) is repeated infinitely

in all directions.

An example of this geometry system is illustrated in Figure 1.

At the top of the figure is each of the individual objects: a

component, grid, template, and two overlays. The template

is defined on a finite tile, so it repeats in each direction.

Both overlays use the same template, but each has a different

rotation. The bottom of the figure shows the result of

combining these objects into a complete geometry. The

grid is assigned to the component, and the component

boundaries truncate the grid boundaries. Overlay 1 is

assigned to grid cell 5. The overlay is placed such that the

tile is repeated within the grid cell, and the grid cell

boundaries truncate overlay cell boundaries on each tile.

Overlay 2 is assigned to both grid cells 7 and 8. By

assigning overlay 2 in this way, the entire overlay cell can be

represented (instead of it being truncated by the grid cell

boundaries). However, even though the same overlay is

applied to two different grid cells, there is only one set of

properties, since both grid cells were assigned overlay 2.

Thus, if this model were depleted, the overlays assigned to

grid cells 7 and 8 (colored in yellow) would deplete together,

while the overlay assigned to grid cell 5 (colored in red)

would deplete separately.

The shapes and arrangements of template cells are limited by

design. This allows for tracking routines to be specifically

tailored to each type of template. Developers can easily

create new templates based on the specific needs of their

users. Such an approach is highly amenable to

object-oriented programming. The next section of this

paper will discuss the implementation of this framework into

the MC21 code, which is written using Fortran 2008

standards.

Individual Geometric Objects

Component

Grid

Overlay 1 Overlay 2Cell 5

Cell 7 Cell 8

Template

Tile

repetition

Combined Geometry

Overlay 1

applied

Overlay 2

applied
Grid cell

boundaries

Figure 1: The top is an illustration of the individual

geometric objects, including a component, grid, template,

and overlay assignments. The bottom is an illustration of

those objects combined into a complete geometry. The

grid is assigned to the component. Overlay 1 is assigned to

grid cell 5, and overlay 2 is assigned to grid cells 7 and 8.

Color indicates material assignment.

III. Template/Overlay Methods and Data Structures

In the MC21 code, each instance of the overlay data

structure has data members that include an overlay identifier,

an assigned template identifier, a translation vector, a

rotation matrix, and properties for every overlay cell. The

overlay has a single method:

transform(p): Given a particle p in the grid coordinate

frame, return the coordinates of p in the template coordinate

frame.

The shared data and methods of templates are represented

with an abstract base class. All data and methods that are

unique to a specific template type are represented as

extensions of that base class. The shared template data

consists of a template identifier. It has a single method that

is shared by all templates:

handleScatter(p,d): Given a particle p, handle a

scatter event at a distance d along the trajectory of p.

The base class also has four virtual functions, which must be

overwritten by all specific templates:

inside(T,p): Given a particle p located in template T,

return the template cell containing p.

distance(p,c): Given a particle p that is inside

template cell c, at coordinate q, and moving in direction d,

return the distance from q to the boundary of c along d.

moveToBoundary(p,c): Given a particle p inside

template cell c, move particle along its direction vector to

the boundary of c.

crossBoundary(p,c): Given a particle p inside of

template cell c, cross the boundary from c into the

neighboring cell.

To make these functions as efficient as possible, it is

important to identify what information can be reused among

operations. For instance, during particle transport, much of

the information computed in the inside routine can be

reused in calls to the distance routine (calls to the

inside routine are almost always followed by calls to the

distance routine). In order to reduce the overall number

of operations performed (and thereby increase tracking

speed), the templates are designed to take advantage of a

generic geometry caching scheme. Each template type

maintains its own cache that cannot be modified by other

template types. These caches are designed to store any

information that is useful for repetitive calculations. Some

examples include the last template cell found in an inside

call, local coordinate and direction vector, etc. Template

caches also store information that indicates whether or not

the cache is stale, in which case it must be recomputed. It

should be emphasized that there only needs to be one cache

per template type (not per template or per overlay), since a

particle can only be in one template at a time. Thus,

templates can store any useful information, without creating

excessive memory requirements.

The template framework also works naturally with delta

scattering.
 (5)

 At a minimum, each template must have an

inside routine. The distance, moveToBoundary,

and crossBoundary routines are only necessary for

performing full particle tracking. This aspect makes the

template framework very appealing because new template

types can be quickly prototyped by only developing the

inside routine. If it is determined that a given template

is particularly useful, then developers can later write the

other routines to offer more robust tracking and tally options.

Currently, MC21 offers three types of templates: a repeated

ellipse, a repeated ellipsoid, and a box. The repeated

ellipse and box templates will be discussed in detail in the

following sections. The repeated ellipsoid template is a

generalization of the repeated ellipse template into three

dimensions. Since the algorithm and data structures are

nearly identical for the two templates, the repeated ellipsoid

template will not be discussed.

IV. Repeated Ellipse Template

The repeated ellipse template is a two-dimensional template

used to model an infinitely repeating pattern of parallel,

extruded elliptical cylinders. This is especially useful for

modeling structures such as bundles of fuel pins.

The repeated ellipse template allows for one or more ellipses

located partially or wholly within the tile. The tile is finite

in the x- and y-dimensions, but has infinite extent in the

z-dimension. Any portion of an elliptical cylinder that

extends beyond the tile boundary is truncated. An arbitrary

number of ellipses can be defined in the interior of a tile.

Transforming these 2D ellipses to the 3D space of the

geometric cell is equivalent to extruding the ellipses

infinitely along the z-axis. The ellipses may have arbitrary

positions, rotations, and lengths along the semi-major and

semi-minor axes. The bounds of any two ellipses cannot

intersect within the tile, though they can be nested within

one another. Figure 2 shows an example of an ellipse

template.

c0

c3

c2

c1

Figure 2: Example of a repeated ellipse template where

c0 corresponds to the background (i.e. grid cell) and

c1-c3 correspond to ellipses

Each ellipse is stored internally with a matrix representation

of a general conic polynomial to support inside and

distance calculations in the template coordinate frame

(without having to transform to individual ellipse coordinate

frames).

The template stores the template cells in a cell tree data

structure to accelerate tracking and point location. A cell

tree is a limited form of the hierarchical CSG model that was

described by Millman, et al.
(6)

 Each cell c is represented by

a node n. Each node has parent b and children k1 through

km, and stores a bounded region of space  R n . Recall the

following relevant properties:

1.    R n R b

2.    \ ii
c R n R k

3.    i jR k R k  for i j

An example of a cell tree corresponding to the model

illustrated in Figure 2 is given in Figure 3. In MC21, the

cell tree is created during initialization by using a predicate

that takes two ellipses, c1 and c2, and a unit cell U and

returns true if the intersection of  1R c and U is a subset of

the intersection of  2R c and U.

Recall that the inside routine takes in two arguments: a

particle p and a template T. If p is contained in T, the

routine returns the cell c that contains p. For the repeated

ellipse template, the inside routine traverses the cell tree

to find cell c, such that p is in c but p is not in any of the

children of c.

The distance routine for the repeated ellipse template is

broken down into several steps. Again, recall that this

routine takes in two arguments: a particle p and the cell c of

template T that the particle is inside. First, the distance is

computed to the ellipse c, each child k1 – km, and the

boundary of the template. If the minimal distance is to

ellipse c, the particle leaves c and enters the parent b. If the

minimal distance is to a child ki, the particle enters ki. If the

minimal distance is to the boundary of the template, then the

particle moves to the next tile. Moving to the next tile is

handled by applying a periodic boundary condition to the

edges of the tile such that when a particle leaves the left

boundary, it enters the right boundary, when it leaves the top

boundary, it enters the bottom boundary, etc. Thus, the

representation of the ellipses does not need to be

transformed as the particle moves between lattice cells.

V. Box Template

The box template is a three-dimensional template used to

model a collection of similarly-aligned boxes. The tile, on

which the boxes are defined, is infinite in all directions.

An arbitrary number of boxes can be defined within the tile.

The bounds of any two boxes cannot intersect, though boxes

can be nested within one another and they can share

boundaries. Each box can be assigned a non-uniform

Cartesian grid consisting of lines parallel to the x-, y-, and

z-axes. This grid provides additional geometric detail

within the box, without extending past its bounds. An

example of this concept can be seen in Figure 4.

Allowing each box to be individually gridded prevents

geometric objects from being over-defined (i.e., represented

by many more cells than are necessary). For example, if

the model in Figure 4 was represented using only grid lines

(which extend throughout the component), the equivalent

representation would be greatly over-defined as shown in

Figure 5. This representation has 100 cells instead of only

26, as shown in Figure 4. This can drastically increase

memory usage, as well as lower tracking performance since

particles must track to additional grid planes and score tallies

in the extra grid cells.

Similar to the repeated ellipse template, the box template

uses a cell tree data structure to represent the arrangement of

the boxes.

c1 c3

c2

c0

Figure 3: Example of a cell tree corresponding to the

example illustrated in Figure 2

Figure 4: Example of a box template consisting of an

outer box containing two disjoint boxes, which each

have a different internal grid

Figure 5: Illustration of what the problem shown in

Figure 4 would look like if it were instead defined as a

component with a grid.

The inside routine for the box template follows the same

procedure as the inside routine for the repeated ellipse

template, since both templates use the cell tree data structure.

The distance routine computes the distance to the box c,

each child k1 – km, and the internal grid of c. If the minimal

distance is to box c, then the particle leaves the box. Since

boxes can share boundaries, the code then walks up the cell

tree until it finds the first ancestor that contains it. Then it

walks down the cell tree starting from that ancestor until it

finds the lowest node that contains it. If the minimal

distance is to child ki, then the code walks down the tree

until it reaches the lowest node that contains it. If the

minimal distance is to the internal grid of c, then the particle

simply moves to the next internal grid cell.

VI. Testing and Results

Test problems were developed to emphasize the benefits of

the repeated ellipse template and box template. To

specifically focus on the tracking efficiency, all cases were

run as a fixed source calculation in vacuum with 100,000

total particles. Particle starting locations were sampled

uniformly throughout the model and their starting directions

were sampled isotropically. All tests were run on a single

Intel Xeon 2.6 GHz processor that had 48 GB of memory.

1. Test Problem - Repeated Ellipse Template

The test problem for the repeated ellipse template consisted

of a single square component with an edge length of 10 cm.

This component was equally subdivided into N×N subcells,

each with edge length 10 / N  cm. Each subcell

contained two nested cylinders, representing the cladding

and fuel. The diameter of the outer cylinder was 0.8  ,

and the diameter of the inner cylinder was 0.666  . The

number of pins was scaled to show how the tracking speed

and memory usage was varied for different representations.

Figure 6 shows an illustration of the model for a 20×20

lattice.

Runtime performance was tested using different lattice sizes

after constructing the model in three different ways. In the

first way, each pin was represented by two components.

This was considered the reference case, since it did not use

templates at all. In the second way, a Cartesian grid was

applied to the problem. Each grid cell was assigned an

overlay consisting of two nested ellipses. The repeat

capability of the template was not used in this case. In the

third way, the box was not gridded. Instead, a single

overlay was applied to the box and the template repeat

capability was allowed to fill the entire space. Table 1

shows the results of the runtime comparisons for four

different lattice sizes: 10×10, 20×20, 30×30, and 40×40.

Memory usage was also tested using a very large pin

arrangement of 1000×1000. The results of the memory

usage test are shown in Table 2.

As can be seen from Table 1, the ellipse template

significantly reduced the runtime when compared to a

component-only model. This was especially true as the

number of pins increased. There was also a noticeable

decrease in runtime between the non-repeating template and

the repeating template cases. The repeating template case

tracked approximately 50% faster than the non-repeating

case in these tests.

The runtime results in Table 1 were expected based on the

tracking algorithm in each case. In the component-only

case, every time a particle left a fuel pin and entered the

background material, it had to check all other fuel pins to

determine which it would intersect next. Thus, for a

particle that intersected k pins in an N×N pin configuration,

there were  2O k N intersection tests performed. The

repeating and non-repeating template versions of the

problem used the underlying regularity of the problem to

avoid extra intersection tests. Since every grid or lattice

cell had only one pin to check for intersections (due to the

nesting), there were only  O k intersection tests performed

for the same configuration.

Figure 6: Test problem - 20×20 pin arrangement

 Runtime (in seconds)

Problem

Size

Case 1

Component

Case 2

No Repeat

Case 3

Repeat

10×10 3.33 1.03 0.77

20×20 13.83 1.70 1.18

30×30 40.63 2.37 1.57

40×40 92.59 2.99 2.01

Table 1: Runtime for component case, non-repeating

template case, and repeating ellipse template case

 Memory Usage (in MB)

Problem

Size

Case 1

Component

Case 2

No Repeat

Case 3

Repeat

1000×1000 3959 71 0.26

Table 2: Memory usage for component case, non-repeating

template case, and repeating ellipse template

The differences in runtime were also expected between the

repeating and non-repeating template cases. In the

non-repeating case, each grid cell contained a separate

overlay. When a particle left a pin and entered the

background material, it still had to check distances to the

grid cell’s boundaries to determine which it would intersect

next. This extra event processing did not occur in the

repeating template case, which is why it had the shortest

runtime. However, the only a single set of properties was

assigned to all pins in the model. This means that if the

model were to be depleted, then all of the pins would deplete

together.

Use of templates also significantly reduced memory usage,

as shown in Table 2. In the component-only case, every

cylinder was stored as an individual component, which was

quite expensive. In the template cases, the geometric

structure was only stored once. The non-repeating template

case was more expensive than the repeating template case

because separate overlays were stored for every pin in the

non-repeating case.

2. Test Problem - Box Template

The test problem for the box template consisted of an

arrangement of boxes. The outer component contained

N×N cubes, each of which had an edge length of 2.5 cm.

Each cube was separated from the other cubes by 1 cm on

each side. Cubes near the boundary of the outer component

were a distance of 0.5 cm from the boundary. Each of the

cubes also had an interior evenly spaced 5×5 grid, where

each grid cell had an edge length of 0.1 cm. Figure 7

illustrates how a 4×4 arrangement of boxes would appear.

The number of boxes was scaled to show how the template

becomes more efficient as the problem size increases.

Three cases were examined for different arrangements of

boxes. In the first case, each box was represented as two

nested components with a Cartesian grid assigned to the

inner component. In the second case, the boxes were not

represented using components. Instead, a single grid was

applied to the outer component. While this case had the

benefit of not using the slower component tracking, it was

considerably over-defined, which was expected to increase

the memory usage. In the third case, the outer component

was gridded such that each box was contained in its own

grid cell. The boxes themselves were represented using the

box template, and the inner box was gridded. The runtime

results are shown in Table 3 and the memory usage results

are shown in Table 4.

The runtime for the component case was similar to the

runtime for the component case from the repeated ellipse test

(Table 1). This was expected because of arrangement of

boxes was similar to the arrangement of cylinders from that

test. The memory usage for the component case was

considerably more than both the grid and template cases, due

to the expense of representing each component and its

surfaces. The grid case had a smaller runtime and memory

usage, though not to the extent of the template case. The

grid case tracked slower than the template case because of

the additional event processing that occurred as particles

travelled through the extra grid cells. If this test had

included other event processing, such as tallies, it is

expected that the difference between the grid case and the

template case would be even greater. The memory usage in

the grid case was also much higher than in the template case

because of the properties that were stored for the extra grid

cells.

VI. Conclusion

A new geometry framework has been proposed for Monte

Carlo codes that can simplify user input, improve tracking

speed, and reduce memory usage. While most Monte Carlo

codes have ways to address each of these aspects, none of

those codes use a general framework based on templates.

The templates framework allows for routines to be

 Memory Usage (in MB)

Problem

Size

Case 1

Component

Case 2

Grid

Case 3

Template

10×10 1.11 0.61 0.41

20×20 4.13 2.00 1.01

30×30 9.54 4.23 2.01

40×40 17.72 7.42 3.41

Table 4: Memory usage for component case, grid case, and

box template case

Figure 7: Test problem - 4×4 box arrangement

 Runtime (in seconds)

Problem

Size

Case 1

Component

Case 2

Grid

Case 3

Template

10×10 3.92 0.65 0.55

20×20 16.38 0.82 0.65

30×30 40.04 0.94 0.72

40×40 75.32 1.04 0.77

Table 3: Runtime for component case, grid case, and box

template case

individually tailored to model simple, commonly repeated

geometric shapes. This approach is highly amenable to

object oriented programming since each template has its

methods associated with it. In this paper, the MC21

implementation of the repeated ellipse template and box

template were discussed. Results showed that for a

problem with N components, the use of these templates

could reduce the runtime from  O N to  1O . However,

the exact performance gains are dependent on how well a

code developer can tailor each template to a given design

application.

References

1) D.P. Griesheimer, et al., “MC21 v6.0 – A Continuous-Energy

Monte Carlo Particle Transport Code with Integrated Reactor

Feedback Capabilities,” Proc. Joint International Conference on

Supercomputing in Nuclear Applications and Monte Carlo

(SNA+MC), 2013.

2) TRIPOLI-4 Project team, “TRIPOLI-4 Version 7 User Guide,”

CEA, serma/ltsd/rt/10-4941/a edition (2010).
3) X-5 Monte Carlo Team, “MCNP—A General Monte Carlo

N-Particle Transport Code, Version 5,” LA-UR-03-1987, Los

Alamos National Laboratory (2003).

4) T. J. Donovan, L. J. Tyburski, “Geometric Representations in

the Developmental Monte Carlo Transport Code MC21,” Proc.

PHYSOR-2006, Vancouver, BC, Canada, September 10–14, on

CD-ROM (2006).

5) I. Lux and L. Koblinger, Monte Carlo Particle Transport

Methods: Neutron and Photon Calculations, CRC Press 1991.

6) D.L. Millman, D.P. Griesheimer, B.R. Nease, and J. Snoeyink,

“Robust Volume Calculations for Constructive Solid Geometry

(CSG) Components in Monte Carlo Transport Calculations,”

Proc. PHYSOR: Advances in Reactor Physics, 2012.

