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ABSTRACT 

 
In this paper we develop a statistical distribution for the number of inclusions present in a one-

dimensional binary stochastic material of a finite length.  From this distribution, an analytic 

solution for the expected number of inclusions present in a given problem is derived.  For cases 

where the analytical solution for the expected number of inclusions is prohibitively expensive to 

compute, a simple, empirically-derived, approximation for the expected value is presented.  A 

series of numerical experiments are used to bound the error of this approximation over the domain 

of interest.  Finally, the above approximations are used to develop a methodology for determining 

the distribution of distances between adjacent inclusions in the material, subject to known problem 

conditions including: the total length of the problem, the length of each inclusion, and the 

expected volume fraction of inclusions in the problem.  The new method is shown to be equivalent 

to the use of the infinite medium nearest neighbor distribution with an effective volume fraction to 

account for the finite nature of the material.  Numerical results are presented for a wide range of 

problem parameters, in order to demonstrate the accuracy of this method and identify conditions 

where the method breaks down.  In general, the technique is observed to produce excellent results 

(absolute error less than 1×10
-6

) for problems with inclusion volume fractions less than 0.8 and a 

ratio of problem length to inclusion length greater than 25.  For problems that do not fall into this 

category, the accuracy of the method is shown to be dependent on the particular combination of 

these parameters.  A brief discussion of the relevance of this method for Monte Carlo chord length 

sampling algorithms is also provided. 

 

Key Words: Stochastic Mixture, Monte Carlo, Chord Length Sampling, Stochastic Transport  

 

 

1. INTRODUCTION 

 

Over the past 20 years, a significant amount of research has been devoted to developing methods 

for solving the linear transport equation in random heterogeneous mixtures of two or more 

distinct materials [1-12].  The resulting methods have been successfully applied to a wide variety 

of problems, including the modeling of radiation transport through heterogeneous materials such 

as concrete, water droplets in the atmosphere, gas/dust in interstellar space, two-phase gas-liquid 

mixtures, biological tissue, TRISO fuel particles (commonly found in High Temperature Gas 
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Reactor (HTGR) fuel), and certain thermal neutron poison materials used for criticality safety 

applications (marketed under the trade name BORAL
®
)  [2-10].  In each of these cases, the 

transport medium can be modeled as a stochastic mixture of homogeneous inclusions, which are 

randomly distributed within a uniform background material.  Solving the linear transport 

equation for this type of mixture, referred to as a stochastic material, presents a unique set of 

challenges.  The random distribution of inclusions within the mixture means that the properties 

(e.g. cross sections) for a stochastic material have a strong spatial dependence.  Furthermore, this 

spatial dependence is unique for every particular realization of the material, implying that the 

transport solution itself must be dependent on the detailed arrangement of inclusions within the 

material.  Unfortunately, for most cases of interest, it is impractical to consider explicitly 

modeling every inclusion in the material.  Even if the inclusions were stationary with known 

locations, which they typically are not, the actual transport calculation would be prohibitively 

expensive for large numbers of inclusions.  Instead, it is more practical to search for an 

“average” transport solution, which is reasonably accurate over a wide range of material 

realizations.  References 3 and 4 provide a thorough review of the previous methods 

development work in this area. 

 

Recently, Monte Carlo methods have gained widespread use for analyzing stochastic media 

transport problems.  Unfortunately, brute force approaches for calculating the ensemble average 

solutions with Monte Carlo methods are severely limited by the availability of computer 

resources.  As noted earlier, the explicit representation of individual inclusions within a 

stochastic material is impractical for all but the smallest problems.  To overcome these problems, 

Zimmerman and Adams [2] proposed a new technique for Monte Carlo transport calculations, 

which does not require inclusions to be explicitly represented.  In their chord-length sampling 

(CLS) method, the distances between and within inclusions in a stochastic material are randomly 

sampled from appropriate statistical distributions during the particle transport process. 

 

By sampling the distances between material interfaces (background/inclusion or inclusion/ 

background) on the fly, the CLS method is able to track particles through stochastic materials 

very efficiently.  Furthermore, by only considering the distances between material interfaces that 

occur along the current particle flight path, the CLS method effectively reduces multi-

dimensional particle tracking in a stochastic material to a series of simpler one-dimensional ray 

tracing calculations, which are easier to compute and analyze theoretically.  In numerical 

experiments, variants of the CLS method have repeatedly shown excellent performance and good 

agreement with benchmark results [2-9, 11]. 

 

However, while the CLS method has shown promising results for many benchmark calculations, 

there are still a number of open questions regarding its use in more realistic problems.  In 

particular, the results of the CLS are known to be strongly dependent on the statistical 

distributions used to describe the stochastic material.  While chord length distributions within 

slab (1-D), disk (2-D), and spherically (3-D) shaped inclusions are well known [3,12], the 

distribution of distances between adjacent inclusions has not been well characterized, until 

recently.  In ideal cases, it is known that the distribution of distances between adjacent inclusions 

should be exponentially distributed with a constant rate parameter [12], which we will denote λ.  

Past CLS studies have relied on empirical fitting calculations to determine λ for a particular 

problem of interest [3-7].  These empirically produced values have typically yielded good 
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agreement with numerical experiments.  However, requiring an empirically fit rate parameter to 

be calculated for each unique problem was viewed as a limitation of the original CLS models.  

These methods would be much more convenient and applicable if the rate parameter could be 

calculated, or at least estimated, on the fly, thus eliminating the need for auxiliary fitting 

calculations.  To this end, recent work by Ji and Martin [9, 11] has considered the distribution of 

distances between fuel microspheres in pebble and compact-type VTHR fuel elements.  For three 

dimensional problems, their result matches the theoretical distribution of distributions for 

uniformly distributed spheres in an infinite medium [11].  However, subsequent analysis has 

shown that this limiting distribution may not be an accurate approximation near the edges of 

stochastic materials with finite extent.  This boundary effect is due to the fact that the volume 

fraction of inclusions is lower near the edge of a region than in the center, due to limitations on 

allowable particle locations near the boundary [11].  Previous work by Murata et. al. [6,7]and Ji 

and Martin [11] has shown that it is possible to apply correction factors to the infinite medium 

results in order to account for these boundary effects.  In these studies, the boundary correction 

was applied through the use of a modified inclusion volume fraction, which takes into account 

the size and geometry of the stochastic material region.  In addition, Ji and Martin [11] have 

developed a methodology for calculating a problem specific correction factor through the use of 

simple fitting calculations. 

 

In this paper we seek to develop a better understanding of the boundary effect by analyzing the 

distribution of distances between adjacent inclusions in a 1-D binary stochastic media problem 

with finite length.  We begin by developing a statistical distribution for the number of fixed-

length inclusions present in a one-dimensional slab of total length L.  From this distribution, an 

analytic solution for the expected number of inclusions present in a given problem is derived.  

For cases where the analytical solution for the expected number of inclusions is prohibitively 

expensive to compute, a simple, empirically-derived, approximation for the expected value is 

presented.  A series of numerical experiments are used to bound the error of this approximation 

over the domain of interest.  Finally, the above approximations are used to develop a 

methodology for determining the rate parameter that characterizes the distribution of distances 

between adjacent inclusions in the material, subject to known problem conditions including: the 

total length of the problem, the length of each inclusion, and the expected total volume fraction 

of inclusions in the problem.  Numerical results are presented for a wide range of problem 

parameters, in order to demonstrate the accuracy of this method and identify conditions where 

the method breaks down. 

 

The results from this paper demonstrate that the distribution of distances between adjacent 

inclusions in a 1-D binary stochastic mixture can be well modeled by an exponential distribution 

for realistic cases.  The proposed methodology for estimating the unknown rate parameter λ is 

shown to produce excellent results (absolute error less than 1×10
-6

) for problems with inclusion 

volume fractions less than 0.8 and a ratio of problem length to inclusion length greater than 25.  

For problems that do not fall into this category, the accuracy of the method is shown to be 

dependent on the particular combination of these parameters.  While the results provided in this 

paper are specifically for 1-D problems, the authors believe that the understanding developed on 

this academic problem provides significant insight into higher-dimensional problems. 
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2. DERIVATION OF THE EXPECTED NUMBER OF INCLUSIONS 

2.1.  Assumptions 

 

For this analysis we will consider a one-dimensional slab of length L, which contains a number 

of inclusions of fixed length ∆x distributed randomly throughout.  The background material of 

the slab is identified as material A, and the material in the inclusions is identified as material B.  

Both the number and spatial location of the inclusions is assumed to be random, subject to the 

conditions that no inclusion may extend beyond the boundaries of the slab and no two inclusions 

may overlap with one another.  An illustration of an example slab of this type is shown in Figure 

1.  In this section we seek to derive statistical distributions that describe both the number of 

inclusions in a slab, and also the distribution of distances that separate two adjacent inclusions. 

 

We begin the derivations by assuming that the distance between any two adjacent inclusions can 

be well-described by an exponential distribution of the form 

 

 ( )exp

, 0
;

0, 0

x
e x

p x
x

λλ
λ

− ≥
= 

<
, (1) 

 

where x is the distance between inclusions and λ is a rate parameter, which determines the 

probability of encountering an inclusion per distance traveled.  As noted earlier, this assumption 

is known to be exact for ideal (infinite medium) cases [12], and has also been shown to produce 

accurate results in certain non-ideal (typically thick media) problems [4,9,11].  In this paper we 

will consider the validity of this assumed distribution for different combinations of slab length 

(L) and inclusion thickness (∆x).  We proceed by deriving a probability density function for the 

number of inclusions in a slab of total length L, based on the assumed distribution of distances 

(chords) between adjacent inclusions, as given in Eq. (1). 

2.2.  Single Inclusion Case 

 

Before deriving the distribution for a slab with multiple inclusions, let us first consider a simpler 

two-region problem that contains a random-length segment of material A followed by a single 

∆x

L0 x

A A A A AB B B B

∆x

L0 x

A A A A AB B B B

 
Figure 1. Illustration of a one-dimensional binary stochastic material with total length L, and 

inclusion length ∆x. 
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inclusion of material B, as shown in Figure 2.  In this case, the length of the material A segment, 

x1, is a realization of the random variable X, which is governed by the probability distribution 

pexp(x; λ).  The total length of the simple two-region problem is equal to 

 

 1 1l x x= + ∆ , (2) 

 

The probability of finding no inclusions in a fixed length L is equal to the probability that l1 > L, 

or, correspondingly, the probability that x1 > L – ∆x.  From the probability distribution given in 

Eq. (1) we can show 

 

 ( ) x

L x
p x L x e dx

λλ
∞

−

−∆
> − ∆ = ∫ . (3) 

 

Evaluating the integral in Eq. (3) yields an expression for the probability 

 

 ( ) ( )
0

L x
p N e

λ− −∆
= = , (4) 

 

where N is the number of inclusions in the slab.  We note that Eq. (4) agrees with the N = 0 result 

previously derived by Donovan and Dannon [4].  In cases where the total length of the slab is so 

narrow that more than one inclusion cannot fit (L < 2 ∆x), we can immediately calculate the 

probability of finding an inclusion in the slab by the relationship, p(N = 1) = 1 – p(N = 0).  

However, for cases where L < 2 ∆x we must consider the possibility of multiple inclusions 

occurring within the slab. 

2.3.  Multiple Inclusion Case 

 

For slabs containing more than one inclusion, we immediately recognize that any slab containing 

multiple inclusions may be broken up into a series of two-region segments of the form described 

in the previous section.  Under this partitioning, the length of the material A region in each 

segment is an independent realization from the random variable X.  Therefore, the total length of 

n segments, Ln, can be calculated by summing Eq. (2) over n independent realizations from X, 

 

∆x
l10

x1

A B

∆x
l10

x1

A B

 
Figure 2. Illustration of a one-dimensional binary stochastic material containing exactly one 

inclusion.  In this case the length of the slab l1 is a random variable. 
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1

n

n i

i

L x x
=

= + ∆∑ . (5) 

 

Since the length of the inclusions is a constant value, we may factor this term out of the 

summation and rewrite Eq. (5) as 

 

 
1

n

n i

i

L n x x
=

= ∆ +∑ . (6) 

 

Because the realizations of X are guaranteed to be positive, Ln must be a monotonically 

increasing function of n.  Therefore, for any given sequence of realizations {x1, x2, x3,…} there 

exists a value n′ such that Ln′+j > L for all j ≥ 1.  Thus n′ gives the number of inclusions that occur 

in a slab of length L for a given sequence of realizations {x1, x2, x3,…}.  Additional inclusions 

are not possible because they will not fit within the given slab length, L. 

 

Using this information, we wish to determine the probability that a given number of inclusions, 

N, will occur within a slab of length L.  We begin by determining the probability that Ln > L, 

implying that n inclusions will not fit in a slab of length L.  From Eq. (6) we write 

 

 ( )
1

n

n i

i

p L L p n x x L
=

 
> = ∆ + > 

 
∑ . (7) 

 

From the left hand side of Eq. (7) we note that when Ln > L, the actual number of inclusions in 

the slab, N, must be less than or equal to n−1, 

 

 ( )
1

1
n

i

i

p N n p x L n x
=

 
≤ − = > − ∆ 

 
∑ . (8) 

 

The right hand side of Eq. (8) is the probability that the sum of n independent identically 

distributed random variables will be greater than a constant value.  Writing this sum as a new 

random variable Yn, we have 

 

 
1

n

n i

i

y x
=

=∑ . (9) 

 

In the case where the xi realizations are all taken from an identical exponential distribution with 

rate parameter λ, it can be shown that the yn values are Erlang distributed with probability 

 

 ( )
( )

1

Er ; ,
1 !

n n y
y e

p y n
n

λλ
λ

− −

=
−

, (10) 

 

and cumulative probability, 
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 ( )
( )

( )Er

,
; ,

1 !

n y
P y n

n

γ λ
λ =

−
, (11) 

 

where γ(n,λy) is the lower incomplete gamma function, which is defined by 

 

 ( ) 1

0
,

y
n t

n y t e dt
λ

γ λ − −= ∫ . (12) 

 

Substituting Eq. (9) and (10) into Eq. (8) yields 

 

 ( ) ( ) ( )1 ; ,
n Er

L n x
p N n p y L n x p y n dyλ

∞

− ∆
≤ − = > − ∆ = ∫ . (13) 

 

The right hand side of Eq. (13) can be rewritten in terms of the cumulative probability 

distribution, PEr, by 

 

 ( ) ( ) ( )Er Er
0 0

1 ; , ; ,
L n x

p N n p y n dy p y n dyλ λ
∞ − ∆

≤ − = −∫ ∫   

 

 ( ) ( )( )Er1 1 ; ,p N n P y n L n xλ≤ − = − − ∆ . (14) 

 

Substituting Eq. (11) in to Eq. (14) gives the cumulative distribution function 

 

 ( ) ( )
( )( )

( )

,
1 1 1

1 !

n L n x
P n p N n

n

γ λ − ∆
− = ≤ − = −

−
. (15) 

 

Now that we have determined the probability that there are n−1 or fewer inclusions we can 

determine the probability that there are exactly n inclusions by noting that 

 

 ( ) ( ) ( )1p N n p N n p N n= = ≤ − ≤ − . (16) 

 

Substituting Eq. (15) for N ≤ n and N ≤ n−1 into Eq. (16) gives the final result 

 

 ( )
( )( )

( )
( )( ), 1, ( 1)

1 ! !

N L N x N L N x
p N

N N

γ λ γ λ− ∆ + − + ∆
= −

−
. (17) 

2.4.  Generalized Probability Distribution Function 

 

By examination we see that the probability distribution function given in Eq. (17) is not well 

defined for cases where N ≤ 0 (due to N – 1 factorial in first term) or N > L/∆x  – 1 (due to the 

argument of the gamma function in the second term).  The expression for p(N = 0) was derived 

in the previous section (Eq. (4)) and shown to be 

  

 ( ) ( )
0

L x
p N e

λ− −∆
= = , (4) 
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which can be rewritten in terms of the incomplete gamma function, Eq. (12), to yield  

 

 ( ) ( )( )0 1 1,p N L xγ λ= = − − ∆ . (18) 

 

Understanding the behavior of p(N) for N > L/∆x  – 1 requires a little more effort.  Returning to 

the cumulative distribution function defined in Eq. (15) we can show that, for cases where the 

slab length is an integer multiple of the inclusion thickness (L/∆x +∈� , where +
�  is the set of 

positive integers), 

 

 ( )
( )( )

( )

,
1 1

!

L LL x
x xLp N

x L
x

γ λ − ∆
∆ ∆

≤ − = −
∆

∆

  

 

 ( )
( )
( )

,0
1 1 1

!

L
xLp N

x L
x

γ
∆

≤ − = − =
∆

∆

, (19) 

 

by the definition of the lower incomplete gamma function, given in Eq. (12).  The result shown 

in Eq. (19) demonstrates that, for cases where the slab length, L, is an integer multiple of the 

inclusion length, ∆x, the probability of observing N > L/∆x −1 inclusions is zero. 

 

For cases where the slab length is not an integer multiple of the inclusion length, the 

corresponding analysis becomes more complicated.  Because the probability distribution for the 

number of inclusions (Eq. (15)) is a discrete valued function, we cannot calculate the probability 

that N is less than or equal to a non-integer value.  However, we can calculate the probability that 

N is less than or equal to the nearest integer below L/∆x −1.  For this case we can show that 

 

 ( )
( )( )

( )
,

1 1
!

L LL x
x xLp N

x L
x

γ λ   − ∆
∆ ∆    ≤ − = −

∆   
∆ 

  

 

 ( )
( )

( )
,

1 1 1
!

L x f
xLp N

x L
x

γ λ  ∆
∆  ≤ − = − <

∆   
∆ 

, (20) 

 

where L x∆    denotes the closest integer below the real value L/∆x, and ( )f L x L x= ∆ − ∆    is 

the fractional part of L x∆   , which is guaranteed to fall between 0 and 1.  The result shown in 

Eq. (20) demonstrates that there is a non-zero probability of observing 1N L x> ∆ −    inclusions 

in the slab.  In addition, we can also recognize that it is physically impossible to allow 

1N L x≥ ∆ +    inclusions in the slab, as the total length of the 1L x∆ +    inclusions is 

( ) ( )1 1x L x L x f∆ ∆ + = + ∆ −   , which is greater than the length of the slab, L.  Therefore, we 
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conclude that the probability of observing N L x> ∆    inclusions must be zero.  From the above 

discussion, it is clear that 

 

 ( ) 0Lp N
x

 > =
∆ 

 (21) 

 

for all cases, and 

 

 ( )1 0Lp N
x

 > − =
∆ 

 (22) 

 

when L x∆ ∈� .   

 

Using the results given in Eqs. (17), (18), (21) and (22), we can now write the probability 

distribution for the number of inclusions in a slab of total length L as 

 

 ( )

( )( )

( )( )
( )

( )( )

1 1, 0

0 1,
, 1, ( 1)

1 ! ! 0 ,

0 Other

L x N

L L
N

x xN L N x N L N x
p N

L LN N N
x x

γ λ

γ λ γ λ


 − − ∆ =
 

< ≤ − ∈  ∆ ∆ − ∆ + − + ∆
=  −

 −  < ≤ ∉   ∆ ∆ 




�

�

. (23) 

 

Before continuing, we wish to take a moment to remind the reader that preceding derivations and 

resulting probability distribution function are exact if the distances between adjacent inclusions 

are exponentially distributed with constant rate parameter λ. 

2.5.  Limiting Behaviors of p(N) 

 

The probability distribution function given in Eq. (23) is a complicated, non-intuitive, function of 

both slab length (L) and inclusion width (∆x).  In order to gain understanding about the function 

p(N) it is useful to consider the limiting behavior of the function for both large and small 

inclusion widths. 

 

In the first case, we will consider the behavior of p(N) as the inclusion width ∆x becomes small.  

Because p(N) has a piecewise definition, we will proceed by treating the functions for N = 0 and 

N > 0 separately.  From Eqs. (23), (18), and (4) we immediately see that, for N = 0,  

 

 ( )
0

lim (for 0)L

x
p N e N

λ−

∆ →
= = . (24) 

 

In the case where N > 0, we begin by taking the limit of Eq. (23) as ∆x→0, 

 



D.P. Griesheimer and D.L. Millman 
 

2009 International Conference on Mathematics, Computational  

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009 

10/29 

 

 ( )
( )

( )
( )

0

, 1,
lim

1 ! !x

N L N L
p N

N N

γ λ γ λ

∆ →

+
= −

−
. (25) 

 

To proceed, we make use of a recurrence relationship for the incomplete gamma function [13], 

which allows γ (N+1, λL) to be written in terms of γ (N, λL), 

 

 ( ) ( ) ( )1, ,
N L

N L N N L L e
λγ λ γ λ λ −+ = − . (26) 

 

Substituting Eq. (26) into (25) and simplifying yields, 

 

 ( )
( )

( )
( ) ( )

0

, ,
lim

1 ! !

N L

x

N L N N L L e
p N

N N

λγ λ γ λ λ −
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−
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−
,  

 

 

 ( )
( )

0
lim (for 0)

!

N L

x

L e
p N N

N

λλ −

∆ →
= > . (27) 

 

Combining Eqs. (24) and (27) gives the final result, 

 

 ( )
( )

( )pois
0

lim ;
!

N L

x

L e
p N p N L

N

λλ
λ

−

∆ →
= = , (28) 

 

where ppois(N; λL) is the Poisson distribution.  Thus we see that as the inclusion width approaches 

zero, the number of inclusions in the slab approaches a Poisson distribution. 

 

For the second limiting case, we will consider the behavior of p(N) as the inclusion width ∆x 

becomes large (∆x→L).  For values of ∆x > L/2, Eq. (23) simplifies to the single inclusion 

distribution function discussed in section 2.2, 

 

 ( )
( )( )

( )( )

1 1, 0

11,

L x N
p N

NL x

γ λ

γ λ

 − − ∆ =
= 

=− ∆

. (29) 

 

The expected value of the distribution given in Eq. (29) can be easily calculated,  

 

 ( ) ( )( )1,R E p N L xγ λ ≡ = − ∆  , (30) 

 

where R is defined as the probability of finding an inclusion in the slab.  Substituting Eq. (30) 

into Eq. (29) allows the single inclusion probability distribution function to be written in terms of 

R, 

 

 ( )
1 0

1

R N
p N

R N

− =
= 

=
, (31) 



Analysis of Distances Between Inclusions in Finite Stochastic Materials 

 

2009 International Conference on Mathematics, Computational  

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009 

11/29 

 

 

which is the Bernoulli distribution with the variable R as the probability of success.  Thus we see 

that, in cases where the inclusion width is greater than half the total slab length, the observation 

of an inclusion in the slab reduces to a Bernoulli experiment; for each trial there is some fixed 

probability of finding an inclusion in the slab. 

 

2.6.  Expected Number of Inclusions in a Slab 

 

Now that we have developed an analytical formula for the probability of finding exactly N 

inclusions in a slab of total length L, we can calculate the expected number of inclusions in the 

slab, 

 

 ( )
0n

N n p n
∞

=

=∑ . (32) 

 

Applying the condition that p(n) = 0 for n L x> ∆   , Eq. (21), allows us to rewrite Eq. (32) as a 

finite sum 

 

 ( )
0

L
x

n

N n p n

 
∆ 

=

= ∑ . (33) 

 

Equation (33) is in a convenient form for a summation by parts transformation, which allows a 

finite sum of two factors f and g to be rewritten as 

 

 ( )
1

1

0 0 0 0

k k k n

n n k j n n j

n j n j

f g f g f f g
−

+
= = = =

= − −∑ ∑ ∑ ∑ . (34) 

 

Applying Eq. (34) with fn = n and gn = p(n) allows Eq. (33) to be rewritten as 

 

 ( ) ( ) ( ) ( )
1

0 0 0 0

1

L L L
nx x x

n j n j

Ln p n p j n n p j
x

     −
∆ ∆ ∆     

= = = =

 = − + −
∆ ∑ ∑ ∑ ∑ . (35) 

 

By noting that the first summation over j is equal to 1, by Eq. (21), and the second summation 

over j is the cumulative distribution function P(n), we can rewrite Eq. (35) as 

 

 ( ) ( )
1

0 0

L L
x x

n n

Ln p n P n
x

   −
∆ ∆   

= =

 = −
∆ ∑ ∑ . (36) 

 

Factoring the first term on the right hand side of Eq. (36) into the summation yields 

 

 ( ) ( )
1

0 0

1

L L
x x

n n

n p n P n

   −
∆ ∆   

= =

= −∑ ∑ . (37) 
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Substituting the definition for the cumulative distribution function, Eq. (15), into Eq. (37) gives a 

compact formula for the expected number of inclusions in the slab 

 

 
( )( )
( )

1

0

1, ( 1)

!

L
x

n

n L n x
N

n

γ λ
 −

∆ 

=

+ − + ∆
= ∑ . (38) 

 

By inspection of Eq. (38) we see that the expected number of inclusions depends on both the 

total length of the slab, L, as well as the inclusion length ∆x.  For convenience when considering 

problems of different sizes it is advantageous to rewrite Eq. (38) in terms of the dimensionless 

scale parameter 

 

 
L

m
x

≡
∆

, (39) 

 

which yields the final form 

 

 
( )( )

( )

1

0

1, ( 1)

!

m

n

n x m n
N

n

γ λ−  

=

+ ∆ − +
= ∑ . (40) 

 

A simple Monte Carlo simulation was used to confirm the accuracy of Eq. (40).  In the numerical 

experiment, multiple independent realizations of a 1-D binary stochastic material were created 

and used to estimate the ensemble average number of inclusions as a function of m and λ.  For 

each realization, inclusions of width ∆x were placed at random intervals within a slab of length L 

= 1.  The spacing between adjacent inclusions was determined by sampling from an exponential 

distribution (Eq. (1)) with a given (fixed) value of λ.  When no more inclusions will fit within the 

slab, the total number of inclusions for the realization is recorded and the process begins again 

for the next realization.  After many realizations the population mean and variance can be used to 

estimate the expected (ensemble average) number of inclusions for the slab.  Table I shows the 

results of 50,000 realization numerical experiments performed with different values of m and λ.  

In all cases the calculated ensemble average was found to agree to within statistical uncertainty 

with the expected value given by Eq. (40). 

 

Unfortunately, for large values of m, determining N  can be calculationally intensive.  

Furthermore, the form of Eq. (40) makes it difficult to solve accurately with a low order 

approximation, such as a truncated series expansion.  However, in the next section we will show 

that it is possible to make a reasonable approximation for N  based on physical arguments, and 

then bound the error of this approximation through numerical studies. 
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3. APPROXIMATING THE EXPONENTIAL RATE PARAMETER  

3.1.  Inclusion Volume Fraction 

 

The derivations in Section 2 provided an analytical equation for the expected number of 

inclusions as a function of the geometric properties, L and m = L/∆x, and the rate parameter λ.  

The original objective, however, was to solve for the rate parameter as a function of the material 

properties.  Unfortunately, Eq. (40) contains two unknown quantities, N  and λ, so it will be 

necessary to find a second relationship between these quantities before a solution can be 

attempted.  The required condition can be obtained from a volume balance equation, which 

relates the expected number of inclusions in the slab to the material properties L, ∆x and VB, 

defined as the total volume fraction occupied by material B in the slab.  In this case, VB is treated 

as a known material property, which may be obtained directly from manufacturing data (for 

man-made systems such as concrete, HTGR fuel elements, or BORAL
®

), or estimated through 

auxiliary measurements of the bulk material density and average inclusion size (for naturally 

occurring stochastic mixtures).  In either case, for a fixed inclusion width of ∆x, the expected 

number of inclusions is given by 

 

 B
B

V L
N V m

x
= =

∆
, (41) 

 

where, again, VB is the volume fraction of material B, as determined from physical measurements 

or manufacturing data. 

 

Equation (41) provides the necessary relationship required to potentially solve for the unknown 

rate parameter, λ.  Assuming that the distribution of distances between inclusions is well 

 

Table I. Comparison of analytical and statistical estimates for the expected number of 

inclusions in binary stochastic materials of length L = 1.  Statistical estimates were 

generated with 50,000 independent realizations. 

 

λ m N  N̂  
N̂

σ  

1 10 0.8223 0.8209 4.052×10
−3

 

10 10 4.6250 4.6293 9.622×10
−3

 

100 1.01 0.6285 0.6267 3.540×10
−3

 

100 2.25 1.9998 1.9998 6.324×10
−3

 

100 5.5 4.9480 4.9482 9.948×10
−3

 

100 10 8.6664 8.6660 1.317×10
-2

 

100 100 49.625 49.642 3.150×10
-2
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represented by an exponential distribution, then the unknown rate parameter, λ, must satisfy the 

relationship N N= , where N  is the expected number of inclusions (Eq. (40)) obtained by 

calculating the expectation value of p(N) and N  is the expected number of inclusions based on 

physical (mass/volume balance) conservation properties of the problem (Eq. (41)). 

3.2.  Single Inclusion Case 

 

For cases where ∆x > L/2 (i.e. m < 2) the expected value of p(N) has a particularly simple form, 

as shown in Eq. (30), 

 

 ( )( ) ( )
1, 1 (for / 2)

L x
N L x e x L

λ
γ λ

− −∆
= − ∆ = − ∆ > . (42) 

 

 

Because of the simple form it is possible to analytically solve Eq. (42) for λ in terms of the 

expected number of inclusions N , 

 

 
( )

ln 1
(for / 2)

N
x L

L x
λ

 − − = ∆ >
− ∆

. (43) 

 

Applying the condition N N= , and using Eq. (41), yields the final result 

 

 
[ ]

( )
ln 1

(for / 2)
BV m

x L
L x

λ
− −

= ∆ >
− ∆

. (44) 

 

Again, we remind the reader that the expressions shown in Eqs. (43) and (44) are exact if the 

distribution of distances between inclusions (or in this case the distance between the inclusion 

and the edges of the slab) follow an exponential distribution.  However, the denominator of Eq. 

(43) provides some indication about the limitations of this original assumption.  As the inclusion 

width, ∆x, approaches the total length of the slab, L, the denominator goes to zero, which causes 

the rate parameter to approach ∞.  This result is in keeping with the physical realities of the 

problem, which dictate that as ∆x→L, the position of the inclusion within the slab becomes 

deterministic rather than stochastic.  In this case, the use of an exponential distribution to 

describe the position of the inclusion within the slab is no longer appropriate.  Instead, the 

Bernoulli distribution should be used to describe the probability that an inclusion will (or will 

not) be found in a particular observation of the stochastic material.  This result is consistent with 

the results for the single inclusion case previously derived in section 2.5. 

3.3.  Multiple Inclusion Case 

 

Unfortunately, inspection of Eq. (40) reveals that the equation cannot be easily inverted to solve 

for λ in terms of N  for cases where m ≥ 2.  This eliminates the possibility of finding a simple, 

analytic, solution for λ that will cover all cases of interest.  Instead, we will try to develop an 

approximate, easily invertible, relationship between N  and λ that can be used to solve the 
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problem.  In order to derive this approximate relationship we will use a low-accuracy 

approximation for the initial form of the rate parameter λ, and then attempt to apply correction 

terms in order to produce a more accurate final approximation for λ. 

 
3.3.1.  Approximation by a Poisson process 

 

In order to find an initial approximation for λ, we return to the fact that our one-dimensional 

stochastic media problem is remarkably similar to a Poisson process, with distance traveled 

through space, rather than time, as the independent variable.  In fact, the only difference between 

a slab containing randomly placed inclusions and a true Poisson process lies in the fact that the 

inclusions have a width, where a standard Poisson process assumes that the events occur 

instantaneously (in this case implying an inclusion width of zero).  This observation was 

confirmed in section 2.5 where it was shown that the probability density function for the number 

of inclusions in the slab approaches a Poisson distribution in the limit as inclusion width 

approaches zero.  Therefore, it is reasonable to expect that a one-dimensional stochastic material 

with small inclusions may be approximated by a homogeneous Poisson process, where 

 

 ( )( )
( )

( ) ( )
!

n
x

e x
p N x x N x n

n

λ δ λ δ
δ

−

+ − = =

� �

 (45) 

 

is the probability that n inclusions will be observed between position x and x+δx in the slab, and 

λ�  is the probability per unit distance traveled that an inclusion will be observed.  For a slab with 

total length L, the expected number of inclusions predicted by Eq. (45) is 

 

 ( )( )
0n

N n p N L n Lλ
∞

=

= = =∑ �� . (46) 

 

Setting the expected number of inclusions predicted by the Poisson model, N� , equal to the 

expected number of inclusions predicted by mass and volume balance, N , allows us to solve for 

λ�  in terms of the physical dimensions of the model 

 

 B
P

V L
N L N

x
λ= = =

∆
�  

 

 B
P

V

x
λ =

∆
. (47) 

 

While Eq. (47) may provide a reasonable approximation in cases when ∆x→0 or m = L/∆x→∞, it 

is not sufficient for most problems of interest.  As expected, the model breaks down for nonzero 

values of ∆x because the inclusions are not instantaneous events. 
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3.3.2.  Approximation by a modified Poisson process 

 

To overcome this limitation, let us redefine the problem in terms of λA, which represents the 

probability per distance traveled in material A that an inclusion will be observed.  The 

relationship between λA and λP is given by 

 

 A AP
L Lλ λ= , (48) 

 

where LA is the total length of material A in the problem.  Unfortunately this relationship is 

complicated by the fact that LA is a random variable that will depend on a particular realization 

of the problem.  However, we can calculate the expected value of LA from the physical mass and 

volume balance presented in Eq. (41).  If the expected number of inclusions in the slab is given 

by N  and the length of each inclusion is ∆x it follows that 

 

 B BL N x V L= ∆ = , (49) 

 

and 

 

 ( )A B B1L L L V L= − = − . (50) 

 

Substituting Eq. (50) into Eq. (48) gives 

 

 ( )A B1L L Vλ λ≈ −� . (51) 

 

Equation (51) can now be substituted into Eq. (46) to yield an approximation for N�  

 

 ( )1
A B

N L Vλ≈ −� , (52) 

 

which, when set equal to N , can be solved for λA, 

 

 
( )

B
A

B1

V

V x
λ =

− ∆
. (53) 

 

For clarification, we note that λA is only an approximation and should not be viewed as an exact 

solution.  However, we expect Eq. (53) to be a good approximation in cases where the amount of 

variability of LA between realizations is small (implying VB or m = L/∆x is large). In fact, Eq. 

(53) is identical to the theoretical rate parameter for an infinite problem, as discussed in 

Reference 11. 

 
3.3.3.  Residual error due to modified Poisson approximation 

 

Now that we have an approximation for the rate parameter, λ, we wish to determine how accurate 

this approximation is for problems of interest.  To determine this accuracy, we will consider the 
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residual difference between the true mean N  calculated by Eq. (40) using λ=λA, and the desired 

mean N  as defined in Eq. (41),   

 

 
( )( )

( )

1
A

B

0

1, ( 1)

!

m

n

n x m n
N N V m

n

γ λ
ε

−  

=

 + ∆ − +
 = − = −
 
 
∑ . (54) 

 

Unfortunately, due to the complexity of N  no simple analytic form to describe the behavior of 

ε as a function of m and VB has been found.  Instead we have chosen to rely on numerical 

calculations to determine the behavior of ε over its domain. 

 

Figure 3 shows a plot of ε versus VB for 5 values of m, m=2.01, 2.25, 5.5, 10, and 100.  Each plot 

was created from 100 equally spaced data points between VB = 0 and VB = 1.  Figure 4 shows the 

same plot with 50 harmonically spaced values of m between 2 and 100 (m={100/k}k=1,50).  All 

cases assume a fixed total slab length L = 1.  From Figure 4 we see that ε appears to be bounded 

over its entire domain by 0 < ε <= VB.  This implies using λA as an approximation for the true rate 

parameter λ will under predict the expected number of inclusions within a slab by less than VB, 

with a maximum error of  –1 occurring as the volume fraction of material B approaches 1.0.  

Furthermore, Figure 3 indicates that ε appears to converge to a second order polynomial in VB as 

m→∞ Infinity.  A least squares fit of the data for m = 100 shows that ε is well approximated by  

 

 
2

B
B

2

V
Vε ≈ − , (55) 

 

especially for large values of m/VB. 
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Figure 3.  Error between the true expected number of inclusions and the expected number of 

inclusions predicted by the modified Poisson approximation, as a function of inclusion volume 

fraction VB, for 5 values of m. 
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3.3.4.  Approximation by a residual-error corrected Poisson process 

 

By substituting the approximation for the residual error ε into Eq. (54) and rearranging, we can 

effectively “correct” the modified Poisson approximation in order to obtain a better 

approximation for N   

 

 
2

B
B B

2

V
N N V V mε= + ≈ − + ,  

 ( )
2

B
1 B 1

2

V
N N V m≈ ≡ + −� . (56) 

 

As before, we can numerically calculate the residual error between the true mean N  calculated 

by Eq. (40) using λ=λA, and the approximation 1N�  as defined in Eq. (56), 

 

 
( )( )

( )
( )

1 2
A B

1 1 B

0

1, ( 1)
1

! 2

m

n

n x m n V
N N V m

n

γ λ
ε

−  

=

 + ∆ − +  
 = − = − + −     
∑� . (57) 

 

Figure 5 shows a plot of ε1 versus VB for the same 5 values of m as shown in Figure 3.  Again, 

each plot was created from 100 equally spaced data points between VB = 0 and VB = 1.  Figure 6 

shows the same plot with 50 harmonically spaced values of m between 2 and 100.  Again, all 

cases assume a fixed total slab length L = 1.  From Figure 6 we see that the residual ε1 appears to 

be bounded over its entire domain by | ε1| < VB
3
/2, a significant improvement over the residual 

bound of the uncorrected approximation, | ε| < VB. 
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Figure 4.  Error between the true expected number of inclusions and the expected number of 

inclusions predicted by the modified Poisson approximation, as a function of inclusion volume 

fraction VB, for 50 harmonically spaced values of m between 2 and 100. 
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At this point it is worthwhile to review the preceding approximations and discuss our current 

state relative to the original problem that was to be solved.   Based on physical intuition we 

reasoned that, for a 1-D stochastic material with fixed inclusion widths, the spacing between 

inclusions can be approximated by a modified Poisson process where the rate parameter, λA, 

represents the probability of encountering an inclusion per distance traveled in the background 

material (material A).  Through a series of numerical experiments it was confirmed that the 

expected number of inclusions predicted using the modified Poisson approximation does not 

agree with the expected number of inclusions calculated from the true probability density 

function for number of inclusions, given in Eq. (40).  However, the residual difference between 

the expected number of inclusions calculated using the modified Poisson approximation and the 

true expected number of inclusions was found to be a simple, bounded function of the inclusion 

volume fraction and ratio of slab width to inclusion width for the problem.  This result, shown in 

Eq. (57) implies that a system with rate parameter λA will produce an expected number of 

inclusions that is within ± VB
3
/2 of 1N� , or 

 

 
( )( )

( )
( )

1 2

B
B

0

1, ( 1)
1

! 2

m

n

n x m n V
N V m

n

γ λ−  

=

+ ∆ − +
= ≈ + −∑ . (58) 

 

when 

 

 
( )

B
A

B1

V

V x
λ λ= ≡

− ∆
. (59) 
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Figure 5.  Error between the true expected number of inclusions and the expected number of 

inclusions predicted by the corrected Poisson approximation, as a function of inclusion volume 

fraction VB, for 5 values of m. 
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3.3.5.  Determining the effective rate parameter from the corrected Poisson approximation 

 

Rearranging Eq. (58) gives a second order polynomial equation in VB, 

 

 ( )
2

B
B 1 0

2

V
V m N+ − − ≈ , (60) 

 

which can be solved to find VB in terms of the expected number of inclusions, N . 

 

Before solving Eq. (60) for VB we must first determine whether the polynomial will have a 

unique, real, positive root.  To prove the existence of a solution we first rewrite Eq. (60) in the 

standard form for a quadratic equation, 

 

 2

B B 0aV bV c+ + =  (61)a  

 

where 

 

 ( )
1

, 1 ,
2

a b m c N= = − = −  (61)b  

 

To prove that the roots of Eq. (60) are real, we calculate the discriminant of the equation, 

 

 ( )
22 4 1 2b ac m N− = − + . (62)  
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Figure 6.  Error between the true expected number of inclusions and the expected number of 

inclusions predicted by the corrected Poisson approximation, as a function of inclusion volume 

fraction VB, for 50 harmonically spaced values of m between 2 and 100. 



Analysis of Distances Between Inclusions in Finite Stochastic Materials 

 

2009 International Conference on Mathematics, Computational  

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009 

21/29 

 

Since (m–1)
2
 and N  are both positive values it follows that the discriminant is positive and Eq. 

(60) will always have real roots.  To demonstrate the conditions under which Eq. (60) will have a 

unique positive root we factor the general form of the quadratic equation into a new form, 

 

 ( )( )2

B B B 1 B 2 0
b c

V V V r V r
a a

+ + = − − = , (63)  

 

where r1 and r2 and the unknown roots of the equation.  Expanding the right hand side of Eq. 

(63) yields, 

   

 ( )2 2

B B B 1 2 B 1 2 0
b c

V V V r r V r r
a a

+ + = − + + = . (64)  

 

Equating terms on the right and left hand sides of Eq. (64) gives a relationship between the 

coefficients of the equation its corresponding roots, 

 

 1 2 2
c

r r N
a

= = − . (65)  

 

Since, by Eq. (65), the product of r1 and r2 is less than zero, it follows directly that Eq. (60) must 

have one (and only one) positive root.  Applying the quadratic equation to Eq. (60) gives an 

equation for the positive root, 

   

 ( )
2

B 1 1 2V m m N= − + − + . (66)  

 

Equation (66) provides a new relationship between the properties of the stochastic material (VB 

and m) and the expected number of inclusions N .  The original relationship between these 

quantities, shown in Eq. (41), was developed from first principles by enforcing volume balance 

for inclusions within the slab.  Unfortunately, while Eq. (41) provides an exact value for the 

expected number of inclusions within the slab, it cannot provide any information regarding the 

statistical distribution of distances between inclusions. 

 

In order to obtain information on the distribution of distances between inclusions we assumed 

that the stochastic material could be well approximated by a Poisson (Eq. (47)) or modified 

Poisson (Eqs. (58) and (59)) process.  This approximation provides the desired statistical 

prescription for the separation between inclusions, but leads to a different relationship between 

the expected number of inclusions in the slab N  and the variables VB and m, as shown in Eq 

(66).  In cases where the two approaches predict the same number of inclusions for given values 

of VB and m (i.e. Eq. (66) equals Eq. (41)) we may conclude that the modified Poisson 

approximation is valid and that the distance between inclusions is well approximated by an 

exponential distribution with rate parameter λA, given in Eq. (59).   

 

Unfortunately, inspection of Eqs. (41) and (66) reveals that they cannot be expected to be equal 

for all values of VB and m.  In order to reconcile these potential differences, we recall that the 
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expected number of inclusions given by the volume balance approach, BN V m=  (Eq. (41)), is 

exact, while the modified Poisson process approach is only an approximation.  Therefore, we 

wish to consider whether it is possible to “fit” the modified Poisson process in order to match the 

true expected number of inclusions, as determined by Eq. (41).  This fitting can be accomplished 

by adjusting the inclusion volume fraction (and corresponding rate parameter) used in the 

modified Poisson process.  From Eq. (66) we see that, 

  

 ( )
2

B 1 1 2V m m N= − + − +� . (67)  

 

where BV�  is the effective inclusion volume fraction, which, when used in Eq. (58) gives an 

expected number of inclusions in the slab, N , that is approximately equal to N .  Substituting 

Eq. (41) into Eq. (67) gives the relationship between the effective volume fraction and the true 

volume fraction, 

 

 ( )
2

B B1 1 2V m m V m= − + − +� . (68)  

 

Substituting the effective volume fraction into Eq. (59) gives the corresponding effective rate 

parameter, λ� , for the material 

 

 
( )

B

B1

V

V x
λ =

− ∆

�
�

�
. (69) 

 
3.3.6.  Behavior of approximate rate parameter under limiting conditions 

 

Notice that as m→∞, the effective volume fraction approaches the true volume fraction 

( B BV V→� ) and the effective rate parameter approaches the modified Poisson rate parameter 

( )
A

λ λ→� .  Noting that L→∞ as m→∞ (for fixed ∆x), we see that Eqs. (68) and (69) correctly 

converge to the infinite medium results [11], again confirming that the modified Poisson process 

is exact as the inclusion width becomes small relative to the total slab length.  For small values 

of m, the effective volume fraction and effective rate parameter will begin to diverge from the 

values predicted by the Poisson process.  Therefore, the amount of deviation between 
B

V�  and VB 

(or λ�  and λA) provides a direct measure of how well the distances between inclusions in the 

material may be approximated by a Poisson process. 

 

Figure 7 shows the relationship between BV�  and VB for several different values of m.  For small 

values of m and VB we see that there can be a significant difference (up to a factor of 2) between 

the true and effective volume fraction of the material.  Inspection of Figure 7 also demonstrates 

that the effective volume fraction is always greater than the true volume fraction of the slab, a 

result that limits the range of applicability for using the modified Poisson process analysis with 

an effective volume fraction. 
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Due to the fact that inclusions are not permitted to extend beyond the end of the slab, there is a 

physical limit on the number of inclusions that will fit in a slab of given length.  For a slab with 

length L and inclusion width ∆x, the maximum number of inclusions allowed in the slab, without 

overlap, is equal to the integer part of L/∆x.  From this observation, we can immediately see that 

the maximum possible inclusion volume fraction for a slab is given by, 

 

 

L
x

mx

L m

 
∆   ∆   = . (70)  

 

This physical limit on the maximum volume fraction applies to both the true volume fraction of 

the material, VB, as well as the effective volume fraction calculated from Eq. (68).  Since it has 

already been established that BV�  > VB, we must consider B,max /V m m=   
�  to be the limiting case of 

interest.  Setting the effective volume fraction (Eq. (68)) equal to the theoretical maximum 

volume fraction (Eq. (70)) and solving for VB gives 

 

 
( )

2

B,max 3 2

1

2

m m m
V

m m

−      = + . (71)  

 

where VB,max is the maximum allowable true volume fraction.  Materials with a true volume 

fraction larger than VB,max will have an effective volume fraction that does not satisfy Eq. (70).  

In these cases, the assumptions used to derive the empirical relationships used in the modified 

Poisson method begin to break down, producing unreliable results.  Figure 8 shows a plot of the 

maximum true volume fraction, VB,max, as a function of the dimensionless scale parameter m.  

This figure illustrates that VB,max has a saw tooth shape, with the values of the function bounded 

between the range 1–1/(2m) and 1–3/(2m)+1/(2m
3
), depending on the fractional component of m.  
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Figure 7.  Relationship between effective and true inclusion volume fractions for 7 different 

values of m. 
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Based on these results, it is recommended that the modified Poisson approximation only be 

applied to materials with inclusion volume fractions below  

 

 B,recommended 3

3 1
1

2 2
V

m m
< − + . (72)  

 

3.4.  General Form of the Approximate Solution 

 

Collecting the results from Eqs. (44), (68), and (69) gives the final results for the exponential rate 

parameter governing the distribution of distances between inclusions in a one-dimensional 

stochastic material, 

 

 

[ ]
( )

( )
B

B

ln 1
1 2

2
1

BV m
m

L x

V
m

V x

λ

− −
 < ≤

− ∆
= 
 >
 − ∆


�

�

, (73) 

 

where ∆x is the width of the inclusions, L is the total length of the one-dimensional slab, m is the 

ratio of L/∆x, VB is the true volume fraction of inclusions in the material, and BV� is the effective 

inclusion volume fraction given by: 

 

 ( )
2

B B1 1 2V m m V m= − + − +� . (68)  
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Figure 8.  Plot of the maximum true volume fraction VB,max as a function of the dimensionless 

scale parameter m. 
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4. NUMERICAL RESULTS 

 

The accuracy of the rate parameters shown in Eq. (73) was determined through a series of 

numerical experiments that were designed to cover a wide range of material properties (VB and 

m).  In each experiment, Eq. (73) was used to calculate the rate parameter for the material, λ, 

based on fixed values for VB and m, and assuming L=1 in all cases.  The same type of Monte 

Carlo simulation used to verify Eq. (38) was then used to estimate the expected (ensemble 

average) number of inclusions in the slab, N̂λ , for the calculated rate parameter.  Individual 

numerical experiments used 50,000 independent realizations to produce the ensemble average, 

N̂λ .  The calculated number of inclusions, N̂λ , can then be compared against the desired number 

of inclusions, N , as calculated by Eq. (41).  The relative accuracy of the rate parameter 

calculated from Eq. (73) can then be determined by measuring how closely N̂λ  approximates N . 

 

Table II shows the results for six stochastic mixtures, each with m ≤ 2.  For each of these 

stochastic materials the rate parameter λ was calculated from the exact single inclusion formula 

given in Eq. (44).  As anticipated, the results in Table II demonstrate that the calculated 

ensemble average number of inclusions matches the predicted expected number of inclusions to 

within statistical uncertainty for all cases.     

 

Table III shows the results for ten additional stochastic mixtures, this time with m > 2.  For these 

stochastic materials the rate parameter λ was calculated from the approximation given in Eq. (69) 

and using the effective volume fraction given in Eq. (68).  The results in Table III demonstrate 

that the calculated ensemble average number of inclusions agrees with the predicted number of 

inclusions to within 1% for most cases.  However, the case with m = 2.0001 and VB = 0.5 shows 

a difference of 6.5% between predicted and calculated results.  For this particular case the 

volume fraction VB = 0.5 is considerably larger than the recommended maximum volume 

fraction, VB,recommended = 0.3125, calculated from Eq. (72).  Table III also shows that the 

 

Table II. Comparison of analytical and statistical estimates for the expected number of 

inclusions in binary stochastic materials of length L = 1 and m ≤ 2.  Statistical estimates 

were generated with 50,000 independent realizations, where distances between inclusions 

were sampled from an exponential distribution with analytically derived rate parameter. 

 

VB m N  N̂ λ  N̂
σ  

0.8 1.001 0.8008 0.8024 4.006×10
−3

 

0.8 1.01 0.808 0.8052 4.013×10
−3

 

0.6 1.25 0.750 0.7518 3.878×10
−3

 

0.6 1.50 0.900 0.9006 4.244×10
−3

 

0.5 1.75 0.875 0.8748 4.183×10
−3

 

0.4 2.00 0.800 0.7986 3.997×10
−3
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agreement between the calculated and predicted values appears to improve as the values of m 

increase, with agreement for the m=20 case reaching 0.005%. 

 

A separate set of numerical experiments were conducted in order to quantify the relationship 

between the approximation error ( 1 N Nλε = − ) and the physical properties of the stochastic 

material (m and VB).  Figure 9 shows a plot of the relative error between predicted and calculated 

number of inclusions,  1 Nε , versus m, the dimensionless ratio between the slab length (L=1) 

and inclusion width ∆x.  Each curve in Figure 9 shows the relative error for a particular inclusion 

volume fraction, VB, which is itself a function of the scale parameter m for the material.  The plot 

includes results for two volume fractions, the maximum allowable and recommended maximum 

volume fractions, VB = 1–1/(2m) and VB =1–3/(2m)+1/(2m
3
), respectively.  For each case the 

approximation error was calculated from Eq. (57), using the effective rate parameter calculated 

from Eq. (69).  Each curve was plotted with 5,000 equally spaced points between m=2 and 

m=10.  Figure 9 illustrates the complex relationship between the relative error and the material 

parameters, VB and m.  As expected, the accuracy of the effective rate parameter decreases for 

small values of m, with the largest relative error for both cases occurring between m=2 and m=3.  

The large difference between the maximum relative error for both cases also demonstrates the 

breakdown of the effective rate parameter model as VB approaches the maximum allowable value 

of VB = 1–1/(2m).  Materials with volume fractions of 1–1/(2m) reach a maximum relative error 

of roughly 25%, while materials with volume fractions at the recommended maximum value of 

VB =1–3/(2m)+1/(2m
3
) exhibit a maximum relative error of less than 2.5%.  Due to the complex 

interplay between the independent variables, especially the discontinuities that occur at integer 

 

Table III. Comparison of analytical and statistical estimates for the expected number of 

inclusions in binary stochastic materials of length L = 1 and m > 2.  Statistical estimates 

were generated with 50,000 independent realizations, where distances between inclusions 

were sampled from an exponential distribution with approximate rate parameter. 

 

VB m N  
2

N̂λ  
N̂

σ  

0.1 2.0001 0.2 0.2036 2.018×10
−3

 

0.2 2.0001 0.4 0.3983 2.822×10
−3

 

0.3 2.0001 0.6 0.6075 3.486×10
−3

 

0.4 2.0001 0.8 0.7941 3.986×10
−3

 

0.5 2.0001 1.0 0.9349 4.322×10
−3

 

0.5 3 1.5 1.5210 5.516×10
-3

 

0.5 4 2.0 1.9991 6.323×10
-3

 

0.8 10 8.0 7.9834 1.264×10
-2

 

0.9 10 9.0 8.9959 1.341×10
-2

 

0.95 20 19 18.999 1.949×10
-2
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values of m, readers should be aware that it is not possible to establish this 2.5% relative error as 

a rigorous upper bound for all materials with VB < VB,recommended.  However, as we will 

demonstrate in the next study, this value is a reasonable approximation of the bound. 

 

In order to further quantify the error of the approximation for N , given in Eq. (58), as a 

function of the material properties VB and m, and additional set of numerical experiments were 

conducted.  These experiments were designed to determine the largest inclusion volume fraction 

that would result in the absolute value of the approximation error ε1 (Eq. (57)) being less than or 

equal to a constant value, as a function of the scale parameter m.  The resulting iso-error plots 

from these experiments are shown in Figure 10, for 6 different absolute errors.  Each curve was 

generated by first calculating the absolute error of the approximation error (computed from Eq. 

(57)) at 200 equally spaced values of VB between 0 and 1, for a fixed value of m.  The 100 

resulting values for ε1 were then searched in ascending order by volume fraction to find the first 

value that exceeded the reference error for the curve.  This process was then repeated for 490 

equally spaced values of m, ranging from 2 to 100, in order to produce the curves shown in 

Figure 10. 

 

The results shown in Figure 10 indicate a well defined relationship between the accuracy of the 

approximation and the material properties VB and m.  As expected, the accuracy tends to 

decrease as m becomes small and VB becomes large.  For values of m less than 10, the accuracy 

of the method begins to fall off sharply for inclusion volume fractions greater than roughly 50%.  

However, for larger values of m (m>25), the approximation shows excellent agreement with 

theoretical results, with errors on the order of 1×10
-6

 (absolute) for inclusion volume fractions up 

to 80%. 
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Figure 9.  Plot of the relative error between predicted and calculated number of inclusions,  

1 Nε , versus as a function of the dimensionless scale parameter m. 
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5. CONCLUSIONS  

 

A new technique for characterizing the distribution of inclusions in a one-dimensional binary 

stochastic material has been developed.  For materials where the distances between adjacent 

inclusions are exponentially distributed, an exact probability distribution for the number of 

inclusions in the slab has been derived.  The resulting probability density function (pdf) has been 

shown to correctly reproduce known results in both the thin slab (Bernoulli distribution) and 

thick slab (infinite medium nearest neighbor distribution) limits.  Unfortunately, due to the 

complex nature of the generalized pdf, the expected number of inclusions in a slab cannot be 

efficiently calculated.  However, a simple, second-order polynomial approximation for the 

expected value of the pdf has been developed from empirical studies.  It was subsequently shown 

that this simple approximation can be used to estimate the rate parameter of the exponential 

distribution based on the physical properties of the material.  The resulting approximation is easy 

to implement, computationally efficient, and shows excellent agreement with theoretical results.  

Additionally, the new technique for approximating the rate parameter is shown to be equivalent 

to the infinite media nearest neighbor distribution with an effective inclusion volume fraction to 

account for the finite nature of the material.  This result lends additional theoretical support to 

the volume adjustment factors that have been applied in techniques by Murata et. al. [7], Ji and 

Martin [11], and others. 

 

Theoretical results provided in the paper are supported by numerical experiments, which have 

been conducted to determine the accuracy of the approximate rate parameter over a wide range 

of material properties.  The results of these experiments demonstrate that the proposed rate 

parameter estimate provides an excellent approximation to the true rate parameter for many 

problems of interest.  Further experiments confirm that the estimated rate parameter can be used 

to generate valid finite-length one-dimensional stochastic material realizations on the fly.   
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Figure 10.  Iso-error plots showing the largest allowable inclusion volume fraction for a given 

level of absolute accuracy (ε1), as a function of the dimensionless scale parameter m. 



Analysis of Distances Between Inclusions in Finite Stochastic Materials 

 

2009 International Conference on Mathematics, Computational  

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009 

29/29 

 

ACKNOWLEDGEMENTS 

 

The authors would like to acknowledge Dr. Tom Sutton and Dr. Tim Donovan of the Knolls 

Atomic Power Laboratory and Prof. Ziya Akcasu of the University of Michigan for their helpful 

comments and suggestions regarding this work. 

 

REFERENCES 

 

1. G.C. Pomraning, “Transport Theory in Stochastic Mixtures,” Trans. Am. Nucl. Soc., 64, 

pp.286-287 (1991). 

2. G.B. Zimmerman and M.L. Adams, “Algorithms for Monte Carlo Particle Transport in 

Binary Stochastic Mixtures,” Trans. Am. Nucl. Soc., 64, pp.287-288 (1991). 

3. T.J. Donovan and Y. Danon, “HTGR Unit Fuel Pebble k-infinity Results Using Chord Length 

Sampling,” Trans. Am. Nucl. Soc., 89, pp.291-292 (2003).  

4. T.J. Donovan and Y. Danon, “Application of Monte Carlo Chord-Length Sampling 

Algorithms to Transport through a Two-Dimensional Binary Stochastic Mixture,” Nucl. Sci. 

Eng., 143, pp.226-239 (2003). 

5. D.R. Reinert, Investigation of Stochastic Radiation Transport Methods in Random 

Heterogeneous Mixtures, Ph.D. Dissertation, University of Texas, Austin (2008). 

6. I. Murata, T. Mori, M. Nakagawa, “Continuous Energy Monte Carlo Calculations of 

Randomly Distributed Spherical Fuels in High-Temperature Gas-Cooled Reactors Based on a 

Statistical Geometry Model,” Nucl. Sci. Eng., 123, pp.96-109 (1996). 

7. I. Murata, et. al., “New Sampling Method in Continuous Energy Monte Carlo Calculation for 

Pebble Bed Reactors,” Journal of Nuclear Science and Technology, 34, pp.734-744 (1997). 

8. F. Brown, et. al., “Stochastic Geometry and HTGR Modeling with MCNP5,” Proceedings of 

the Monte Carlo 2005 Topical Meeting, The Monte Carlo Method: Versatility Unbounded in 

a Dynamic Computing World, CD-ROM (2005). 

9. W. Ji and W.R. Martin, “Monte Carlo Simulation of VHTR Particle Fuel with Chord Length 

Sampling,” Proceedings of the Joint International Topical Meeting on Mathematics & 

Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007), CD-ROM 

(2007). 

10. W.B. Doub, “Particle Self-Shielding in Plates Loaded with Spherical Poison Particles,” Nucl. 

Sci. Eng., 10, pp.299-307 (1961). 

11. W. Ji and W.R. Martin, “Application of Chord Length Sampling to VHTR  Unit Cell 

Analysis,” Proceedings of the International Conference on the Physics of Reactors (PHYSOR 

2008), CD-ROM (2008).  

12. G.L. Olson, J.E. Morel, and E.W. Larsen, “Chord Length Distributions in Binary Stochastic 

Media in Two and Three Dimensions,” Trans. Am. Nucl. Soc., 89, pp.307-309 (2003). 

13. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, 

Graphs, and Mathematical Tables, U.S. Government Printing Office, Washington D.C. 

(1964). 


