
Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

Computing Numerically-Optimal Bounding Boxes for Constructive Solid Geometry
(CSG) Components in Monte Carlo Particle Transport Calculations

David L. Millman1*, David P. Griesheimer1, Brian R. Nease1, and Jack Snoeyink2

1Bettis Laboratory, West Mifflin, Pennsylvania, USA
2Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

*Corresponding Author, E-mail: david.millman@unnpp.gov

For large, highly detailed models, Monte Carlo simulations may spend a large fraction of their run-time performing
simple point location and distance to surface calculations for every geometric component in a model. In such cases,
the use of bounding boxes (axis-aligned boxes that bound each geometric component) can improve particle tracking
efficiency and decrease overall simulation run time significantly. In this paper we present a robust and efficient
algorithm for generating the numerically-optimal bounding box (optimal to within a user-specified tolerance) for an
arbitrary Constructive Solid Geometry (CSG) object defined by quadratic surfaces. The new algorithm uses an iterative
refinement to tighten an initial, conservatively large, bounding box into the numerically-optimal bounding box. At
each stage of refinement, the algorithm subdivides the candidate bounding box into smaller boxes, which are classified
as inside, outside, or intersecting the boundary of the component. In cases where the algorithm cannot unambiguously
classify a box, the box is refined further. This process continues until the refinement near the component’s extremal
points reach the user-selected tolerance level. This refinement/classification approach is more efficient and practical
than methods that rely on computing actual boundary representations or sampling to determine the extent of an
arbitrary CSG component. A complete description of the bounding box algorithm is presented, along with a proof that
the algorithm is guaranteed to converge to within specified tolerance of the true optimal bounding box. The paper also
provides a discussion of practical implementation details for the algorithm as well as numerical results highlighting
performance and accuracy for several representative CSG components.

KEYWORDS: Monte Carlo, constructive solid geometry, octree, bounding box calculation, robust operations

I. Introduction

Particle tracking through complex models in Monte Carlo (MC)
transport codes can account for a significant fraction of the total
simulation cost, especially for MC codes that use Constructive
Solid Geometry (CSG) model representations. In CSG, models
are defined by collections of components, where each compo-
nent is defined by the intersection, union, and/or set difference
of half-spaces.

Most of the computational cost of particle tracking is due
to two simple geometric operations. The first operation,
pointLocation, determines the orientation of a point with
respect to a component’s surfaces. The second operation,
distanceToSurface, calculates the distance of a particle to
a surface intersection along a given ray. Individually, these
operations are typically simple and can be performed quickly.
However, tracking algorithms often require the operations to be
performed on many (or all) components every time a particle
moves. Thus, as the size and complexity of a model increases,
the time spent tracking also increases. For large models, track-
ing time may dominate the cost of the simulation.

In other ray tracing applications, such as computer graph-
ics, bounding boxes are used to dramatically accelerate similar
point location and surface intersection operations.(1) A sim-
ple component (typically a box) is defined that completely

encloses (bounds) a more complex and/or arbitrarily oriented
component. Because an axis-aligned bounding box is defined
by six axis-aligned planes, the operations pointLocation
and distanceToSurface for an axis-aligned bounding box
are significantly faster than performing the same operations
on the enclosed component. Often, the bounding box can
be used as a low-cost initial test for pointLocation and
distanceToSurface operations. If a given point (or ray)
does not lie within (or intersect) a bounding box then there is
no need for further tests against the enclosed component. The
efficiency of bounding box acceleration, however, depends on
how tightly each box bounds its component.

Over the years, almost all MC codes have used techniques
(such as multi-level hierarchy(2, 3)) to accelerate particle track-
ing by reducing the number of components checked during each
particle movement. In fact, several modern MC codes(2, 4) are
known to use simple forms of the bounding box acceleration
technique. However, to the authors’ knowledge, all imple-
mentations of the bounding box method have been limited to
restricted sets of pre-defined CSG shapes (e.g., parallelepipeds,
cylinders, spheres, cones). Methods for general CSG com-
ponents have either produced loose bounding boxes, ran too
slowly, or were non-robust.

The widely used ray tracing engine POV-Ray(5) suggests
bounding complicated shapes by applying set operations on



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

boxes for pre-defined shapes. However, the documentation
notes that, “for difference and intersection operations this will
hardly ever lead to an optimal bounding box.”

In many ray-tracing applications, objects can be represented
by a collection of polygons. In this representation, one can
bound the input by bounding the point set defining the polygons.
O’Rourke(6) gave the first (and to our knowledge, only) optimal
time algorithm for computing a minimal volume arbitrarily
oriented box for a point set. For n points in R3, O’Rourke’s
algorithm takes O(n3) time and O(n) space. For an approxi-
mation value ε > 0, Barequet and Har-Peled,(7) presented two
numerically-optimal ((1 + ε)-approximation) algorithms taking
time O(n + 1/ε4.5) and O(n log n + n/ε3). However, because
Monte Carlo particle tracking codes do not usually represent
geometric objects as polygons, these algorithms are of lim-
ited applicability. For example, codes such as MC21(2) and
MCNP(3) allow users to build models with unbounded primi-
tives (such as paraboloids or hyperboloids).

Another approach to computing bounding boxes for CSG
models is to explicitly compute the model’s boundary. In an
older survey paper, Lin and Gottschalk,(8) note that in prac-
tice, doing the conversion is very difficult. Mainly, the diffi-
cultly is caused by floating point errors and degenerate inputs.
In more recent work, Dupont et al.(9) investigated intersect-
ing surfaces and Schömer and Wolpert(10) investigated spatial
decompositions, both of which are useful operations for the
conversion. Keyseret al.(11–14) created the ESOLID modeling
system specifically for the conversion, but, even this system
sometimes produces an incorrect boundary for extremely com-
plicated models.(11)

Alternatively, point location or ray tracing algorithms offer a
purely numerical approach for approximating bounding boxes
of CSG components. In these algorithms, a conservatively-large
bounding box is created around the component of interest. Test
points (or rays) are then used to identify regions of the initial
bounding box that do not include the CSG component. While
conceptually simple, these algorithms are highly dependent on
the sampling resolution of test points (or rays). If too few test
points are used, these methods may miss small features of an
object and produce an incorrect bounding box.

In this paper, we present a simple algorithm for efficiently
computing a numerically-optimal ((1 + ε)-approximation) axis-
aligned bounding box for an arbitrary CSG component. The
algorithm uses an iterative refinement, called an octree, to
tighten an initial, conservatively large, bounding box into the
numerically-optimal bounding box for the component. At each
stage of refinement, all newly-created octree cells are classified
as inside, outside, or intersecting the boundary of the compo-
nent by using a robust box classification test. In cases where the
test cannot unambiguously classify an octree cell, an additional
refinement and classification is performed on that cell. This
process continues until the refinement near the extremal points
of the component has reached the user-selected tolerance level.
This refinement/classification approach is more efficient and
practical than computing the actual boundary representation
of an arbitrary CSG component, while guaranteeing that the
component will be completely contained in the bounding box.

At the heart of our algorithm is our main operation, called

classify, that given an axis aligned box and a component,
returns INSIDE, OUTSIDE, BOUNDARY or UNKNOWN. The value
UNKNOWN, is returned when the input to classify is too com-
plicated to resolve (i.e., classify cannot unambiguously
classify a given box with respect to the CSG component).
In Section IV, we describe one possible implementation for
classify, however, other implementations are possible. In
fact, there is a strong relationship between the sophistication
of the classify operation and the number of levels of refine-
ment required to achieve bounding box convergence for a given
tolerance. As the classify operation becomes stronger, and
is able to uniquely classify a higher percentage of boxes, there
is less need for additional refinement steps. This dependency
provides some flexibility to tailor the implementation of the
algorithm to a particular application. Provided that classify
follows a simple set of invariants, our algorithm convergences,
which is shown in Section V.

The main body of the paper is structured as follows: Sec-
tion II provides a review of the CSG terminology and modeling
framework, Section III gives an overview of the general re-
fine/classify algorithm, Section IV describes the classify
operation in detail, Section V provides a formal proof that the
algorithm will converge to a numerically-optimal bounding
box, Section VI gives information on practical implementations
of the algorithm, and Section VII provides numerical results
for the algorithm applied to three representative models. The
reader can get a high level idea of our algorithm by reading the
description of our input in Section II, the recursive subdivision
algorithm in Section III, and the experiments in Section VII,
while lower level details and convergence proofs are described
in the remaining sections.

II. Input & Problem Statement

In previous work,(15) we presented a formalization for the multi-
component CSG model commonly used in Monte Carlo trans-
port codes such as MC21(2) and MCNP.(3) Next, we recall the
formalization for the input.

We define a primitive as the set of points R3, with coordinates
(x, y, z) satisfying the polynomial inequality

g(x, y, z) < A1x2 + A2y2 + A3z2

+ A4xy + A5xz + A6yz

+ A7x + A8y + A9z + A10.

A primitive defines a half space whose boundary is a quadric
(i.e., points where g(x, y, z) = 0). A subset of the quadrics
define the boundaries of common CSG modeling primitives
such as cones, ellipsoids, and planes.

A model is defined by a tree of nodes, called the model tree.
Each node N stores one parent P, zero or more children and a
formula F of regularized∗ unions and intersections of primitives.
Each node defines three components, depicted in Figure 1:

The basic component B(N) is the region of space defined by F.
∗ A regularized set operation(16) applies the set operation and then takes the

closure of the interior. Regularized operations are used to remove lower dimen-
sional features. For example, if two cubes share only a face their intersection is
the face but the regularized intersection is empty.



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

P

C

N
P

N

C

Figure 1: A 2D slice of a model and its model tree. Node N has
parent P and child C. The basic component B(N) is disconnected,
it is the union two disjoint cyan cylinders. The restricted com-
ponent R(N) is the black polka dotted region with a cyan or grey
background. The hierarchical component H(N) is the black polka
dotted region with the cyan background.

The restricted component R(N) is the basic component of N
intersected with the restricted component of P. That is,
R(N) = B(N) ∩ R(P).

The hierarchical component H(N) is the restricted component
of N minus the restricted components of its children.

For the root node N0, we define the restricted component of
N0 as R(N0) = B(N0). The basic component B(N0) must be
bounded, but the basic component for any other nodes may be
unbounded. A restricted component R(N) is connected if for
any two points p, q ∈ R(N) there exists a path ρ(p, q) from p
to q such that every point on ρ(p, q) ∈ R(N)†.

Observe that the various component definitions gives us
an inclusion that is useful for point location and particle
tracking algorithms. For a node N with parent P, we have
H(N) ⊆ R(N) ⊆ R(P), i.e., each child is contained in its par-
ent’s restricted component. The inclusion allows tracking algo-
rithms to avoid some unnecessary tests, a point outside a parent
must be outside of all of its children. Since we are interested
in computing bounding boxes to accelerate point location and
particle tracking we would like our bounding boxes to have a
similar inclusion property.

Consider bounding the three component types. The bounding
boxes of the restricted components are the best choice because
in a valid model, every restricted component is bounded and
the bounding boxes of restricted components maintains the
inclusion property. The other two types of components are not
good choices. First, a restricted component may be unbounded.
Second, a hierarchical components may have a bounding box
outside of its parent. For example, in Figure 1, the bounding
box of the H(N) is outside the bounding box of H(P).

We can compute the bounding boxes for every restricted com-
ponent of the model tree by traversing the model tree starting
from the root and descending:

†Typically this is the definition for a path connected set, which in R3

implies that the set is connected.

Algorithm 1. First, compute a bounding box for R(N0). Sec-
ond, for each remaining node N, take the bounding box of R(P)
and “tighten” it to be a bounding box for R(N).

The main operation of Algorithm 1 is called tighten. Since
most of the remainder of this paper describes tighten and its
primitives and tighten doesn’t need to know anything about
the model tree we will sometimes simplify notation and refer
to a restricted component C directly. Before we can give the
details of the tighten we need a few more definitions.

To compute the optimal axis-aligned bounding box for a
restricted component C, it is sufficient to compute the extremal
points of C in the x-, y-, and z-directions. In practice, it is
better to compute a box that is a little looser in order to avoid
numerical errors. For an axis-aligned box B, let ∂B be its
boundary. Let B∗ be the tightest axis-aligned bounding box for
a restricted component. An axis-aligned box B is an ε-box of a
restricted component if B∗ ⊆ B and for any point p ∈ ∂B there
is a point q ∈ ∂B∗ such that ‖p − q‖inf ≤ ε.

Now, we can formally state the problem that tighten solves:

Problem. Given a connected restricted component C and an
initial bounding box of C, compute an ε-box of C.

We pause to discuss why we focus on restricted components
that are connected. Bounding regions are used to accelerate
other calculations (in our case, point location, ray tracing, and
volume calculation). Consider bounding regions for a point
location query in the model depicted in Figure 1. Because the
cyan polka dotted restricted component is disconnected, any
convex bounding shape is mostly empty, which reduces the
benefit of bounding boxes.

Our algorithm, however, will still produce a bounding box
for disconnected components, although we lose the ε-box guar-
antee. In Section VI and Section VIII we revisit disconnected
restricted components and suggest some ways of handling them
in practice.

III. Algorithm

In this section, we describe an algorithm for computing a bound-
ing box for a restricted operation. Before giving the algorithm,
we describe one data structure and state our main operation.

An octree(17) is a tree data structure for representing a spatial
subdivision. Each node of the tree represents a box, called an
octree cell. An internal node N, representing box B, has eight
children that represent a subdivision of B. In our algorithm, we
will traverse an octree to compute a bounding box.

Our main operation, named classify, takes an axis aligned
box B and a restricted component C and returns one of four
values: INSIDE, OUTSIDE, BOUNDARY, or UNKNOWN. The full
details of the operation are given in Section IV. We summarize
the classify operation as follows:

Operation classify. Given a restricted component C and
an axis aligned box B, operation classify(C, B) returns:

INSIDE⇒ B ⊆ C



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

OUTSIDE⇒ B ∩C = ∅

BOUNDARY⇒ ∃ points p, q ∈ B with p ∈ C and q < C.

UNKNOWN⇒ could not classify.

Note that the return values of the classify operation are not
double implications. For example, B may be inside of C, yet the
operation returns UNKNOWN. In Figure 2 we see a collection of
boxes labeled by classify. Note that some boxes are labeled
with a U for UNKNOWN even though by visually inspecting the
image we can see that the box intersects the triangle’s boundary.
We will see in Section IV why classify cannot resolve the
intersection.

Figure 2: The blue triangle is defined by the intersections of three
half-planes with boundaries labeled 1,2, and 3. Boxes labeled O
are on the outside of a half plane. For example, the large box in
the top right is outside of the half-plane bounded by line 2, so it
does not require any subdivision. Boxes closer to multiple lines,
such as the boxes near the intersection of lines 1 and 2, require
further subdivision to resolve structure.

Next, we describe a simplified version of our our algorithm,
called simple_tighten that takes an initial box W and a com-
ponent C and computes a guaranteed bounding box of C. The
algorithm does not give a guarantee of an ε-box, however, we
suggest it in practice because it is simple to implement and for
most applications, the box produced works well enough. In
Section V, we describe the full details of the algorithm (which
does produce an ε-box). The biggest difference between the
two versions is in computing the stopping condition.

The pseudo-code for the simple_tighten is given in Algo-
rithm 2. In Line 2, the initial box W is added to the queue Q.
In Lines 4–40 the algorithm traverses the octree, tightening the
bounding box. At each iteration, the algorithm pops an octree
cell T from Q. The algorithm classifies the cell with respect
to C and partitions the cell. Cells classified as OUTSIDE are
discarded because they will not give us information about the
bounding box. Cells classified as INSIDE are kept because the
bounding box must at least enclose them. Cells classified as

Algorithm 2 simple_tighten(W,C, ε): Given an initial
bounding box W, a connected restricted component C and a
tolerance ε compute a bounding box that is “close” to an ε-box
for C.

1: // Initialize the queue
2: Q.push(W)
3:
4: while not Q.empty do
5: // Get the next cell to process
6: T = Q.pop
7:
8: // classify T for component C and
9: // partition the boxes into sets or further traverse octree

10: switch classify(C,T )
11: case OUTSIDE : discard T end case
12: case INSIDE : Add T to I end case
13: case BOUNDARY or UNKNOWN :
14: if T.largest_side > ε then
15: Subdivide T into eight eight boxes T1, . . .T8
16: Q.push(Ti) for i = 1, . . . , 8
17: else
18: if BOUNDARY then
19: Add T to B
20: else
21: Add T to U
22: end if
23: end if
24: end case
25: end switch
26:
27: // check for stopping condition
28: if Q.empty then
29: Blow = optimal bounding box of I ∪ B
30: Bhigh = optimal bounding box of I ∪ B ∪ U
31: dist = distance between Blow and Bhigh

32: if dist < ε then
33: return Bhigh

34: else
35: Û = subdivision of each box of U
36: Q.push(Û)
37: U = ∅
38: end if
39: end if
40: end while



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

BOUNDARY or UNKNOWN give us information about the bounding
box, but if they are bigger than ε they are too big to give useful
information. For these cells we subdivide and traverse further
down the octree. When cells have all edge lengths smaller
than ε they are no longer added to Q and Q becomes empty.

Once Q is empty the algorithm checks for convergence in
lines Lines 27–39. Let Blow be the optimal bounding box of the
cells classified as INSIDE and BOUNDARY and let Bhigh be the
optimal box of the cells classified as INSIDE, BOUNDARY, and
UNKNOWN. If the distance between Blow and Bhigh is less than ε,
return Bhigh, else, traverse further down the octree by: subdi-
viding the cells classified as UNKNOWN, pushing them onto Q,
clearing U, and continuing.

Note that this algorithm may not produce an ε-box, however
the box will still bound C. This could happen if, for example,
we identified all cells containing the extremal points for C.
Each cell would be inside of Blow, which means the optimal
bounding box would be inside of Blow. If the distance between
Blow and Bhigh were ε, the distance between the Bhigh and the
optimal bounding box would be greater than ε. In Section V, we
will see how a bit more complicated version of this algorithm
can be used to guarantee an ε-box. In Section VI, we will
discuss some other practical decisions that must be made when
implementing this algorithm.

IV. Geometric Operations

In this section we describe the classify operation, which is
used by the algorithms described in Section III and V. The
operation is a generalization of pointLocation, in which all
points in an axis-aligned box are classified simultaneously.

1. The classify Operation

In previous work,(15) we defined the box_classification
operation. In related work, Millman(18) improved the opera-
tion and analyzed its precision requirement. The operation
takes an axis aligned box B and a primitive s, and returns
if B is inside, outside, intersects, or bounds s. We used the
box_classification operation in the restriction con-
struction. The construction takes an axis aligned box B and a
boolean formula F, represented a component, and simplifies
F inside B. The construction can be summarized in two steps.
First, for any surface si in F, if B is inside or outside of si

replace si with a true or false, respectively. Second, simplify
the formula using a simple set of rewriting rules. The result
is a formula describing the component inside the box of only
surfaces that intersect B.

Here, we strengthen the restriction construction to
create the classify operation, which in some cases, returns
if the box intersects the boundary of a component. Recall the
statement of the classify operation from Section III:

Operation classify. Given a restricted component C and
an axis aligned box B, operation classify(C, B) returns:

INSIDE⇒ B ⊆ C

OUTSIDE⇒ B ∩C = ∅

BOUNDARY⇒ ∃ points p, q ∈ B with p ∈ C and q < C.

UNKNOWN⇒ could not classify.

We implement the operation as follows. Given a box B and a
formula F, when the restriction construction can simplify
the boolean formula to an evaluation, we can determine if B is
inside or outside the component. In such a case, return INSIDE
or OUTSIDE. If the formula is not simplified to an evaluation,
count the number of primitives in the simplified formula. If it
is one, B intersects the boundary, return BOUNDARY, otherwise,
return UNKNOWN.

In Figure 2 we see examples of the classify operation on
a collection of octree cells. Observe that the cells labeled as U
for UNKNOWN have multiple lines passing though them, while
the cells labeled as B for BOUNDARY have only one line passing
through them.

2. A Stronger classify Operation

We could also check if a collection of surfaces that intersect
B are the same surface. For most cases, one could check if
surfaces s1 and s2, defined by quadrics q1(x, y, z) and q2(x, y, z),
respectively are a scaler multiple of one another. That is, there
exists an λ ∈ R such that q1(x, y, z) = λq2(x, y, z). Note, how-
ever, that this will not work if s1 or s2 are pairs of planes.

For a pair of planes, we suggest constructing two individual
planes and treating them separately. This construction factors
the quadric representing the pair of planes into into two degree 1
polynomials. Details of this factorization, however, are outside
of the scope of this document.

The classify operation could be further strengthen by
cherry picking special cases that are commonly modeled. For
example, if users often model polyhedra, the implementer could
write a stronger classify that also handles intersections of
two and three planes. The stronger operation could then identify
boxes containing edges or a vertices of a polyhedra.

In our prototype implementation, however, we preferred a
classify that is purely combinatorial. By using just the num-
ber of surfaces that pass though a box we can encapsulated the
numerical calculations (i.e., intersecting a box and surface) in
the box_classify operation. This maintains a clean separa-
tion between the numeric and combinatorial, which is helpful
for debugging and avoiding error propagation.

V. Constructing an ε-box

In this section, we describe how to extend the algorithm from
Section III to compute an ε-box for a restricted component.

1. Stopping conditions

Given a restricted component C, initial bounding box W, and
a tolerance ε the operation tighten(C,W, ε) iteratively subdi-
vides W until the three conditions, described below, are met.
Once the conditions are met tighten outputs an ε-box of C.

The conditions follow from the observations:

Observation 1. Given a restricted component C, when com-
puting:



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

1. the optimal axis-aligned bounding box, it is sufficient to
compute the extremal points of C in the cardinal direc-
tions.

2. an ε-box, it is sufficient to compute six boxes
B−x, B+x, . . . , B+z (one for each cardinal direction), such
that for direction w: the width of box Bw in direction w
is less than ε, and Bw contains an extremal point of C in
direction w.

In the remainder of this section we describe the tighten
operation, and then prove that the conditions are sufficient to
produce an ε-box.

Consider subdividing W into cells of size δ such that δ ≤ ε.
Label every cell ci with the classify(C, ci) operation. Par-
tition the cells such that I, O, B, and U are the set of cells
labeled INSIDE, OUTSIDE, BOUNDARY, and UNKNOWN respec-
tively. Assume that I ∪B is not empty and let β be the optimal
bounding box of I ∪ B. Since δ ≤ ε if β bounds C then β is an
ε-box for C. Next, we will check if β is a bounding box for C.

PartitionU into two sets. LetUin andUout be the cells ofU
whose interiors are inside and outside of β respectively. Since
the cells ofUin are inside of β, they are already bounded, thus,
they can be discarded.

Next, we consider the cells of Uout. Find each connected
region Ri of the cells inUout. We call each Ri a finger. Since C
is connected, a finger that does not intersect β must be disjoint
from C and can be discarded. If all fingers were discarded,
Uout is empty, and therefore β is a bounding box for C.

In the fingers, we cannot resolve the structure of C for a cell
size of δ. In particular, we cannot determine if a finger contains
a point of C. One solution is to grow β to a box β̂ containing
the fingers. We must be careful, however, if none of the fingers
contained a point of C, we may lose the ε bound. If we let
k = bε/δc−1 and grow β by k ∗δ in each direction we get a box,
named β̂. If all fingers are contained in β̂ then, as we will show
in the next section, β̂ is an ε-box for C. If β̂ is not an ε-box,
repeat with δ = δ/2.

We summarize the discussion above by stating the three
conditions in which the tighten operation produces an ε-box
for C:

c1: δ ≤ ε

c2: I ∪ B , ∅

c3: all fingers are discarded by β or β̂.

Theorem 2. Given a connected restricted component C, in
an arbitrary axis-aligned bounding box W, tighten(C,W, ε)
returns an ε-box for C.

Proof. Let δ be the size of the longest edge of a cell. We begin
by noting that as we let δ → 0 each cell converges to a point.
Since any point, can be classified as inside, outside or laying
on the boundary of the restricted component, as δ→ 0 the box
β→ B∗. Thus, in the limit, tighten terminates and produces
an optimal bounding box.

Next we show that when tighten terminates, it produces an
ε-box for C. There are two cases for the algorithm to terminate.
For all cases, assume (c1) δ ≤ ε and (c2) I ∪ B , ∅.

First, assume (c1), (c2), and (c3) all fingers are discarded
by β. Then, tighten reports β as the bounding box. Next, we
show that β is an ε-box. Without loss of generality, assume p is
an extremal point with maximal x-coordinate. Let A be the cell
containing p. We will show that β is an ε-box by showing that
A is on the x-max boundary of β. This implies that the distance
from p to the x-max boundary of β is at most ε.

The set I∪B∪U covers the restricted component andB∪U
covers the boundary of the restricted component. As p must be
on the boundary of the component, A ∈ B or A ∈ U. If A ∈ B,
by construction, A is on the boundary of β. If A ∈ U, since all
fingers were discarded by β, A must be inUin, which implies
A ⊂ β. Moreover, A must be on the boundary of β, for if not,
there was a box in B with a point more extreme than p, which
is a contradiction. Since the distance from p to its orthogonal
projection onto any side of A is at most δ and δ ≤ ε, the box β
is an ε-box for C.

Second, assume (c1), (c2), and (c3) all fingers are discarded
by β̂. Since the boundaries of β̂ are expanded by (bε/δc − 1) ∗ δ,
the box β̂ is an ε-box for β. Thus, if any fingers poking out of β
contains a point of C then β̂ is an ε-box of C. If all fingers do
not contain any points of C, by the arguments in the previous
paragraph, a maximal point p must be contained in a box A on
the boundary of β. The distance d, between p and its orthogonal
projection on to the x-maximum face is upper bounded by

d ≤ δ + (bε/δc − 1) ∗ δ ≤ ε.

Therefore, β̂ is an ε-box for C. �

VI. Practial Implementation

While the conditions in the previous section will converge to an
ε-box there are a few implementation details worth mentioning.

First, one does not actually want to subdivide to a collection
of cells of size δ. As in, simple_tighten, in Section III,
it is better to do a depth first traversal of an octree. In our
implementation we do a depth-first traversal to the level in
which the longest edge of the octree cell is less than ε. Once
we have reached this level we can build representations for I,
O, B andU. In fact, one doesn’t even need to explicitly store I
or B. Since we only care about β, the bounding box for I ∪ B,
we compute β while traversing the octree. Each cell c of I can
be discarded once β is expanded to contain c. Each cell of B
can be discarded once their largest side is smaller than ε.

Second, computing and culling fingers is rarely necessary.
Often, subdividing a few extra levels reveals enough structure
to achieve the requested tolerance. To compute the fingers,
one has two options, either maintains neighbor relationships
between cells labeled as UNKNOWN during the octree traversal or
computes the fingers without a O(1) time routine that returns
the neighbors of a cell. The first option adds complexity to
the implementation, while the second option would require
substantial additional computational time.

Third, our convergence proof assumed that we can refine
infinitely. In practice, a user may wish to stop subdivision at
some level or after some amount of time. We are interested
in computing bounding boxes to accelerate particle tracking
algorithms. Thus, in our implementation, if we do not compute



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

Figure 3: Rendering of three models: SpikeyBall, RotatedCube, HelicalPipe20. Left: SpikeyBall is the union of a ball with six spikes. The
spikes are formed by intersections of paraboloids and planes. The bounding box of the ball is displayed. Center: RotatedCube is a cube
with a random rotation inside of a sphere. The vertices and edges of the bounding boxes for the cube and sphere are displayed. Right:
HelicalPipe20 is a subsection of helical piping defined by 21 components inside a sphere. The bounding box of three of the model’s
components are displayed.

an ε-box, we reduce down to a minimum cell size of γ, where
γ is determined by the resolution of our tracking algorithm.
We return an optimal box β̄ for I ∪ B ∪U, so that the box is
guaranteed to bound the component, and return the distance
between β and β̄, which bounds the looseness of β̄.

Fourth, while tighten and simple_tighten are de-
scribed to take a connected restricted component as input,
simple_tighten can also take a disconnected component as
input. In addition, while simple_tighten may not produce
an ε-box, with slight modification, it can produce a bounding
box, a region containing the optimal bounding box, and an
upper bound on the distance between the optimal and reported
box.

VII. Experiment

In this section we consider computing bounding boxes for the
three models depicted in Figure 3. In all cases, the optimal
bounding box of the object was located inside the box with
minimal coordinate (−15,−15,−15) and maximal coordinate
(15, 15, 15).

SpikeyBall is a ball with six spikes. It has one level in its
model tree. Each spike is formed by the intersection of
three planes and two paraboloids. The model is formed by
taking the union of the six spikes with an ellipsoid.

RotatedCube is a rotated cube inside of a sphere. It has two
levels in its model tree. The first level is a sphere defined
by one surface. The second level is a randomly rotated
cube defined defined by the intersection of six surfaces.

HelicalPipe20 is a section of helical piping inside of a sphere.
It has three levels in its model tree. The first level is
a sphere. The second level has 10 components. Each
component is a capped cylinder defined by the intersection
of three surfaces. Each of the 10 components in the second
level has a child. The third level, which defines the inner
volume of the pipe, has 10 components (one child for each
component of the second level). Each component in the
third level is defined by the intersection of three surfaces.

All experiments were run in serial on a single core of a
2.6GHz Intel Xeon processor with 48GB RAM.

1. Experiment 1: Comparing Three Models

In the first experiment, we look at times for computing the
bounding box of all components in each model at a two different
tolerances, 0.5 and 0.05. We start with an initial bounding box
with minimal coordinate (−1000,−1000,−1000) and maximal
coordinate (1000, 1000, 1000) and reduce down to the bounding
box within the specified tolerance. In all cases the bounding
boxes were computed to within the specified tolerances. The
times for computing bounding boxes are displayed in Table 1.

The first observation is that in all experiments most time is
spent reducing from the initial guess of the initial bounding
box to the ε-box for C0. A second observation is that reduc-
ing epsilon seems to increase the amount to time to compute
bounding boxes. In the second and third experiments we look
further into how the running time is effected by the initial guess
of the bounding box and the specified tolerance, respectively.

2. Experiment 2: Varying Initial Bounding Box Size

In the second experiment we investigate how varying the ini-
tial bounding box effects the running time. We say that an
initial bounding box has a size b if it has minimal coordinate
(−b,−b,−b) and maximal coordinate (b, b, b). In this experi-
ment, we fix the tolerance at ε = 0.1, and vary the size of the
initial bounding box. We consider ranges from 50-100 in incre-
ments of 10, 100-1000 in increments of 100, and 1000-50000 in
increments of 1000. For each initial bounding box, we compute
the bounding box for the spikey ball (C0) in the SpikeyBall
model, the rotated cube (C1) in the RotatedCube model and the
bounding sphere (C0) in the HelicalPipe20 model. The timings
are plotted in Figure 4.

The first observation is that as the size of the initial bounding
box increases, the amount of time for computing the bounding
box increases. However even when reducing the box by four
orders of magnitude, the total time to compute a bounding box
is under six seconds for the spikey ball, under two seconds for



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

Table 1: Times for computing bounding boxes for each compo-
nent in the SpikeyBall, RotatedCube, and HelicalPipe20 models. In
SpikeyBall, the ball is C0. In RotatedCube, the bounding sphere
is C0 and the rotated cube is C1. In HelicalPipe20, the bounding
sphere is C0, the 10 pipes are C1-C10, and the inside of the pipes
are C11-C12. Hierarchy is depicted by spacing. For example, in
RotatedCube, C1 is a child of C0, and in HelicalPipe20, C1-C10
are children of C0, C11 is a child of C1, and C12 is a child of C2.

Component ID Time (s) for
ε = 0.5 ε = .05

SpikeyBall
C0 0.60 1.67

RotatedCube
C0 0.02 0.10

C1 <.01 <.01
Total 0.02 0.10

HelicalPipe20
C0 0.13 1.62

C1 0.02 0.25
C11 0.03 0.19

C2 0.02 0.39
C12 0.05 0.36

C3 0.02 0.63
C13 0.03 0.22

C4 0.02 0.30
C14 0.04 0.28

C5 0.02 0.45
C15 0.05 0.46

C6 0.02 0.23
C16 0.03 0.20

C7 0.03 0.41
C17 0.05 0.35

C8 0.02 0.59
C18 0.03 0.21

C9 0.02 0.26
C19 0.04 0.27

C10 0.03 0.44
C20 0.05 0.42

Total 0.75 8.53

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

1

2

3

4

5

6

Loose Bounding Box Size

T
im

e(
s)

 

 
SpikeyBall (C0)
RotatedCube (C1)
HelicalPipes20 (C0)

Figure 4: A plot comparing the time to compute a bounding box
to a tolerance of ε = 0.1 from varying initial bounding boxes for
three examples.

the sphere bounding the helical pipes and less that 0.1 seconds
for the rotated cube.

The second observation is that the time for computing mod-
els is dependent on the model. A curve fit of the times for
SpikeyBall seems to indicate that the time for computing the
bounding box grows at O(

√
n) where n is the size of the initial

bounding box. The curve for RotatedCube is bounded between
0.40-1.36 seconds over the tested bounding box sizes.

The jumps in the function, for example HelicalPipe20 be-
tween 4.5 × 105 and 5 × 105, are caused by the algorithm re-
cursing one level deeper into the octree to achieve the tolerance
of ε = 0.1. Recall that a bounding box cannot be computed
until the size of the boxes are at least the tolerance. Consider,
for example, the jump between 4.5 × 105 and 5 × 105. For
HelicalPipe20 it takes 0.57 seconds for a initial bounding box
of 4.19 × 105 and 1.04 seconds for an initial bounding box
of 4.20 × 105. When started with an initial bounding box of
4.19 × 105 the algorithm must go down at least 23 levels in the
octree where as 4.20 × 105 must go at least 24 levels.

3. Experiment 3: Varying Tolerance

In the third experiment we look at how varying the tolerance
effects the running time. Starting from an initial bounding box
with minimal coordinate (−1000,−1000,−1000) and maximal
coordinate (1000, 1000, 1000) we compute bounding boxes
to a tolerance between 0.001 and 1.0 using an increment of
0.001. As in the second experiment, we look at computing
the bounding box for the spikey ball (C0) of the SpikeyBall
model, the rotated cube (C1) of the RotatedCube model and the
bounding sphere (C0) of the HelicalPipe20 model. The timings
are plotted in Figure 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

10
1

10
2

Epsilon

T
im

e(
s)

 

 
SpikeyBall (C0)
RotatedCube (C1)
HelicalPipes20 (C0)

Figure 5: A plot comparing the time to compute a bound-
ing box, from an initial bounding box with minimal coordinate
(−1000,−1000,−1000) and maximal coordinate (1000, 1000, 1000)
for varying tolerances for three examples.

The first observation is that as we compute ε to smaller
values, the time increases. In all three examples, a curve of
O(1/ε) seems to have good fit. We also observed, however, that
there is a step in the three examples, e.g., when ε is 0.125 and
0.25. This is expected. For many adjacent values of ε, e1 and e2,



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

the difference is only 0.001 the same bounding box that satisfies
e1 often satisfies e2. The steps occur when a looser bounding
box will suffice. Thus, the steps actually occur at values of
ε where ε = 1000/2i. Indeed, the step around 0.25 is caused
by the octree traversal only descending 11 levels (1000/211 u
0.488) as opposed to 12 levels (1000/212 u 0.244).

VIII. Conclusion

In this paper, we presented a robust and efficient algorithm for
generating the numerically-optimal bounding box (optimal to
within a user-specified tolerance) for an arbitrary CSG object
defined by quadratic surfaces. The new algorithm uses a refine-
ment/classification approach to tighten an initial, conservatively
large, bounding box into the numerically-optimal bounding
box. The proposed refinement/classification approach is more
efficient and practical than methods that rely on computing ac-
tual boundary representations of an arbitrary CSG component,
while guaranteeing that the component will be completely con-
tained in the bounding box. To our knowledge, the proposed
algorithm is the first practical method that is robust enough for
routine use for calculating bounding boxes of CSG components
in Monte Carlo particle transport codes. This ability to produce
guaranteed bounding boxes for CSG components will enable
improvements in ray tracing performance for Monte Carlo par-
ticle transport simulations. Moreover, similar to Gottschalk et
al.,(1) one can then use the bounding boxes to produce trees
or directed acyclic graphs, from the boxes to avoid processing
components that are far away from a region of interest.

At the heart of the new algorithm is the box classification test,
which determines if a given box is inside, outside, or intersects
the boundary of a CSG component. If the test is not able to un-
ambiguously classify a box it returns an unknown status, which
signals the algorithm to perform additional refinement. In gen-
eral, there is a trade-off between refinement and sophistication
of the box classification that allows the implementer to tailor
the box classification as needed. In this paper, we described
a simple box classification that is purely combinatorial. The
classification allows us to encapsulate the numerical calculation
of intersecting surfaces with boxes to avoid error propagation.

We also proved that for a connected restricted component,
our complete algorithm produces a numerically-optimal bound-
ing box. In practice, however, we recommend implementing
the simpler version of the algorithm described in Section III
because it is easy to implement and it always produces a valid
bounding box as well as a bound on the distance δ from the
optimal box. While in theory, δ may sometimes be larger than
the specified tolerance, we have not seen this in practice.

The proposed algorithm for generating bounding boxes was
tested on several representative CSG components of varying
complexity. In each test, the algorithm was able to compute a
valid bounding box to within the specified tolerance of the opti-
mal bounding box. As expected, the cost to generate a bounding
box is dependent on the complexity of the component being
bounded. During testing, the algorithm was able to compute a
numerically-optimal (for ε = 0.5) bounding box for a simple
component in 0.02 seconds, a pathologically complex com-
ponent in 0.65 seconds, and a collection of 20 hierarchically-

arranged components in 0.75 seconds (0.0325 s/component).
Furthermore, the results assumed an initial bounding box guess
that was over four orders of magnitude larger than the opti-
mal bounding box for each component. Reducing the size of
this initial bounding box guess will increase the speed of the
algorithm accordingly. These timing results suggest that the
algorithm could be used as a routine pre-processing calcula-
tion to generate bounding boxes for all CSG components in
Monte Carlo models, which, in turn, could provide a significant
increase in particle tracking speed.

IX. Acknowledgements

The authors would like to thank Stephen C. Wilson of the Bettis
Laboratory for his help creating the HelicalPipe20 model. Dr.
Snoeyink acknowledges support from a contract with the Bettis
Laboratory and from a NSF research grant.

References

1) S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A Hi-
erarchical Structure for Rapid Interference Detection,” Proc.
SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques, 1996.

2) D. P. Griesheimer et al., “MC21 v.6.0 – A Continuous-Energy
Monte Carlo Particle Transport Code with Integrated Reactor
Feedback Capabilities,” Proc. Joint International Conference on
Supercomputing in Nuclear Applications and Monte Carlo (SNA
+ MC), 2013.

3) X-5 Monte Carlo Team, “MCNP – A General Monte Carlo
n-Particle Transport Code Version 5,” LA-UR-03-1987, Los
Alamos National Laboratory (2003).

4) N. Candelore, R. Gast, and L. Ondis II, “RCP01 - A Monte Carlo
Program for Solving Neutron and Photon Transport Problems in
Three-Dimensional Geometry with Detailed Energy Description,”
WAPD-TM-1267, Bettis Laboratory (1978).

5) “POV-Ray, Persistence of Vision Raytracer (Version 3.6),” http:
//www.povray.org.

6) J. O’Rourke, “Finding Minimal Enclosing Boxes,” Interna-
tional Journal Computing and Information Sciences, 14, 183–199
(1985).

7) G. Barequet and S. Har-Peled, “Efficiently Approximating the
Minimum-Volume Bounding Box of a Point Set in Three Dimen-
sions,” Journal of Algorithms, 38, 91–109 (2001).

8) M. C. Lin and S. Gottschalk, “Collision Detection Between
Geometric Models: A Survey,” (1998).

9) L. Dupont, D. Lazard, S. Lazard, and S. Petitjean, “Near-optimal
parameterization of the intersection of quadrics: I. The generic
algorithm,” Journal of Symbolic Computation, 43, 3, 168–191
(2008).

10) E. Schömer and N. Wolpert, “An exact and efficient approach for
computing a cell in an arrangement of quadrics,” Computation
Geometry Theory and Applications, 33, 1-2, 65–97 (2006).

11) J. Keyser, Exact Boundary Evaluation for Curved Solids, PhD
thesis, University of North Carolina–Chapel Hill, 2000.

12) J. Keyser, T. Culver, M. Foskey, S. Krishnan, and D. Manocha,
“ESOLID—A System for Exact Boundary Evaluation,” Proc.
Proceedings of the Seventh ACM Symposium on Solid Modeling
and Applications, p. 23–34, ACM Press, 2002.

13) J. Keyser, S. Krishnan, and D. Manocha, “Efficient and Accurate
B-Rep Generation of Low Degree Sculptured Solids Using Ex-

http://www.povray.org
http://www.povray.org


Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

act Arithmetic: I-Representations,” Computer Aided Geometric
Design, 16, 9, 841–859 (1999).

14) J. Keyser, S. Krishnan, and D. Manocha, “Efficient and Accurate
B-Rep Generation of Low Degree Sculptured Solids Using Exact
Arithmetic: II-Computation,” Computer Aided Geometric Design,
16, 9, 861–882 (1999).

15) D. L. Millman, D. P. Griesheimer, B. R. Nease, and J. Snoeyink,
“Robust Volume Calculations for Constructive Solid Geometry
(CSG) Components in Monte Carlo Transport Calculations,” Proc.
PHYSOR: Advances in Reactor Physics, 2012.

16) A. G. Requicha, “Representations for Rigid Solids: Theory,
Methods, and Systems,” ACM Computing Surveys, 12, 4 (1980).

17) H. Samet, “The Quadtree and Related Hierarchical Data Struc-
tures,” ACM Computing Surveys, 16, 2, 187–260 (1984).

18) D. L. Millman, Degree-Driven Design of Geometric Algorithms
for Point Location, Proximity, and Volume Calculation, PhD
thesis, University of North Carolina–Chapel Hill, 2012.


	Introduction
	Input & Problem Statement
	Algorithm
	Geometric Operations
	The classify Operation
	A Stronger classify Operation

	Constructing an -box
	Stopping conditions

	Practial Implementation
	Experiment
	Experiment 1: Comparing Three Models
	Experiment 2: Varying Initial Bounding Box Size
	Experiment 3: Varying Tolerance

	Conclusion
	Acknowledgements

